用户名: 密码: 验证码:
OFDM技术在无源光网络及光无线系统中的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电信网、广播电视网和互联网的融合,以及一些高带宽业务如高清电视、网络会议和视频游戏的开展与普及,IP化、宽带化和无线化已经成为下一代光通信网的研究热点。而正交频分复用(OFDM)技术以其灵活的调制方式、更高的信道及频谱利用率和更好的色散及多径衰落容忍度,引起了全球各大电信运营商越来越多的关注,已经被广泛应用在数字音频广播(DAB)、数字视频广播(DVB)、IEEE802.11无线局域网和下一代移动通信系统(4G)中。为了满足未来接入网高速率、大带宽和宽覆盖的需求,发展新型的下一代光接入网技术和光纤无线融合技术已势在必行,因此,研究OFDM技术在下一代光接入网络和光纤无线融合网络中的应用具有很高的理论和实用价值。
     本论文在系统地分析了OFDM基本原理及OFDM信号在光纤与无线信道中传输所面临问题的基础上,通过仿真和实验研究,实现了OFDM技术在下一代无源光网络和光纤与无线融合网络中的应用,并取得了若干创新成果。具体研究内容包括:
     (1)通过理论研究和实验分析,结合正交频分多址(OFDMA)技术的优势,提出了支持光网络单元(ONU)之间高效互连互通的新型时分复用无源光网络(TDM-PON)、波分复用无源光网络(WDM-PON)以及时分波分混合无源光网络(HPON)系统。仿真和实验结果表明在这些基于OFDMA技术的ONU互通系统中通过优化OFDM信号和PON业务信号的功率比、OFDM信号频率间隔及子载波个数,可以有效减小噪声及色散对混传业务性能的影响,使系统具备动态灵活的互通业务带宽分配机制、互通业务完全不占用PON业务带宽及支持多个互通业务并发等优势,为下一代无源光网络中高效虚拟局域网(VPN)研究提供了技术支持。
     (2)实验分析和探讨了光纤与无线融合系统中调制器啁啾及信道色散和非线性对高阶调制格式OFDM信号传输性能的影响,通过优化设计OFDM接收端时钟同步、频率相位估计以及信道估计和均衡算法,实现了基于低成本VCSEL的光载无线系统内5.5GHz载频300.144Mb/s QPSK-OFDM信号在100m多模光纤和900.432Mb/s64QAM-OFDM信号在1km弯曲不敏感光纤中的传输。此外,还创新地提出融合了偏振模复用(PDM)技术和无线多入多出(MIMO)技术的高频谱利用率、高速率光载无线系统,设计了基于Zero Forcing(ZF)的信道估计算法以补偿光纤中偏振的旋转及无线中信号的多径衰落,实现了2×2MIMO光载无线系统内5.65GHz载频1.59Gb/s16QAM-OFDM信号在22.8km单模光纤和1m无线距离中的传输。
     (3)搭建了光载高速W-band (75-110GHz) OFDM无线信号的测试平台,创新地使用光IQ调制器、光频梳产生器及光外差拍频的方式产生了速率为42.13Gb/s、频谱利用率为2.808bits/s/Hz的86GHz载频16QAM-OFDM信号。理论推导和实验分析了激光器相位噪声、OFDM信号峰均比及光纤非线性效应对W-band无线传输性能的影响,提出了高效的激光器、频率源相位噪声补偿算法及基于OFDM信元频域平均法(ISFA)和数字锁相环(DPLL)的增强型信道估计和均衡算法,成功将42.13Gb/s86GHz载频16QAM-OFDM信号传输了0.6m无线距离。此外,设计了基于光相位调制器的恒包络OFDM传输系统,极大地减弱了系统对高线性放大器和调制器的需求。理论推导和实验结果证明,在此系统中激光器和频率源的相位噪声对信号只是一个加性分量,通过滤波器极易滤除,极大地降低了系统复杂度。系统实验成功地实现了8Gb/s81.5GHz载频16QAM-OFDM信号在22.8km单模光纤和2.3m无线距离中的传输。这些研究成果为下一代高速无线光通信系统的发展提供了技术支持。
Recently, during the integration of telecommunications networks, cable TV networks and Internet networks (tri-networks integration), and the development of the bandwidth-hungry applications such as Hi-Vision/Ultra High Definition TV, video conference and video games, the IP-based, broadband and wireless optical communication network has attracted more and more research interest. Moreover, due to the flexible modulation format, high channel and spectral efficiency, and robust against fiber dispersion effects in optical fiber channels and wireless multipath fading in wireless channels, orthogonal frequency division multiplexing (OFDM) has attracted more and more attention from global telecommunication operators, and been widely used in Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB), Wireless Local Access Network (WLAN, IEEE802.11), and the4th Mobile Communication System (4G). Furthemore, radio over fiber techniques have been regarded as a promising solution to meet the explosive demand of bandwidth and the large number of broadband subscribers. Therefore, it is very essential to research the application of OFDM techniques in the next generation optical access network and fiber-wireless intergration network, there are important theoretical and practical values.
     After systematically analyzing the principle of OFDM technique and the transmission problem of OFDM signal in the fiber and wireless hybrid channel, this thesis presents the simulation and experimentation for validation, and realizes the implementation of OFDM technique in the next generation optical access network and fiber-wireless intergration network. The major achievements of this thesis are summarized as follows:
     (1) By using the orthogonal frequency division multiple access (OFDMA) and subcarrier modulation (SCM) technologies, the novel time-divison multiplexing passive optical network (TDM-PON), wavelength-division multiplexing PON (WDM-PON) and hybrid WDM and TDM PON (HPON) architectures which support efficiently and flexibly local access network (LAN) emulation among optical network units (ONUs) are proposed in this thesis. Experimental and simulation results show that by optimizing RF carrier frequency, NRZ-to-OFDM power ratio, the frequency space and number of OFDM subcarriers, the impact of intermixing nosie and fiber dispersion on the LAN and PON traffic could be efficiently reduced. The proposed LAN emulation schemes have several advantages. Firstly, multiple LAN traffics can be concurrently transmitted in the same time slot due to the use of OFDMA protocol. Secondly, the bandwidth of the LAN traffic in each ONU can be flexibly adjusted by allocating OFDM subcarriers and time slots. Thirdly, by using the RF subcarrier multiplexed transmission, the LAN traffic could not occupy the bandwidth of the upstream and downstream traffics. These schemes could provide technical support for the development of the efficient virtual private network in the next generation passive optical network system.
     (2) By analyzing and discussing the impact of fiber dispersion, wireless multi-path fading, and channel nonlinearity on the high-order modulation format OFDM signal, the optimal DSP algorithms including time synchronization, frequency and phase recovery and channel estimation and equalization are designed to realize the low cost and high spectral efficiency WiFi signal over fiber system for in-building network. The performance of different modulation order OFDM signal is analyzed using directly modulated VCSELs at850nm for the multi-mode fiber (MMF) transmission, and at1310nm and1550nm for the bend insensitive fiber (BIF) transmission. Experimental results show that for the MMF case, a spectral efficiency of1.44bits/s/Hz with a net bit rate of300.144Mb/s could be achieved, and a spectral efficiency of4.31bits/s/Hz corresponding to a net bit rate of900.432Mb/s is obtained for the BIF case. Moreover, this thesis has presented a spectral efficient and WDM-PON compatible MIMO-OFDM access system by combining optical polarization division multiplexing (PDM) and wireless multiple input multiple output (MIMO) spatial multiplexing techniques. And a training-based zero forcing (ZF) algorithm is digitally developed to estimate the polarization multiplexed MIMO transmission channel. A797Mb/s net data rate QPSK-OFDM signal and a1.59Gb/s net data rate16QAM-OFDM signal at5.65GHz RF carrier frequency are transmitted over3m and1m air distance with22.8km single mode fiber respectively.
     (3) In this thesis, we have built the high speed W-band (75-110GHz) OFDM signals over fiber test bed. By using optical I/Q modulator, optical comb generator, and optical heterodyne beating based W-band signal generator, a spectral efficiency of2.808bits/s/Hz with a net bit rate of42.13Gb/s16QAM-OFDM signal at86GHz RF carrier frequency is transmitted over fiber and wireless hybrid channel. The theoretical derivation and experimental analysis show that the phase noise of lasers, the high PAPR of transmitted OFDM signal and channel nonlinearity have significant impact on the system performance. By using efficient phase noise compensation alogorithm and improved channel estimation algorithm, the42.13Gbit/s16QAM-OFDM signals at86GHz are successfully transmitted over0.6m air distance. Moreover, to resolve the high system requirement about linear amplifier and modulator due to the high PARP of OFDM signal, and avoid the deterioration influence of the laser phase noise, a constant envelop OFDM W-band wireless signal over fiber system based on optical modulator has been proposed in this thesis. The analysis shows that the phase noises of lasers and LO oscillator appear as additional terms to the received signal, resulting in significant complexity reduction. In our experiment,8Gb/s16QAM-OFDM signal is successfully transmitted over2.3m air distance and22.8km single mode fiber. These research results provide technical support for the future fiber-wireless system which can obtain high speed, high bandwidth and large transmission distance.
引文
[1]Chang R W. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Systems Technical Journal,1966,46:1775~1796
    [2]Weinstein S B, Ebert P M. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications,1971, 19(5):628~634
    [3]Raaf B, Zirwas W, Friederichs K J, et al. Vision for beyond 4G broadband radio systems.2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications,2011.2369~2373
    [4]胡海明,董绍经,姜有田等.第四代移动通信技术浅析.计算机工程与设计,2011,32(5):1563~1567
    [5]姚引娣.第四代移动通信系统及其关键技术.西安邮电学院学报,2007,12(5):25~29
    [6]IEEE.802.3ah-2004. Ethernet in the First Mile. USA:IEEE.802.3ah,2004.1-20
    [7]ITU-T. G.984.1. Gigabit-capable Passive Optical Networks (GPON):General characteristics. USA:ITU-T,2003.1~10
    [8]IEEE.802.3av-2009, Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks, USA:IEEE.802.3av,2009.1~40
    [9]Skaljo E, Hodzic M, Bektas I. Migration from G(E)PON to NGPON. Proceeding of 2009 International Conference on Ultra Modern Telecommunications & Workshops, 2009.1~4
    [10]Neto L A, Gharba A, Chanclou P, et al. High bit rate burst mode optical OFDM for next generation passive optical networks. Proceeding of 36th European Conference and Exhibition on Optical Communication (ECOC),2011.1-3
    [11]Giddings R P, Hugues-Salas E, Charbonnier B, et al. Experimental demonstration of real-time optical OFDM transmission at 11.25 Gb/s over 500-m MMFs employing directly modulated DFB lasers. Photonics Technology Letters,23(1):51~53
    [12]Cvijetic N, Qian D, Hu J, et al. Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission. IEEE Journal on Selected Areas in Communications,2009,28(6):781~790
    [13]Shieh W, Bao H, Tang Y. Coherent optical OFDM:theory and design. Optics Express,2009,16(2):841~859
    [14]Tanaka K, Agata A, Horiuchi Y. IEEE 802.3av 10G-EPON standardization and its research and development status. Journal of Lightwave Technology,2010,28(4): 651~660
    [15]Zeng J, Ansari N. Toward IP virtual private network quality of service:a service provider perspective. IEEE Communications Magazine,2003,41(4):113~119
    [16]Dixit S. IP over WDM:Building the next-generation optical Internet. New Jersey: Wiley Interscience,2003.1~100
    [17]Luo Y, Ansari N. Bandwidth allocation for multiservice access on EPONs. IEEE Communications Magazine,2005,43(2):S16~S21
    [18]Nadarajah N, Attygalle M, Nirmalathas A, et al. A novel local area network emulation technique on passive optical networks. Photonics Technology Letters, 2005,17(5):1121~1123
    [19]Chae C J, Lee S T, Kim G Y, et al. A PON system suitable for internetworking optical network units using a fiber Bragg grating on the feeder fiber. Photonics Technology Letters,1999,11(12):1686~1688
    [20]Tran V, Chae C J, Tucker R S. Bandwidth-efficient PON system for broad-band access and local customer internetworking. Photonics Technology Letters,2006, 18(5):670~672
    [21]Wong E, Nadarajah N, Chang-Joon C, et al. Passive optical network architectures with optical loopbacks.18th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS),2005.218~219
    [22]Nadarajah N, Nirmalathas A, Wong E. LAN emulation on passive optical networks using RF subcarrier multiplexing.17 Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS),2004.637~638
    [23]Nadarajah N, Attygalle M, Wong E, et al. Novel schemes for local area network emulation in passive optical networks with RF subcarrier multiplexed customer traffic. Journal of Lightwave Technology,2005,23(10):2974~2983
    [24]Nadarajah N, Wong E, Attygalle M, et al. Protection switching and local area network emulation in passive optical networks. Journal of Lightwave Technology, 2006,24(5):1955~1967
    [25]Nirmalathas A, Wong E, Nadarajah N. Multiple secure virtual private networks over passive optical networks using electronic CDMA.2009 IEEE/LEOS Summer Topical Meeting (LEOSST),2009.13~14
    [26]Hossain A D, Dorsinville R, Ali M A, et al. Ring-based local access PON architecture for supporting private networking capability. Journal of Optical Networking,2006,5(1):26~39
    [27]Hossain A D, Dorsinville R, Ali M, et al. Supporting private networking capability in EPON.2006 IEEE International Conference on Communication (ICC),2006. 2655~2660
    [28]Zhao Q, Sun X, Ku Y C, et al. A novel internetworking scheme for WDM passive optical network based on remodulation technique. Proceeding of 2006 Optical Fiber Communication Conference and National Fiber Optic Engineers Conference,2006. 1~3
    [29]Chae C J, Tucker R S. Implementation of multiple optical virtual private networks over WDM passive optical network. Electronics Letters,2004,40(5):331~333
    [30]Chae C J, Tucker R S. Passive virtual optical networking technique using a cyclic NxN arrayed waveguide grating for multiple multihop ring networks. Photonics Technology Letters,2004,16(3):948~950
    [31]Zhao Q, Chan C K. A wavelength-division-multiplexed passive optical network with flexible optical network unit internetworking capability. Journal of Lightwave Technology,2007,25(8):1970~1977
    [32]Tian Y, Su Y, Yi L, et al. Optical VPN in PON based on DPSK erasing/rewriting and DPSK/IM formatting using a single Mach-Zehnder modulator. Proceeding of 31st European Conference on Optical Communication (ECOC),2006.1~2
    [33]Shea D P, Mitchell J E. Architecture to integrate multiple PONs with long reach DWDM backhaul. IEEE Journal on Selected Areas in Communications,2009,27(2): 126~133
    [34]Qian D, Cvijetic N, Hu J, et al. A novel OFDMA-PON architecture with source-free ONUs for next-generation optical access networks. Photonics Technology Letters, 2009,21(17):1265-1267
    [35]Yoshima S, Tanaka Y, Kataoka N, et al. Full-deplex 10G-TDM-OCMDA-PON system using only a pair of en/decoder. Proceeding of 35st European Conference on Optical Communication (ECOC),2010.1~3
    [36]Tian Y, Tian X, Leng L, et al. Optical VPN connecting ONUs in different PONs. Proceeding of 32nd Optical Fiber Communication Conference (OFC),2007.1~3
    [37]Tian Y, Ye T, Leng L, et al. A scalable all-optical VPN in multiple PONs with a two-stage TDM-WDM architecture. Proceeding of 33rd European Conference on Optical Communication (ECOC),2007.1~2
    [38]Tian Y, Ye T, Su Y. Demonstration and scalability analysis of all-optical virtual private network in multiple passive optical networks using ASK/FSK format. Photonics Technology Letters,2007,19(20):1595~1597
    [39]Liu J, Zeng D, Guo C, et al. OCDMA PON supporting ONU inter-networking based on gain-switched Fabry-Perot lasers with external dual-wavelength injection. Optics Express,2010,18(22):22982~22987
    [40]Lin Y M, Tien P L, Yuang M C, et al. A novel passive optical network architecture supporting seamless integration of RoF and OFDMA signals. Photonics Technology Letters,2010,22(6):419~421
    [41]Zhang J, de la Roche G. Femtocells:technologies and deployment. United Kindom: John Wiley & Sons Ltd,2010.1~66
    [42]Sauer M, Kobyakov A, George J. Radio over fiber for Picocellular network architecture. Journal of Lightwave Technology,2007,25(11):3301~3320
    [43]Bong Kim H, Wolisz A. A radio over fiber based wireless access network architecture for RuRal area. Proceeding of 14th IST Mobile and Wireless Communications Summit,2005.1~5
    [44]Betti S, Carrozzo V, Duca E, et al. Radio-over-fiber (RoF) techniques for broadband wireless LAN.9th International Conference on Transparent Optical Networks (ICTON),2007.234~237
    [45]Harjula I, Ramirez A, Martinez F, et al. Practical issues in the combining of MIMO techniques and RoF in OFDM/A systems.7th WSEAS,2008.244~248
    [46]Tsukamoto K, Nishiumi T, Yamagami T, et al. Convergence of WDM access and ubiquitous antenna architecture for braodband wireless services. PIERS Online,2010, 6(4):385~389
    [47]Kobyakov A, Sauer M, Ng'oma A, et al. Effect of optical loss and antenna separation in 2x2 MIMO fiber-radio systems. IEEE Transactions on Antennas and Propagation, 2010,58(1):187~194
    [48]Tarokh V. New directions in wireless communications research. US:Springer,2009. 29~61
    [49]Shieh W, Djordjevic I. OFDM for optical commnication. US:Wiley,2010.53~177
    [50]Jansen S L, Morita I, Schenk T C, et al. Long-haul transmission of 16x52.5 Gbits/s polarization-division multiplexed OFDM enabled by MIMO processing (Invited). Journal of Optical Networking,2008,7(2):173~182
    [51]Othman M B, Deng L, Pang X, et al. Directly modulated VCSELs for 2x2 MIMO-OFDM radio over fiber in WDM-PON. Proceeding of the 37th European Conference and Exhibition on Optical Communication (ECOC),2011.1~3
    [52]Othman M B, Deng L, Pang X, et al. MIMO-OFDM WDM PON with DM-VCSEL for femtocells application. Optics Express,2011,19(26):B537~B542
    [53]Hofmann W, Wong E, Bohm G, et al.1.55-um VCSEL arrays for high-bandwidth WDM-PONs. Photonics Technology Letters,2008,20(4):291~293
    [54]Chow C W, Xu L, Yeh C H, et al.40-Gb/s upstream transmitters using directly modulated 1.55-um VCSEL array for high-split-ratio PONs. Photonics Technology Letters,2010,22(5):347~349
    [55]Chia M Y W, Luo B, Yee M L, et al. Radio over multimode fiber transmission for wireless LAN using VCSELs. Electronics Letters,2003,39(15):1143~1144
    [56]Lethien C, Loyez C, Vilcot J P. Potentials of radio over multimode fiber systems for the in-building converage of mobile and wireless LAN applications. Photonics Technology Letters,2005,17(12):2793~2795
    [57]Hartmann P, Qian X, Penty R V, et al. Broadband multimode fiber (MMF) based IEEE 802.11 a/b/g WLAN distribution system. Microwave Photonics Conference (MWP),2004.173~180
    [58]Nema S, Goel A, Singh R P. Integrated DWDM and MIMO-OFDM system for 4G high capacity mobile communication. Signal Processing:An International Journal, 2010,3(5):132~143
    [59]Razavi B. Gadgets gab at 60 GHz. IEEE Spectrum,2008,45(2):46~58
    [60]Weiss M, Stohr A, Lecoche F, et al.27 Gbit/s photonic wireless 60 GHz transmission system using 16-QAM OFDM. Proceeding of the Microwave Photonics Conference (MWP),2009.1~3
    [61]Lin C T, Wong E Z, Jiang W J, et al.28-Gb/s 16-QAM OFDM radio-over-fiber system within 7-GHz license-free band at 60GHz employing all-optical up-conversion. Proceeding of the Conference on Lasers and Electro-optics and Conference on Quantum Electronics and Laser Science (CLEO/QELS),2009.1~2
    [62]Hirata A, Kosugi T, Takahashi H, et al.120-GHz-band millimeter-wave photonics wireless link for 10-Gb/s data transmission. IEEE Transactions on Microwave Theory and Techniques,2006,54(5):1937~1944
    [63]Kanno A, Inagaki K, Morohashi I, et al.20-Gb/s QPSK W-band (75-110GHz) wireless link in free space using radio-over-fiber technique. IEICE Electronics Express,2011,8(8):612~617
    [64]Zibar D, Sambaraju R, Caballero A, et al. High-capacity wireless signal generation and demodulation in 75- to 110-GHz band employing all-optical OFDM. Photonics Technology Letters,2011,23(12):810~812
    [65]Pang X, Caballero A, Dogadaev A, et al.100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz). Optics Express,2011,19(25):24944~24949
    [66]佟学俭,罗涛OFDM移动通信技术原理与应用.(第一版).北京:人民邮电出版社,2003.23~33
    [67]Bingham J A C. Multicarrier modulation for data transmission:an idea whose time has come. IEEE Communications Magazine,1990,28(5):5~14
    [68]Keller T, Hanzo L. Adaptive multicarrier modulation:a convenient framework for time-frequency processing in wireless communication. Proceedings of the IEEE, 2000,88(5):611~640
    [69]Shieh W, Yi X, Ma Y, et al. Coherent optical OFDM:has its time come? [Invited]. Journal of Optical Networking,2008,7(3):234~255
    [70]Saltzberg B R. Comparison of single-carrier and multitone digital modulation for ADSL applications. IEEE Communications Magazine,1998,36(11):114~121
    [71]Ingham J D, Penty R V, White I H, et al. Carrierless amplitude and phase modulation for low-cost, high-spectral-efficiency optical data-communication links. Proceeding of 2010 Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS),2010.1~2
    [72]Qian D, Hu J, Ji P N, et al.10.8-Gb/s OFDMA-PON transmission performance study. Proceeding of 34th Optical Fiber Communication Conference (OFC),2009.1~3
    [73]Qian D, Cvijetic N, Hu J, et al.40-Gb/s MIMO-OFDM-PON using polarization multiplexing and direct-detection. Proceeding of 34 Optical Fiber Communication Conference (OFC),2009.1~3
    [74]Qian D, Cvijetic N, Hu J, et al.108 Gb/s OFDMA-PON with polarization multiplexing and direct detection. Journal of Lightwave Technology,2010,28(4): 484~493
    [75]刘德明.光纤光学.(第二版).北京:科学出版社,2008.54-60
    [76]Djordjevic I B, Xu L, Wang T. Simultaneous chromatic dispersion and PMD compensation by using coded-OFDM and girth-10 LDPC codes. Optics Express, 2008,16(14):10269~10278
    [77]Djordjevic I B, Vasic B.100 Gb/s transmission using orthogonal frequency-division multiplexing. Photonics Technology Letters,2006,18(15):1576~1578
    [78]Djordjevic I B. PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM. Optics Express,2007,15(7):3692~3701
    [79]Hao Y H, Huang W W, Hu W, et al. Fiber nonlinearity mitigation in long-haul coherent optical OFDM. Proceeding of 2nd International Conference on Information Engineering and Computer Science (ICIECS),2010.1~3
    [80]Tang Y, Shieh W, Krongold B S. Fiber nonlinearity mitigation in 428-Gb/s multiband coherent optical OFDM systems. Proceeding of 35 Optical Fiber Communication Conference (OFC),2010.1~3
    [81]Tang Y, Shieh W. DFT-spread OFDM for fiber nonlinearity mitigation. Photonics Technology Letters,2010,22(16):1250~1252
    [82]Tkach R W, Chraplyvy A R, Forghieri F, et al. Four-photon mixing and high-speed WDM systems. Journal of Lightwave Technology,1995,13(5):841~849
    [83]Lowery A J, Wang S, Premaratne M. Calculation of power limit due to fiber nonlinearity in optical OFDM systems. Optics Express,2007,15(20):13282~13287
    [84]Lowery A J. Fiber nonlinearity pre-and post-compensation for long-haul optical links using OFDM. Optics Express,2007,15(20):12965~12970
    [85]Liu H, Li G. OFDM-based broadband wireless networks design and optimization. New Jersey:John Wiley & Sons,2005.13~30
    [86]Hoeher P. A statistical discrete-time model for the WSSUS multipath channel. IEEE Transactions on Communications,1992,41(4):461~468
    [87]Stuber G L, Barry J R, Mclaughlin S W, et al. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE,2004,92(2):271~294
    [88]Bolcskei H, Gesbert D, Paulraj A J. On the capacity of OFDM-based spatial multiplexing systems. IEEE Transactions on Communications,2002,50(2):225~234
    [89]Muquet B, Wang Z, Giannakis G B, et al. Cyclic prefixing or zero padding for wireless multicarrier transmissions. IEEE Transactions on Communications,2002, 50(12):2136~2148
    [90]Schmidl T M, Cox D C. Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications,1997,45(12):1613~1621
    [91]Minn H, Zeng M, Bhargava V K. On timing offset estimation for OFDM systems. IEEE Communications Letters,2000,4(7):242~244
    [92]Shin C, Heath R W, Powers E J. Blind channel estimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology,2007,56(2):670~685
    [93]Jiang Y, Minn H, Gao X, et al. Frequency offset estimation and training sequence design for MIMO OFDM. IEEE Transaction on Wireless Communications,2008, 7(4):1244~1254
    [94]Zhang Z, Zhang Y Q, Chu X, et al. An overview of virtual private network (VPN):IP VPN and optical VPN. Photonic Network Communications,2004,7(3):213~225
    [95]Armstrong J. OFDM for optical communications. Journal of Lightwave Technology, 2009,27(3):189~204
    [96]Qian Y, Zhang M, Liu D, et al. RSOA-based distributed access long reach hybrid WDM-TDM PON with OADMs. Chinese Optics Letters,2010,8(9):899~901
    [97]Coura D J C, Silva J A L, Segatto M E V. A bandwidth scalable OFDM passive optical network for future access network. Photonic Network Communications,2009, 18(3):409~416
    [98]Koffman I, Roman V. Broadband wireless access solutions based on OFDM access in IEEE 802.16. IEEE Communications Magazine,2002,40(4):96~103
    [99]Sampath H, Talwar S, Tellado J, et al. A fourth-generation MIMO-OFDM broadband wireless system:design, performance, and field trial results. IEEE Communications Magazine,2002,40(9):143~149
    [100]Vassis D, Kormentzas G, Rouskas A, et al. The IEEE 802.11g standard for high data rate WLANs. IEEE Network,2005,19(3):21~26
    [101]Uthansakul P, Bialkowski M E. Multipath signal effect on the capacity of MIMO, MIMO-OFDM and spread MIMO-OFDM.15th Ithernational Conference on Microwaves, Radar and Wireless Communications (MIKON),2004.989~992
    [102]Sano A, Masuda H, Kobayashi T, et al. Ultra-high capacity WDM transmission using spectrally-efficient PDM 16-QAM modulation and C- and extended L-Band wideband optical amplification. Journal of Lightwave Technology,2011,29(4):578~ 586
    [103]Zhou X, Yu J, Huang M F, et al. Transmission of 32-Tb/s capacity over 580 km using RZ-shaped PDM-8QAM modulation format and cascaded multimodulus blind equalization algorithm. Journal of Lightwave Technology,2010,28(4):456~465
    [104]Jansen S L, Morita I, Schenk T C, et al. Long-haul transmission of 16x52.5 Gbits/s polarization division multiplexed OFDM enabled by MIMO processing (Invited). Journal of Optical Networking,2008,7(2):173~182
    [105]Chen S, Yang Q, Ma Y, et al. Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals. Journal of Lightwave Technology,2009,27(16):3699~3704
    [106]Wells J. Faster than fiber:The future of multi-G/s wireless. IEEE Microwave Magazine,2009,10(3):104~112
    [107]Nagatsuma T, Takada T, Song H J, et al. Millimeter- and THz-wave photonics towards 100-Gbit/s wireless transmission.23rd Annual Meeting of the IEEE Photonics Society,2010.385~386
    [108]Chen L, Wen H, Wen S. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection. Photonics Technology Letters,2006,18(19):2056~2058
    [109]Kanno A, Inagaki K, Morohashi I, et al.40 Gb/s W-band (75-110 GHz) 16-QAM radio-over-fiber signal generation and its wireless transmission. Optics Express,2011, 19(26):B56~B63
    [110]Hirata A, Furuta T, Ito H, et al.10-Gb/s millimeter-wave signal generation using photodiode bias modulation. Journal of Lightwave Technology,2006,24(4):1725~ 1731
    [111]Kuo F M, Huang C B, Shi J W, et al. Remotely up-converted 20-Gbit/s error free wireless on-off-keying data transmission at W-band using an ultra-wideband photonic transmitter-mixer. IEEE Photonics Journal,2011,3(2):209~219
    [112]O'Reilly J J, Lane P M, Heidemann R, et al. Optical generation of very narrow linewidth millimeter wave signals. Electronics Letters,1995,28(25):2309~2311
    [113]Novak D, Ahmed Z, Waterhouse R B, et al. Signal generation using pulsed semiconductor lasers for application in millimeter-wave wireless links. IEEE Transactions on Microwave Theory Techniques,1995,43(9):2257~2262
    [114]Hofstetter R, Schmuck H, Heidemann R. Dispersion effects in optical millimeter-wave systems using self-heterodyne method for transport and generation. IEEE Transactions on Microwave Theory Techniques,1995,43(9):2263~2269
    [115]Kuri T, Kitayama K, Ogawa Y. Fiber-optic millimeter-wave uplink system incorporating remotely fed 60-GHz-band optical pilot tone. IEEE Transactions on Microwave Theory Techniques,1999,47(7):1332~1337
    [116]Kuri T, Kitayama K, Stohr A, et al. Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation. Journal of Lightwave Technology,1999, 17(5):799~806
    [117]Smith G H, Novak D, Ahmed Z. Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems. Electronics Lett.,1997,33(1):74~75
    [118]Park J, Sorin W V, Lau K Y Elimination of the fiber chromatic dispersion penalty on 1550 nm millimeter-wave optical transmission. Electronics Lett.,1997,33(6): 512~513
    [119]Qi G, Yao J P, Seregelyi J, Paquet S, et al. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique. IEEE Transactions on Microwave Theory Techniques,2005, 53(10):3090~3097
    [120]Williams K J, Esman R D. Optically amplified downconverting link with shot-noise-limited performance. Photonics Technology Letters,1996,8(1):148-150
    [121]Sun C K, Orazi R J, Pappert S A. Efficient microwave frequency conversion using photonic link signal mixing. Photonics Technology Letters,1996,8(1):154~156
    [122]Helkey R, Twichell J C, Cox C. A down-conversion optical link with RF gain. Journal of Lightwave Technology,1997,15(6):956~961
    [123]Smith G H, Novak D. Broadband millimeter-wave fiber-radio network incorporating remote up/down-conversion. Microwave Symposium Digest, IEEE MTT-S,1998. 1509~1512
    [124]Kitayama K, Griffin R A. Optical downconversion from millimeter-wave to IF-band over 50-km-long optical fiber link using an electroabsorption modulator. Photonics Technology Letters,1999,11(2):287~289
    [125]Liu X, Buchali F. Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM. Optics Express,2008,16(26):21944~21957

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700