用户名: 密码: 验证码:
非视距光通信信号处理研究与基带系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线光通信是异于光纤通信的一种光通信方式,它利用大气作为传输媒介。无线光通信有视距通信和非视距通信二种方式。非视距紫外光通信(简称紫外光通信)是利用大气中的粒子、气凝胶、灰尘等微粒对日盲波段紫外光的散射作用进行信息传输的一种新型的通信模式。由于其保密性强、抗干扰能力强及可实现非视距传输等优点,可用于多种近距离抗干扰通信环境,近几年来受到军事强国的广泛关注,紫外光通信研究是世界前沿课题。
     目前对非视距紫外光通信的研究还不深入,主要研究方向是调制技术,紫外光大气传输特性和系统建模仿真等。非视距紫外光通信的显著特点是严重的码间干扰和多径衰落,误码率高,带宽窄。基于紫外光通信的特点,为了提高通信性能,研究了紫外光通信信道响应特点,以及紫外光通信中的均衡,信号检测,MIMO技术等算法。同时基于理论研究,设计实现了该通信系统的物理层基带系统部分。这些研究结果都是第一次被提出。具体的内容包括下面几个部分:
     研究了非视距紫外光通信信道特征,对紫外光通信信道的研究,现阶段主要还局限于能量衰减模型的探讨。本论文首次推导了紫外无线通信信道的脉冲响应近似解析表达式。得出了信道记忆长度,码间干扰和信道误码率与收发机光学几何结构,数据速率的关系,同时得到了信道容量与衰减系数,通信距离的关系。相关结论对收发机光学结构的设计与定量分析紫外通信系统的性能起到一定的指导作用。
     非视距紫外光通信最大的特点之一是由于强烈散射所引起的码间干扰,本文第一次探讨了紫外光通信中的均衡器设计。首先研究了紫外光通信均衡器设计的基础问题,然后研究LMS类和CMA(常模)均衡器在紫外通信中的应用。LMS均衡算法在紫外信道中收敛很慢,滤波器阶数与均衡器输出误码率关系不明显,但是迭代步长存在一个最优的值。同时还得到了二种变步长LMS均衡算法中的参数和均衡器输出误码率的关系。还证明了紫外信道是最小相位系统,可以进行盲均衡,结果指出,只要迭代次数足够,CMA盲均衡器输出误码率与滤波器阶数,迭代步长关系不是很明显。同时表明LMS均衡器性能优于CMA盲均衡器。
     研究了非视距紫外光通信中的最大后验概率(MAP)均衡器和最大似然序列估计(MLSE)二种最优均衡器算法。研究发现,二者性质相同,只是性能上略有差异,MLSE均衡器性能要略好些,但是MAP复杂度要稍微低一些,同时MAP更适用于迭代译码系统中,可以与纠错码结合使用。在短距离通信时,大气衰减系数与信道带宽变化不影响均衡器性能。在接收信噪比不变时的较长距离通信,大气衰减系数与信道带宽变化对均衡器性能影响明显。也发现信道记忆长度和信息速率对均衡器性能影响显著,输出误码率可以变化几个数量级。同时指出紫外通信中自适应功率控制对降低误码率十分显著。同时指出信道先验观察噪声对均衡器性能影响明显,指出MLSE均衡器前端滤波器设计的重要性。同时发现均衡器输出误码率对调制方式不敏感。最后还得到了均衡中最优的训练序列长度和信息帧的长度与信道长度的关系。
     在大气湍流和噪声影响下,研究了无线光通信中的自适应信号检测器的设计问题。在高斯和泊松模式下,提出了几种自适应信号检测器算法。还提出了一种衰落模型选择算法,信号检测器能根据不同的湍流情况,自适应的选择衰落模型,可以简化工程设计。研究表明,提出的算法能明显改善系统性能。
     为了对抗衰落和增加信道容量,研究了紫外光通信中的MIMO技术与空时编码。研究发现,重复编码与空时分组码都能提供满分集,但是重复编码的性能更好。同时发现,在紫外光通信中,接收机采用等增益合并与最优比合并的性能几乎是一样的。因此有一个大口径光学天线的接收机与有若干个小口径光学天线的接收机性能也几乎一样。为了非视距通信,紫外光通信系统的接收端光学口径较大,所以该结论表明接收机采用一个接收天线就足够了。为了降低误码率,同时又提高数据传输率,提出了一种新的结合重复编码和分层空时码(V-BLAST)的混合空时编码结构。研究发现,重复编码结合V-BLAST的混合编码不但比V-BLAST编码的误码率低,而且比常见的空时分组码(STBC)结合V-BLAST的混合编码性能更优,误码率更低,而且系统设计复杂度大大降低。同时发现,该混合空时编码系统中,多天线分集增益由接收天线数决定,而重复编码提供编码增益,从而导致误码率显著下降。编码增益随重复编码使用的发射天线数增加而显著增加。系统带宽随V-BLAST所占用的天线分组数线性增加。该编码为紫外光通信系统进行信息高速传输或视频传输提供了一种解决方案。
     还提出了一种新的基于DDS的时钟同步算法。该同步器具有自适应功能,能够根据相位差的大小自适应的改变每一次的相位调整量。它还具有参数可编程特性,能够根据需要,方便的预设同步器的频率分辨率,跟踪步长,精度等。分析表明,该同步器具有精度高,同步建立时间短,捕捉范围宽,以及良好的时钟抖动和自适应跟踪性能。同时还非常适合于FPGA全数字电路实现。
     博士论文需要独到的见解和创新性的研究,不涉及一般工程实现。所以本论文涉及到的工程设计,一般只给出设计思路,总体设计或者关键模块的设计,不对详细的工程实现过程进行描述。基于FPGA设计实现了非视距紫外光通信系统物理层数字基带系统,包括各种滤波器,AGC,自适应信号检测器,自适应判决反馈分数间隔均衡器,RS(255,239)信道编解码,时钟与帧同步等。
Wireless optical communication is a different communication mode with optical fibre communication, using atmosphere as transmission medium. It has two communication modes, including line-of-sight and non-line-of-sight communication. Solar blind non-line-of-sight communication ultraviolet (UV) communication is a new kind of wireless optical communication, which can provide non-line-of-sight links by exploiting atmospheric scattering of light. Solar blind ultraviolet communication can be used for a variety of close anti-jamming communications environment, due to its excellent performances of safety, anti-interference and non-line-of-sight. In recent years, UV communication has been concerned by the military power and is a front field of the wireless communication.
     The thorough studies for UV communication had not been carried out and only modulation, UV atmosphere characteristic path loss model and so on are studied at present. The serious inter-symbol interference and multiplexing fading, narrow bandwidth and high bit-error-rate (BER) are markedly characteristics for UV communication. In order to improve communication performance, characteristics of UV channel, channel equalization, signal detection and multip input multip output (MIMO) are studied for the UV communication. The paper contains theoretical research and prototype design. Base on the theoretical research, the digital base band system of UV communication is designed and realized. The research conclusions are got for the first time. The main results are summarized as follows:
     Characteristics of UV channel are studied in this paper. Path loss model has mainly been studied at present, and the analytic expression of the channel impulse response is derived at first in this paper. The relationships between channel length, inter-symbol interference and BER and bit rate and system geometry configuration are got. The results indicate that the channel bandwidth mainly rest on the attenuation coefficient and channel capability is affected by the communication range and attenuation coefficient. The derivation results will give important guidances on the designs of the wireless ultraviolet communication system.
     The equalizer fot the UV communication is investigated for the first time, reducing the inter-symbol interference. The some base problemes of the equalizer design are analyzed for the UV communication, and then LMS class and CMA equalizeres are studied. The convergence rate is very slow for LMS equalizer on UV channel, BER are nearly not affected by equalizer tap numbers and step size has an optimal value. The relations between parameters of two variable step size LMS algorithms and BER are studied at the same time. It is proved UV channel is a minimum phase system and blind equalizer can be used. BER is not sensitive to variation of step size and tap number for CMA blind equalizer and LMS equalizer has better performance than CMA blind equalizer.
     For acquiring the best equalization performance, we had studied a maximum likelihood sequence estimation (MLSE) and maximum a posteriori (MAP) equalizer for the UV communication, which have the same properties and little different capabilities. The MLSE equalizer has little better performance than the MAP equalizer, and the MAP equalizer has lower design complexities. At the same time, the MAP equalizer is suitable with iteration-decoding system and can be used with turbo channel coding. The results indicate performance of equalizer is nearly not affected by the attenuation coefficient and channel bandwidth for the short range communication, but is sensitive to variation of attenuation coefficient for the long range communication with the same receiver signal-noise-rate(SNR).The performance of equalizer is also sensitive to variation of channel length and bit rate. The BER can vary greatly with the variation of channel length and bit rate and can be reduced significantly when the adaptive power control is used. It is discovered that the noise observed has great effect on the equalizer and modulation schemes have not. At last, the optimal lengths of the training sequence and frame are derived.
     Adaptive signal detectors are designed in wireless optical communication based on atmosphere turbulence and Gauss noise. In this paper, we present several adaptive methods to detect the signals in the Poisson and Gauss regime, when the light fluctuations exit in ultraviolet and infrared communication, and an adaptive method to select the different simple turbulence model based on the scintillation index in different turbulence conditions, which can simplify engineering design. It is proved that the methods can significatively improve system performance. MIMO techniques and space-time coding are investigated for the UV
     communication, in order to reduce fading and increase channel capability. The results indicate that space-time block code and repetition code can provide full diversity, but repetition code outperforms orthogonal space-time block codes. The findings indicate also that the BER of equal gain combining receiver is very similar with that of the optimal receiver, so receive aperture with a large optical collecting area can have nearly the same performance with receive aperture with several smaller optical collecting area. The ultraviolet communication system has large receive aperture, so a receiver aperture is only needed. To improve the error rate performance and the channel capacity, a new hybrid space-time coding approach is proposed by combining V-BLAST and repetition code. The results indicate that the new code combining V-BLAST and repetition code has better performance than V-BLAST and even outperforms the code combining V-BLAST and orthogonal space-time block code (OSTBC). The system has low BER and design can be simple. The findings indicate also that multiple antenna diversity gain is decided by number of the receive antenna and repetition code provide code gain for the hybrid code system on the channel of the ultraviolet communication. Code gain obviously increases with increment of number of transfer antenna used by repetition code and system bandwidth increases with number of transfer antenna used by V-BLAST. The hybrid code provides a method for video and high rate transmission in ultraviolet communication.
     A new adaptive bit synchronizer based on DDS is brought forward. The synchronizer has adaptive characteristic, so the modified quantities of phase can be self adjustment based on difference of the phase. It has also programmable characteristic, so frequency resolution, trace step size and phase accuracy can be set previously for the need. The analysis results show that the bit synchronizer has high phase accuracy, wide acquisition range, short latch-down time and good adaptation and timing-jitter performance. It can be implemented easily based on FPGA.
     Original viewpoint or innovative theoretical research is need in doctor paper, and ecumenic project implement is not nearly treated. So design viewpoint, top design or key modules design are only described in this paper. The digital base band system of physical layer is designed and implemented based on FPGA, including many kinds of filteres, AGC, adaptive signal detector, adaptive decision-feedback and fraction-interval equalizer, RS(255,239) channel coding and decoding, clock and frame synchronization and so on.
引文
[1]李霁野,邱柯妮.紫外光通信在军事通信系统中的应用[J],光学与光电技术.2005.3 vol.4:19-21。
    [2] Zhengyuan Xu, Brian M. Sadler. Ultraviolet communications: potential and state-of-the-art, Communications Magazine [J]. IEEE, May 2008, vol:-46, issue, on page(s): 67-73.
    [3] Haipeng Ding, Gang Chen, Arun K. Majumdar. Non-line-of-sight ultraviolet communication channel characterization: modeling and validation[c]. Proc. SPIE, Vol. 7464, 74640I (2009).
    [4] Gary A. Shaw?, Andrew M. Siegel, Joshua Model, Daniel Greisokh. Recent Progress in Short-Range Ultraviolet Communication, Unattended Ground Sensor Technologies and Applications VII [J]. Monday 28 March 2005, Proc. SPIE 5796, (2005), pp:214-225.
    [5] Carruthers. J.B, Kahn. J.M. Modeling of nondirected wireless infrared channels [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, Volume 45, Issue 10, Oct. 1997 Page(s):1260– 1268.
    [6] Volker Jungnickel, Volker Pohl, Stephan N?nnig, and Clemens von Helmolt. A Physical Model of the Wireless Infrared Communication Channel, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS [J]. VOL. 20, NO. 3, APRIL 2002, pp: 631-640.
    [7] Joseph M. Kahn, John R. Barry. Wireless infrared communications. in proc. IEEE, Feb. 1997 [A], vol: 85, issue:2, on page(s): 265-298.
    [8] Toshihiko Komine, Jun Hwan Lee, Shinichiro Haruyama, Masao Nakagawa. Adaptive Equalization for Indoor Visible-Light Wireless Communication Systems [C]. 2005 Asia-Pacific Conference on Communications, Perth, Western Australia, 3 - 5 October 2005, pp: 294-298.
    [9] Toshihiko Komine, Jun Hwan Lee, Shinichiro Haruyama, Masao Nakagawa.Adaptive Equalization System for Visible Light Wireless Communication Utilizing Multiple White LED Lighting Equipment [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 8, NO. 6, JUNE 2009, pp: 2892-2900.
    [10] Lubin Zeng, Dominic O’Brien and Hoa Le-Minh. Improvement of Date Rate by using Equalization in an Indoor Visible Light Communication System [C]. Circuits and Systems for Communications, 2008. ICCSC 2008. 4th IEEE International Conference, 26-28 May 2008, pp: 678-682.
    [11]王谨.光无线通信自适应接收技术研究[D].华中科技大学博士学位论文,2006年。
    [12] E. V. HOVERSTEN,R. 0. HARGER,S. J. HALME. Communication Theory for the Turbulent Atmosphere [C]. PROCEEDINGS OF THE IEEE, VOL. 58, NO. IO, OCTOBER 1970, pp: 1626-1650.
    [13] S.KAPR, E.L.O’NEILL, R. M. GAGLIARDI. Communication Theory for the Free-Space Optical Channe [C]. PROCEEDINGS OF THE IEEE, VOL. 58, NO. IO, OCTOBER 1970, PP: 1611-1626.
    [14] ISRAEL BAR-DAVID. Communication under the Poisson Regime [J]. IEEE TRANSCTIONS ON INFORMATION THEORY. VOL. IT-l5 NO. 1, January 1969, pp: 31-37.
    [15] Kaushik Chakraborty, Prakash Narayan. The Poisson Fading Channel [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 7, JULY 2007, pp: 2349-2364.
    [16] Ehsan Bayaki?, Robert Schober?, and Ranjan K. Mallik??. Performance Analysis of Free–Space Optical Systems in Gamma–Gamma Fading [C]. Global Telecommunications Conference, 2008, Nov. 30 2008-Dec. 4 2008, pp: 1-6.
    [17] M. A. Al-Habash, L. C. Andrews, R. L. Phillips. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media [J]. Optical Engineering, Vol. 40 No. 8, August 2001, pp: 1554-1562
    [18] Murat Uysal, Mohammad Navidpour, Jing (Tiffany) Li. Error Rate Performanceof Coded Free-Space Optical Links Over Strong Turbulence Channels [J]. IEEE communications letters, vol. 8, no. 10, October 2004, pp: 635-637.
    [19] Stojan Z. Denic, Ivan Djordjevic, Jaime Anguita, Bane Vasic, Mark A. Neifeld. Information Theoretic Limits for Free-Space Optical Channels With and Without Memory [J]. Journal of lightwave technology, vol. 26, no. 19, October 1, 2008, pp: 3376-3384.
    [20]朱雅.紫外光通信图像分系统研究[D].中国科学院研究生院硕士学位论文,2010。
    [21]于晓娜.紫外光通信调制与信道编码技术的FPGA实现[D].中国科学院研究生院硕士学位论文,2010。
    [22]姚丽,紫外光散射模型研究.北方工业大学硕士学位论文[D]。2006年.
    [23] E O Hulburt. Experiments with sensitive“Detectors of UV and IR Radiations”. 1939.
    [24] Michael E Neer, Joseph M Schlupf, E Stokes Fishburne, Guido Sandri, P C Prtersen, C R Dickson. The Development and testing of an UV Voice communication system. Department of the Navy, Naval Electronic Systems Command, July 1979.
    [25] M.Geller, G.B.Johnson. Non-line-of-sight (NLOS), covert UV communication link. Proc. IEEE Military Communications Conference, 1985, 4, pp: 95.
    [26] J.J.Puschell, R.Bayse. High data rate ultraviolet communication systems for the tactical battlefield. Proc.IEEE Tactical Communication Conference, 1990, 1, pp: 253-267.
    [27] R.D.Shute. Electrodeless ultraviolet communications system. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(11), pp: 2-7.
    [28] Gary A. Shaw, Andrew M. Siegel, Joshua Model, Daniel Greisokh. Recent progress in short-range ultraviolet communication. Proceedings of SPIE Vol.5796, 2005.
    [29] Gary A. Shaw?, Melissa Nischan, Mrinal Iyengar. NLOS UV communication for distributed sensor systems [A]. Proc. SPIE, Vol. 4126, 83 (2000), on page(s): 83-96.
    [30] Gary A. Shaw and Melissa L. Nischan. Short-range NLOS ultraviolet communication testbed and measurements [C]. Proc. SPIE 4396, 31, Wednesday 18 April 2001, pp: 31-40.
    [31] Gary A. Shaw?, Andrew M. Siegel, Melissa L. Nischan. Demonstration System and Applications for Compact Wireless Ultraviolet Communications [C]. Proc. of SPIE Vol. 5071, Monday 21 April 2003, pp: 241-252.
    [32] Andrew M. Siegel, Gary A. Shaw, Joshua Model. Short-range communication with ultraviolet LEDs [C]. Proc. SPIE 5530, 182 (2004), pp: 182-193.
    [33] Gary A. Shaw?, Andrew M. Siegel, Joshua Model, Melissa Nischan. Field Testing And Evaluation of a Solar-Blind UV Communication Link for Unattended Ground Sensors [C]. Proc. SPIE 5417, Monday 12 April 2004, pp: 250-261.
    [34] Gary A. Shaw?, Andrew M. Siegel, Joshua Model, Daniel Greisokh. Recent Progress in Short-Range Ultraviolet Communication [C]. Proc. SPIE 5796, Monday 28 March 2005, pp: 214-225.
    [35] Gary A. Shaw?, Andrew M. Siegel, Joshua Model. Extending the Range and Performance of Non-Line-of-Sight Ultraviolet Communication Links [C]. Proc. SPIE 6231, 62310C, Monday 17 April 2006, pp: 1-12.
    [36] Zhengyuan Xu, Gang Chen, Feras Abou-Galala. Experimental Performance Evaluation of Non-Line-of-Sight Ultraviolet Communication Systems [A].Proc. of SPIE vol. 6709, 67090Y, (2007).
    [37] Gang Chen, Feras Abou-Galala, Zhengyuan Xu, Brian M. Sadler. Experimental Evaluation of LED-based Solar Blind NLOS Communication Links [J]. 15 September 2008, vol. 16, No. 19, Optics Express 15059.
    [38] Xu Zhengyuan, Ding Haipeng, Sadler. Brian M. Analytical performance study of solar blind non-line-of-sight ultraviolet short-range communication links [J]. Optics Letters, Vol. 33 Issue 16, pp.1860-1862 (2008).
    [39] Zhengyuan Xu. APPROXIMATE PERFORMANCE ANALYSIS OFWIRELESS ULTRAVIOLET LINKS [C]. Acoustics, Speech and Signal Processing, 2007, Page(s): III-577 - III-580.
    [40] Haipeng Ding, Gang Chen, Zhengyuan Xu, Brian M. Sadler?. Characterization and Modeling of Non-Line-of-Sight Ultraviolet Scattering Communication Channels [C]. Communication Systems Networks and Digital Signal Processing (CSNDSP), 2010 7th International Symposium on, 21-23 July 2010, pp: 593-597.
    [41] Gang Chen1, Zhengyuan Xu, Haipeng Ding, and Brian M. Sadler. Path loss modeling and performance trade-off study for short-range non-line-of-sight ultraviolet communications [J]. 2 March 2009 / Vol. 17, No. 5 / OPTICS EXPRESS, pp: 3929-3940.
    [42] Haipeng Ding, Gang Chen, Arun K. Majumdar, Zhengyuan Xu. A parametric single scattering channel model for non-line-of-sight ultraviolet communications [C]. Proc. SPIE 7091, 70910M, Sunday 10 August 2008, pp: 1-6.
    [43] Haipeng Ding, Gang Chen, Arun K. Modeling of non-line-of-sight ultraviolet scattering channels for communication [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 9, DECEMBER 2009, On page(s): 1535– 1544.
    [44] Haipeng Ding, Gang Chen, Arun K. Majumdar. Non-line-of-sight ultraviolet communication channel characterization: modeling and validation[c]. Proc. SPIE, Vol. 7464, 74640I (2009).
    [45] TIAN Pei-gen, WANG Ping, GUAN Jian-xin, PAN chen. A modulation scheme for Ultraviolet communication by switching the frequency of light power envelope [C]. (NSWCTC), 2010 Second International Conference, Volume: 2, 2010, Page(s): 305– 308.
    [46] Qunfeng He, Brian M. Sadler, Zhengyuan Xu. Modulation and coding tradeoffs for non-line-of-sight ultraviolet communications[C]. Proc. SPIE, Vol. 7464, 74640H (2009), PP: 1-12.
    [47] Leijie Wang, Yiyang Li, Zhengyuan Xu, and Brian M. Sadler. Wireless Ultraviolet Network Models and Performance in Noncoplanar Geometry [C]. GLOBECOM Workshops (GC Wkshps), 2010 IEEE , Page(s): 1037– 1041.
    [48] Qunfeng He, Zhengyuan Xu, Brian M. Sadler. Non-line-of-sight Serial RelayedLink for Optical Wireless Communications [C]. MILITARY COMMUNICATIONS CONFERENCE, 2010, Page(s): 1588– 1593.
    [49]倪国强,钟生东等.自由大气紫外光学逋信的研究[J].光学技术,2000年7月,第26卷第4期:297-303.
    [50]唐义,倪国强,蓝天,徐大琦.“日盲”紫外光通信系统传输距离的仿真计算[J].光学技术, Jan. 2007, Vo1.33 No: 27-30.
    [51]唐义,倪国强,张丽君,李永成.非直视紫外光通信单次散射传输模型研究[J].光学技术,2 007年9月,第33卷第5期,759-765.
    [52]蓝天,倪国强.紫外通信的大气传输特性模拟研究[J].北京理工大学学报,2003年8月,第23卷第4期:419-423.
    [53]常胜利,尹红伟,贾红辉,杨俊才,杨建坤.紫外光通信实验中信息高速调制方法的研究[J].大学物理实验, 2006年l2月,第19卷第4期: 1-4.
    [54]张华伟,贾红辉,尹红伟,杨俊才.紫外激光通信L-PPM调制分析[J].无线光通信,2010年第5期:56-58.
    [55]邵铮铮,常胜利,兰勇,贾红辉,张里荃.非视线紫外光信号传输时问特性的数值模拟[J].光学与光电技术,2006年12月,第4卷第6期:18-24.
    [56]贾红辉,常胜利,杨建坤,杨俊才,季家镕.非视线紫外通信大气传输特性的蒙特卡罗模拟[J].光子学报, 2007年5月,第36卷第5期:955-960.
    [57]尹红伟,常胜利,贾红辉,杨建坤,邵铮铮,杨俊才.影响非视线紫外光传输距离的诸因素分析[J].光学与光电技术, 2007年12月,第5卷第6期:18-23.
    [58]贾红辉,黄红锡,张海良等.紫外光散射通信系统的数据传输速率影响因素的研究[J].光学与光电技术,2010年2月,第8卷第1期:20-22.
    [59]赵明,肖沙里,王玺,施军,黄睿,姜蓉蓉.基于LED的紫外光通信系统研究[J].激光与光电子学进展,040602 (2010):1-6.
    [60]王玺,肖沙里,赵明,施军,姜蓉蓉,黄睿.基于现场可编程门阵列的短波紫外光通信发射系统[J].中国激光,2009年12月,第36卷:272-276.
    [61]肖沙里,高家利.日盲紫外光语音通信系统的设计与实现[J].重庆理工大学学报(自然科学), 2010年1月,第24卷,第1期:51-54.
    [62] Tao Feng, Fei Xiong, Qing Ye, Zhengqing Pan, Zuoren Dong, Zujie Fang, Non-line-of-sight optical scattering communication based on solar-blindultraviolet light [C], Proc. of SPIE vol. 6783 67833(x), (2007).
    [63]冯涛,陈刚,方祖捷.非视线光散射通信的大气传输模型[J].中国激光,2006年11月,第33卷第11期:1522-1526.
    [64] Tao Feng_, Fei Xiong, Gang Chen, Zujie Fang. Effects of atmosphere visibility on performances of non-line-of-sight ultraviolet communication systems [J]. Optik-International Journal for Light and Electron Optics, Volume 119, Issue 13, October 2008, Pages 612-617.
    [65] Tao Feng, Gang Chen, and Zujie Fang. Multipath dispersion of pulse signals in a non-line-of-sight optical scattering channel [J]. November 10, 2006 Vol. 4, No. 11 CHINESE OPTICS LETTERS, PP: 633-635.
    [66]徐香,王平,闰颖良,王禹.低能见度下紫外光非直视传输模型研究[J].激光技术, 2009年10月,第33卷第5期: 551-554.
    [67]徐香,王平,闰颖良,王禹.低能见度下紫外光非直视传输模型研究[J].激光技术, 2009年10月,第33卷第5期: 551-554.
    [68]密立生,王平,田培根,张建华,潘深.紫外光非直视通信模型[J].舰船电子工程, 2008年第2期,总第164期: 68-76.
    [69]陶源,王平,郑燕明,尚金萍.紫外通信接收预处理系统研制[J].电子测量技术,2010年10月,第33卷第10期:26-29.
    [70]王平,高俊,王红霞.基于BFSK的紫外光调制电路设计与实现[J].舰船电子工程,2009年第9期,总第183期: 75-78.
    [71]柯熙政,何华,陈祥.一种新的紫外光自组织通信网络MAC层避退算法[J].光电子·激光, 2010年7月,第21卷第7期: 1002-1006.
    [72]赵太飞,冯艳玲,柯熙政,何华.“日盲”紫外光通信网络中节点覆盖范围研究[J].光学学报,2010年8月,第30卷第8期:2229-2235.
    [73]赵太飞,柯熙政,冯艳玲.大气日盲紫外无线光组网技术研究[J].光通信技术, 2010年第7期:50-53.
    [74]赵太飞,柯熙政.基于日盲紫外光通信的自组织网络技术研究[J].计算机应用研究, 2010年6月,第27卷第6期:2204-2207.
    [75]李霁野,邱柯妮,王云帆。自由大气紫外光通信中几类光源的比较和研究[J].光通信技术2006年第9期:56-57。
    [76]姚丽,李霁野.大气紫外光近距离通信的研究[J].大气与环境光学学报,2006年9月第1卷第2期:135-139.
    [77]于晓娜,李霁野.新型紫外光通信系统调制解调器的FPGA实现[J].光通信技术,2009年12期:14-16.
    [78]陈君洪,杨小丽.非视线“日盲”紫外通信的大气因素研究[J].激光杂志, 2008年第29卷第4期: 38-39.
    [79]李晓峰.星地激光通信链路原理与技术[M]。国防工业出版社. 2007年2月.
    [80]徐智敏.自由空间光通信调制与编码的研究[D]。重庆大学硕士学位论文。
    [81]冯涛.非视线光散射通信的若干基础问题研究[D]。中国科学院上海光学精密机械研究所博士学位论文,2007年.
    [82] Luettgen. Mark R, Shapiro, Jeffrey H. Non-line-of-sight single-scatter propagation model [J]. JOSA A, Vol. 8 Issue 12, pp.1964-1972 (1991).
    [83] Aharonovich Marius, Arnon Shlomi. Performance improvement of optical wireless communication through fog with a decision feedback equalizer [J]. JOSA A, Vol. 22 Issue 8, pp.1646-1654 (2005).
    [84] John G.Proakis著,张力军等译.数字通信(第四版)[M].电子工业出版社,2010年11月.
    [85]张贤达,保铮.通信信号处理[M].国防工业出版社,2000年12月.
    [86]何振亚.自适应信号处理[M].科学出版社,2002年4月。
    [87]柯熙政,殷致云.无线激光通信系统中的编码理论[M].科学出版社,2009年.
    [88]马建仓,牛奕龙,陈海洋.盲信号处理[M].国防工业出版社,2006年6月。
    [89]郭业才.自适应盲均衡[M].合肥:合肥工业大学出版社,2007。
    [90] G. Katz and D. Sadot. Minimum BER criteria for DFE in Optical Communication System[C]. 2006 IEEE 24th Convention of Electrical and Electronics Engineers, Page(s): 170– 174.
    [91] Edem Ibragimov. Limits of Optical Dispersion Compensation Using Linear Electrical Equalizers [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 13, JULY 1, 2006, pp: 1427-1429.
    [92] G. Katz and D. Sadot. Wiener Solution of Electrical Equalizer Coefficients in 170Lightwave Systems [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 2, FEBRUARY 2009, pp: 361-364.
    [93] G. Katz and D. Sadot. Analytical Solution of Optimal Electrical Equalization Coefficents [C]. Communications, 2006. ICC '06. IEEE International Conference on, Page(s): 2749– 2754.
    [94] Mark J?ger, Tobias Rankl, Joachim Speidel. Performance of Turbo Equalizers for Optical PMD Channels [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 3, MARCH 2006, pp: 1226-1236.
    [95] Pierre A. Humblet, Murat Azizoglu. On the Bit Error Rate of Lightwave Systems with Optical Amplifiers [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY. VOL. 9. NO. I I. NOVEMBER 1991, pp: 1576-1582.
    [96] Rappaport,T.S.著,周文安等译.无线通信原理与应用[M].电子工业出版社, 2006年.
    [97] G. Katz and D. Sadot. A Nonlinear Electrical Equalizer with Decision Feedback for OOK Optical Communication Systems [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 12, DECEMBER 2008, pp: 2002-2006.
    [98] Andrew G. Klein, Xinming Huang. A cold startup strategy for blind adaptive M-PPM equalization [A]. Signals, Systems and Computers, 2008 42nd Asilomar Conference, 26-29 Oct. 2008, page(s): 2188– 2192.
    [99] Toshihiko Komine, Jun Hwan Lee, Shinichiro Haruyama. Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment [J]. IEEE TRANSACTIONS on WIRELESS COMMUNICATIONS, VOL. 8, NO. 6, JUNE 2009, page(s): 2892– 2900.
    [100]赵树杰,赵建勋.信号检测与估计理论[M].清华大学出版社,2005年11月。
    [101] Wenze Xi Adali, T. Zweck, J. A MAP equalizer for the optical communications channel [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 12, DECEMBER 2005, On page(s): 3989– 3996.
    [102] Bahl, L. Cocke, J. Jelinek, F. Raviv, J. Optimal decoding of linear codes for minimizing symbol error rate [J]. IEEE TRANSACTTONNSIN FORMATIOTHNE ORYM, ARCH 1974, Volume: 20 , Issue: 2, On page(s): 284– 287.
    [103] Imad Barhumi, Marc Moonen. MLSE and MAP Equalization for Transmission Over Doubly Selective Channels [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 8, OCTOBER 2009, pp: 4120-4128.
    [104] Noura Sellami, Aline Roumy, Inbar Fijalkow. Performance analysis of the MAP equalizer within an iterative receiver including a channel estimator [C]. VTC2004-Fall. 2004 IEEE 60th , Volume: 3, Page(s): 1698– 1702.
    [105] N. Kim and H. Park. Low-complexity iterative equalisation and decoding for wireless optical communications [J]. IET Commun, 2008, 2, (1), pp. 61–65.
    [106] Oscar E.Agazzi, Mario R.Hueda, Hugo S.Carrer, and Diego E. Crivelli. Maximum-Likelihood Sequence Estimation in Dispersive Optical Channels [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 23, NO. 2, FEBRUARY 2005, pp: 749-763.
    [107] Le N. Binh, Thanh Liem Huynh, K. K. Pang,. MLSE Equalizers for Frequency Discrimination Receiver of MSK Optical Transmission System [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 12, JUNE 15, 2008, Page(s): 1586– 1595.
    [108] G.David, Forney, JR. Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference [J]. IEEE transactions on information theory,vol.18, May 1972, On page(s): 363– 378.
    [109] Daniel Fritzsche, Dirk Breuer, Lars Schürer. Application of MLSE Technology in Optical Communication Systems and Performance Evaluation in 10Gbit/s Field Trials[C]. Summer Topical Meeting, 2009. LEOSST '09. IEEE/ LEOS , 2009 , Page(s): 87– 88.
    [110] Imed Hadj Kacem, Aline Roumy, Inbar Fijalkow. Training sequence optimization for frequency selective channels with MAP equalization [J]. ISCCSP 2008, Malta, 12-14 March 2008, Page(s): 532– 537.
    [111] Alexei Gorokhov. On the Performance of the Viterbi Equalizer in the Presence of Channel Estimation Errors [J]. IEEE SIGNAL PROCESSING LETTERS, 172VOL. 5, NO. 12, DECEMBER 1998, Page(s): 321– 324.
    [112] Malik D. Audeh, Joseph M. Kahn, John R. Wany. Perfformance of PPM with Maximum-Likelihood Sequence Detection on Measured Non-Directed Indoor Infrared Channels[C]. ICC '95 Seattle, 'Gateway to Globalization', 1995 IEEE International Conference, 1177 - 1181 vol.2.
    [113] Noura Sellami, Aline Roumy, Inbar Fijalkow. The Impact of Both a Priori Information and Channel Estimation Errors on the MAP Equalizer Performance [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 7, JULY 2006, Page(s): 2716– 2724.
    [114]周炯槃.通信原理(第3版)[M].北京邮电大学出版社,2008年。
    [115]王睿.光纤通信系统中的MLSE及MAP电均衡技术研究[D].同济大学中德学院硕士学位论文,2007年.
    [116] Mario R. Hueda, Diego E, Crivelli, Hugo S. Parametric Estimation of IM/DD Optical Channels Using New Closed-Form Approximations of the Signal PDF[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 3, MARCH 2007, Page(s): 957– 975.
    [117] Tommaso Foggi, Enrico Forestieri, Giulio Colavolpe. Maximum-Likelihood Sequence Detection With Closed-Form Metrics in OOK Optical Systems Impaired by GVD and PMD[J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 8, AUGUST 2006, 2006, Page(s): 3073– 3087.
    [118] Wonzoo Chung. Channel Estimation Methods Based on Volterra Kernels for MLSD in Optical Communication Systems [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 4, FEBRUARY 15, 2010, Page(s): 224– 226.
    [119]王谨.光无线通信自适应接收技术研究[D].华中科技大学博士学位论文,2006年。
    [120]张宇峰.大气光通信中的自适应编码研[D].西安理工大学硕士学位论文,2008年。
    [121]陈丽新.大气激光通信系统的实验测量[D].西安理工大学硕士学位论文,2005年。
    [122] A.Chaman Motlagh, V. Ahmadi, Z. Ghassemlooy and K. Abedi. The Effect of Atmospheric Turbulence on the Performance of the Free Space Optical Communications [C]. CNSDSP2008. 6th International Symposium on ,Page(s): 540– 543.
    [123] Sugianto Trisno, Igor I. Smolyaninov, Stuart D. Milner, and Christopher C. Davis. Delayed diversity for fade resistance in optical wireless communications through turbulent media [C]. Proc. of SPIE Vol. 5596, pp: 385-394.
    [124] Xiaoming Zhu, Joseph M. Kahn, Free-space optical communication through atmospheric turbulence channel, IEEE transactions on communications, vol. 50, no. 8, August 2002, pp: 1293-1300.
    [125] Hector E. Nistazakis, Evangelia A. Karagianni, Andreas D. Tsigopoulos, Michael E. Fafalios, George S. Tombras, Average capacity of optical–wireless communication systems over atmospheric turbulence channel [J], IEEE journal of lightwave technology, vol. 27, no.8, Appil 15, 2009, pp: 974-979.
    [126] Kamran Kiasaleh. Performance of APD-Based, PPM Free-Space Optical Communication Systems in Atmospheric Turbulence [J]. IEEE Thansactions on Communications, vol. 53, no. 9, September 2005, pp: 1455-1461.
    [127] Murat Uysal, Mohammad Navidpour, Jing (Tiffany) Li. Error Rate Performance of Coded Free-Space Optical Links Over Strong Turbulence Channels [J]. IEEE communications letters, vol. 8, no. 10, October 2004, pp: 635-637.
    [128] Ehsan Bayaki?, Robert Schober?, and Ranjan K. Mallik??. Performance Analysis of Free–Space Optical Systems in Gamma–Gamma Fading [C]. Global Telecommunications Conference, 2008, Nov. 30 2008-Dec. 4 2008, pp: 1-6.
    [129] Amos Lapidoth, Stefan M. Moser. On the Capacity of the Discrete-Time Poisson Channel [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 1, JANUARY 2009, pp: 303-322.
    [130] W. Gappmair, S.S. Muhammad, Error performance of PPM/Poisson channels in turbulent atmosphere with gamma-gamma distribution [J], IEEE electronicsletters, vol. 43, no. 16, August 2007, pp: Page(s): 880– 882.
    [131] W. Gappmair, S.S. Muhammad, Error performance of terrestrial FSO links modelled as PPM/Poisson channels in turbulent atmosphere [J], IEEE electronics letters, vol.43, no. 5, March 2007, Page(s): 63– 64.
    [132] H. R. Burris, N. M. Namazi, A. E. Reed, W. J. Scharpf, C. I. Moore, M. J. Vilcheck, M. A. Davis, M. F. Stell, M. R. Suite, W. S. Rabinovich, R. Mahon, A comparison of adaptive methods for optimal thresholding for free-space optical communication receivers with multiplicative noise [C]. Proc. of SPIE vol. 4821 (2002), pp: 139-154.
    [133] H. R. Burris, C. I. Moore, L. A. Swingen, L. M. Wasiczko, R. Mahon, M. F. Stell, M. R. Suite, W. S. Rabinovich, J. L. Murphy, G. C. Gilbreath, W. J. Scharpf, Laboratory implementation of an adaptive thresholding system for free-space optical communication receivers with signal depeendent noise [C], Proc. of SPIE vol. 58920w (2005), pp: 1-20.
    [134] H.R.Burris1, C.Moore2, M.Vilcheck2, R.Mahon. LOW FREQUENCY SAMPLING ADAPTIVE THRESHOLDING FOR FREE-SPACE OPTICAL COMMUNICATION RECEIVERS WITH MULTIPLICATIVE NOISE [C]. Proc. of SPIE Vol. 5160, pp: 355-368.
    [135]贾法哈尼著,任品毅译.空时编码的理论与实践[M].西安交通大学出版社, 2007年7月.
    [136]朱瑜. MIMO中的空时编码技术研究[D].西安电子科技大学硕士学位论文,2007年。
    [137]刘毅. MIMO信道预编码技术研究[D].西安电子科技大学博士学位论文,2007年.
    [138] Ehsan Bayaki, Robert Schober. On space–time coding for free–space optical systems [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 1, JANUARY 2010, Page(s): 58– 62.
    [139]倪涛. MIMO系统容量的功率分配与编码方法的研究[D].大连理工大学硕士学位论文, 2007年.
    [140]谢显中.移动通信中的空时信号处理[M].电子工业出版社, 2008年8月.
    [141] M. K. Simon and V. Vilnrotter. Alamouti-type space-time coding for free-space optical communication with direct detection [J]. IEEE Trans.Wireless Commun. vol. 4, no. 1, pp. 35-39, Jan. 2005.
    [142] Nestor D. Chatzidiamantis(?), Murat Uysal(?), Theodoros A. Tsiftsis(?), and George K. Karagiannidis. EM-based maximum-likelihood sequence detection for mimo optical wireless systems [C]. IEEE ICC 2009 proceedings,14-18 June 2009, On page(s): 1– 5.
    [143] Stephen G. Wilson, Ma(?)téBrandt-Pearce, Qianling Cao, and Michael Baedke. Optical repetition mimo transmission with multipulse ppm [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 23, NO. 9, SEPTEMBER 2005, On page(s): 1901– 1910.
    [144] Ehsan Bayaki, Robert Schober. On space–time coding for free–space optical systems [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 1, JANUARY 2010, Page(s): 58– 62.
    [145] Majid Safari, Murat Uysal. Do We Really Need OSTBCs for Free-Space Optical Communication with Direct Detection(?) [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 11, NOVEMBER 2008, PP: 4445-4448.
    [146] Antonio Garc′(?)a-Zambrana. Error Rate Performance for STBC in Free-Space Optical Communications through Strong Atmospheric Turbulence [J]. IEEE COMMUNICATIONS LETTERS, VOL. 11, NO. 5, MAY 2007, pp: 390-392.
    [147] Mingbo Niu, Julian Cheng, Jonathan F. Holzman. Diversity Reception for Coherent Free-Space Optical Communications over K-Distributed Atmospheric Turbulence Channels [C]. Wireless Communications and Networking Conference (WCNC), 2010 IEEE , Page(s): 1– 6.
    [148] Lubin Zeng, Dominic C. O’Brien, Hoa Le Minh. High Data Rate Multiple Input Multiple Output (MIMO) Optical Wireless Communications Using White LED Lighting [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 27, NO. 9, DECEMBER 2009, pp: 1654-1662.
    [149]黄韬. MIMO相关技术与应用[M].机械工业出版社, 2007年1月.
    [150]王惠琴,柯熙政. FSO中分层空时编码的串行干扰消除算法[J].光电工程, 2010年2月,第37卷第2期:91-95.
    [151] Zhao, L. Dubey, V.K. Detection schemes for space-time block code and spatial multiplexing combined system [J]. Communications Letters, IEEE, Jan. 2005, Volume : 9, pp:49-51.
    [152]王惠琴,柯熙政.自由空间光通信中的混合空时编码[J].光学学报,2009年1月,第29卷第1期:132-137.
    [153]陈曦.基于RS码的光通信系统的设计与实现[D].电子科技大学硕士学位论文,2009.
    [154]王新梅,肖国镇.纠错码:原理与方法[M].西安电子科技大学出版社,2001年4月.
    [155] Dilip V Sarwate, Naresh R Shanbhag. High-Speed Architectures for Reed-Solomon Decoders [J]. IEEE Transactions Very Large Scaleintegration (VLSI) Systems, 2001, 9(5): 641-655.
    [156]田耘,徐文波. Xilinx FPGA开发实用教程[M].清华大学出版社,2008.11.
    [157]西瑞克斯(北京)通信设备有限公司.无线通信的MATLAB和FPGA实现[M].人民邮电出版社,2009年6月.
    [158]刘奇佳,潘长勇,张国敬.超宽范围可变速率时钟恢复技术及其实现[J].系统工程与电子技术,2006年5月第28卷第5期:674-676.
    [159]江黎,钟洪声.一种全数字时钟数据恢复电路的设计与实现[J].通信技术,2008年第11期,第41卷:1-3.
    [160]庞存锁,韩焱.基于VHDL的超前-滞后型数字锁相环设计[J].电子测量技术,2008年2月第31卷第2期:71-72.
    [161]谭姝静,费元春.一种改善DDS性能的倍频方法[J].电子技术应用, 2006年第6期:44-46.
    [162]张欣.扩频通信数字基带信号处理算法及其VLSI实现[M].科学出版社,2004.
    [163]何宾. FPGA数字信号处理实现原理及方法[M].清华大学出版社,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700