用户名: 密码: 验证码:
大功率、高速率电光调制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电光调制技术是以一些晶体的电光效应为物理基础,对光的相应参数进行调变的技术,其主要应用于光通信、光刻和激光雷达等领域。在空间光通信中,一般都采用激光作为信息传输的手段,大功率、高速率电光调制技术是空间光通信领域的重要研究内容,已成为制约我国空间光通信研究和发展的瓶颈之一。目前,世界各科技强国都十分重视空间光通信的特殊的军事应用价值,先后开展了空间光通信及其关键技术的研究工作,并将其提升到了较高的战略地位。
     光通信可分为光纤通信和空间光通信两大类,二者对电光调制的原理、实现方法、参数指标等的要求都不尽相同。目前,高速率电光调制技术已经较早并广泛地应用于光纤通信领域中,发展非常迅速。高速率电光调制器主要针对1550nm波段激光、采用集成波导调制方式、实现调制带宽可以达到160GHz以上,通信速率为40Gbps的光纤通信系统已经商业化。在自由空间、临近空间、深空等链路的空间激光通信中,我国的大功率电光调制技术研究相对滞后。空间光通信采用的激光主要为800nm波段,此波段的激光在大气信道中传输时具有“透明”特性。但空间激光通信的链路距离非常远,激光在大气信道中的传输损耗很大,所以需要电光调制器的输出光功率在几百mw或几W的数量级,这是光纤通信中的高速电光调制器件无法实现的。为保证大容量信息传输需要,空间激光通信电光调制器必须折中考虑功率和速率两个指标,调制速率一般要求在几百Mbps到几Gbps之间。
     目前,课题组共开展了两个方法的研究。一种方法是采用大功率、高速率电光调制技术直接调制能满足空间激光通信需要的电光调制器,主要针对800nm波段,考虑此波段的光学器件较多、技术相对成熟和大气的低损耗特性,这方面的工作和本论文研究在“十一·五”末期已经取得了阶段性的成果,调制速率为100Mbps~500Mbps、最大光功率输出大于0.5W的电光调制器(采用外调制方式)已经成功应用于空间激光通信实验中。方法二是利用光纤通信中现有的高速率调制技术,针对光纤低损耗的1550nm波段,开展后续的光放大技术的研究,力争研制出满足较远距离的临近空间或深空激光通信需要的大功率、高速率集成激光发射模块,这方面的研究预计在“十二·五”中期能够取得突破。
     本论文根据研究方法一,提出了七个需要解决的问题:(1)如何提高光功率输出和调制速率;(2)如何降低半波电压;(3)如何设计和制作电极;(4)如何为调制器提供驱动信号;(5)如何实现静态工作点自动控制;(6)如何设计工程样机;(7)如何开展测试和应用实验。
     为解决上述问题,本文主要研究工作分解为如下几个方面:(1)深入调研国内外研究现状,分析和总结现有研究成果;(2)为提高电光调制的输出光功率,选择了脉冲编码调制、强度调制、横向调制和体调制等具体调制方式,相对波导集成调制方式比较容易实现、不需要非常苛刻的波导设计工艺;(3)为提高电光调制的输出光功率,考虑了晶体的抗光损伤能力,折中考虑了晶体尺寸、长宽比和通光孔径,设计了高效的光路结构,设计了长光程自聚焦透镜,实现了准直器和光纤的高效耦合;(4)为提高调制速率和有效降低半波电压,对铌酸锂晶体的结构和特性进行了详细分析,提出了双晶串联的组合调制和横向行波调制方式;(5)开展了行波电极的设计、制作工艺和流程等研究;(6)电光调制器的驱动信号已经进行了射频频段,为此开展了基于现有射频集成放大器件的二级负反馈放大技术研究;(7)为了克服温度、折射率变化等影响,开展了静态工作点自动控制、温度控制、频率稳定等研究;(8)在工程样机设计方面:开展了晶体尺寸、起偏器和检偏器参数、自聚焦透镜、光路结构、电极、机械结构、小型化等研究;(9)在室内:主要开展了波长、光功率和调制带宽等的测试,并开展了数字信号传输实验;(10)在野外:主要开展了光功率预算、功率损耗、通信速率和误码率等研究和测试,分析了实验验证效果。
     本论文开展了大功率、高速率电光调制技术的理论分析、仿真研究、工程样机设计和应用实验研究,实验数据对理论研究具有较好的支撑和验证作用。随着我国“十二·五”期间月球探测、空间站、载人航天、深空探测等领域的规划和发展,激光技术、光通信技术、光电子技术等方面的研究将会不断深入。大功率、高速率电光调制技术的研究及成果将对未来空间光通信的应用和发展起到一定的促进作用。
Electro-optic modulation technology, which is based on the electrooptic effect produced by some crystals, is the technology of modulating to the parameter of light, and mainly applied in the fields of optical communication, lithography laser radar, and so on. In the field of space optical communication, laser is usually used as the main means of transmitting information. However, high-power and high-speed electro-optic modulation technology, as the important research branches of space optical communication, is one of the hard nuts to crack in the study and development of space optical communication in our country. At present, all of the powerful countries in scientific research advance in the world attach importance to the special values of the space optical communication in the military affairs, gradually do the research of the space optical communication and the related technology, and promote it to a high strategic position.
     Optical communication can be divided to the fiber-optical communication and space optical communication, which differ in the electro-modulate principle, realizing methods, and parameters etc. Presently, high-speed electro-optic modulation technology widely used in the fiber-optical communication, and develops fast. High-speed Electro-optic modulator mainly use waveguide modulation to modulate 1550nm wave laser, the achieved modulate bandwidth can be more than 160GHz, and fiber-optical communication system of 40Gbps has been commercialized. In the field of space laser communication of the link space such as freedom space, near space and deep space, our study of Electro-optic modulation technology is behind other countries relatively. Space optical communication mainly uses 800nm laser because of its transparent feature in the air transmission. But the link distance is far in the space laser communication, and the transmission loss of laser is big in the air and water channel, so the out optical power of Electro-optic modulator need order of magnitude of hundreds of mW or even W, which can not be accomplished by using the waveguide Electro-optic modulator in the fiber-optical communication. To meet the needs of large transfer information, Electro-optic modulator must take the two indicators, power and rate account, and compromise them to make the modulate rate meet the requirements between hundreds of Mbps and several Gbps.
     At present, the discussion group has developed two main studies in laser emission technology. The first study is to manufacture the Electro-optic modulator which can satisfy the space laser communication by directly using the high-power and high-speed Electro-optic modulation technology, mainly applying it in the wavelength of 800nm, which has more optical elements, much proven techniques and low-loss feature of air in this wavelength. The above study and the related thesis have got the staged achievement in the end of "Eleventh Five-Year Plan". The electro-optical modulator with modulate rate of 100Mbps~500Mbps, the biggest optical power output of which is more than 0.5W, has already been applied in the demo experiment of space laser communication successfully. The second study, aiming at the low-loss fiber wavelength of 1550nm, is to take advantage of the existing high-speed modulation technology to carry out the study of optical amplitude technology, develop the high power and high-speed integrated laser emission element to satisfy the far distance near space or deep space laser communication. We hope this study will get breakthrough during the "Twelve Five-Year Plan"
     The paper is based on the application of 800nm wavelength space laser communication. With the combination of scientific research, the paper makes the theoretical analysis and simulation study of high-power, high-speed electro-optical modulation technology, also designs the engineering prototype, and does some application experimental study, gives the experimental data support and proves the theoretical study. In this paper, seven problems are put forward:(1) How to improve the optical output power and modulate rate; (2) How to reduce half-wave voltage; (3) How to design and make electrode; (4) How to provide the drive signal for modulator; (5) How to achieve auto control of quiescent point; (6) How to design engineering prototype; (7) How to carry out tests and application experiments.
     To solve of the above problems, this paper divides the research into the following parts: (1) To make survey of current domestic and world situation, analyze and conclude existing study result carefully; (2) To improve the output optical power of the Electro-optic modulator, select the specific modulate mode of pulse code modulation, intensify modulation, crosswise modulation and body modulation, which is simpler, more easily realized than waveguide modulation, and does not need high level waveguide design technology; (3) To improve the output optical power of modulator, and design the high efficient optical paths structure, self-focusing lens, realize coupling of collimator and fiber, synthesize the resisting optical harm ability of crystal, splittly the difference of size, length-width ratio and clear aperture; (4) To improve modulate rate and reducing half-wave voltage, analyzing the structure and feature of Lithium Notate crystal, and proposing double crystal series-wound group modulation and crosswise traveling wave modulation mode; (5) Carrying out the design of traveling wave electrode, workmanship, and flow etc; (6) Due to the fact that the drive signal of Electro-optic modulator already run into the radio frequency range, hence launching the study of two level feed back amplitude technology based on existing radio frequency integrated amplitude elements; (7) To overcome the effect of temperature, refractive index variation, carrying out the study of quiescent point, automatic control, temperature control, frequency stabilization; (8) In the aspect of engineering prototype design, carrying out the study of size, polarizer, analyzer self-condenser lens, light path architecture, electrode, physical construction, miniaturization; (9) Indoors:mainly testing the wavelength, optical power and modulate bandwidth, and doing some signal transfer experiment; (10) Outdoors:mainly studying and testing the budget of optical power, power loss, communication rate, error rate, etc, analysis the experimental checking effect.
     This paper carries out theoretical analysis, simulation, engineering design and application of experimental research about the high-power, high-speed electro-optic modulation techniques, the experimental data supporting theoretical research. Along with the development of space scientific exploration, moon detection, space station, deep space detection during the "Twelve Five-Year Plan" in China, laser technology, optical communication technology and photo electronic technology will be furthered. The research and achievement on high-power and high-speed electro-optical modulation technology will promote development of space optical communication.
引文
[1]蓝信锯等.激光技术.北京:科学出版社,2009:10-65
    [2]杨慧珍,蔡冬梅,陈波等.无波前传感自适应光学技术及其在大气光通信中的应用.中国激光.2008,35(5): 680~684
    [3]Igor I. Smolyaninov, Linda Wasiczko, et al. Long-distance 1.2 Gbps optical wireless communication link at 1550nm, Free-Space Laser Communication and Laser Imaging, In:Proc. of SPIE 4489,2002: 241-250
    [4]Eric J. Korevaar, Isaac I. Kim, Bruce McArthur. Atmospheric propagation characteristics of highest importance to commercial free space optics. Atmospheric Propagation, In:Proc. of SPIE4976, 2003:1-12
    [5]邢建斌,许国良,张旭苹等.大气湍流对激光通信系统的影响.光子学报.2005,34(12): 1850-1852
    [6]Heinz A. Willebrand, Gerald R. Clark. A viable last-mile alternative. Wireless and Mobile Communications, In:Proc. of SPIE 4586, Free space optics,2001:11-21
    [7]Xiaoming Zhu, Joseph M. Kahn. Free-Space Optical Communication through Atmospheric Turbulence channels. IEEE Transactions on Communications,2002,50(8):1293-1299
    [8]Linda M. Wasiezko, Igor I. Smolyaninov, et al. Analysis of compound parabolic concentrators and aperture averaging to mitigate fading on free-space optical links. Free-Space Laser Communication and Active Laser Illumination III, In:Proc. of SPIE 5160,2004:133 - 142
    [9]李九生.基于ACPS电极的宽带光纤型行波调制器研究.微波学报.2006,22(1):58~61
    [10]Roy Szweda. Lasers for free-space optical communications. The advanced semiconductor magazine, 2001,14(8):152-156
    [11]Yamada E.150 channel super continuum CW optical source with high SNR and precise 25 GHz spacing for lOGbit/s DWDM system. Electronics Letters,2001,37 (5):304-306
    [12]E. Leitgeb, J. Bregenzer, M. Gebhart, et al. Free Space Optics-Broadband wireless supplement to fiber networks. Free-Space Laser Communication Technologies XV, In:Proc. of SPIE 4975,2003:57-68
    [13]许国良,张旭苹,徐伟弘等.丁铁骑.自由空间光通信.光电子技术.2002,22(4): 198-205
    [14]张瑞君.新型LiNbO3电光调制器.光子技术.2004,2:87-91
    [15]宋琼,吴伯瑜等.高速聚合物电光调制器的进展.激光与红外.2003,33(1):13-16
    [16]马晶,谭立英.卫星通信研究进展趋势.空间科学学报.2000,20:127-137
    [17]张文涛.自由空间光通信技术及国内外发展状况.量子电子学报.2003,20(3): 269-272
    [18]袁纵横,张文涛.随机大气信道对激光信号传输影响的分析.量子电子学报.2006,23(5): 696~700
    [19]Heinz Willebrand, Gerald Clark, Byran Willson, et al. Local Multipoint Distribution System(LDMS) versus Free Space Optical (FSO)networks, Optical Wireless Communications IV, In:Proc. of SPIE 4530,2001:36-48
    [20]刘立人.卫星激光通信Ⅰ链路和终端技术.中国激光.2007,34(1): 3-20
    [21]Vivien Verbrugge, Loig plouzennec. A simple smart pixel based on a double VCSEL for free space optical interconnects. Optics Communications,2002,214:77-81
    [22]Miao B L, Yao P, Murakowski J, et al. Fabrication of silicon microring resonators with narrow coupling gaps. Journal of Microlithography Microfabrication and Microsystems,2005,4(2):013-023
    [23]Murata, H., Iwamoto, T., Okamura, Y.. Novel electrooptic optical frequency shifters by use of 3-branch waveguide interferometer and polarisation-reversal structures. In:Proc. of 9th Optoelectronics and Communications Conf.,2004:564-565
    [24]Hamid, Hemmati深空光通信.王平,孙威译.北京:清华大学出版社,2005:68-87
    [25]Ed. L. Wooten, Karl M. Kissa, et al. A Review of Lithium Neonate Modulators for Fiber-Optic Communications Systems. IEEEJ. Selected Topics in Quant. Electro.,2000,6(1):69-82
    [26]Franco Zappa, Massimo Ghioni, et al. High Sensitivity Photo detectors with On-Chip Pinhole for Laser Scanning Microscopy. IEEE Transactions on Electron Devices,2000,47 (7):1472-1476
    [27]Hoffmann, S., Ohja, J. R., Thiede, A., et al.7 Vpp modulator-driver for 40 Gbit/s optical communications. GaAs 2002:10th European Gallium Arsenide and Related Ⅲ-Ⅴ Compounds Application Symp.,2002:181 - 184
    [28]张杨,张芳,卞勇.激光通信及其在潜艇通信中的应用.光通信技术,2006,30(7):44-45
    [29]李海燕,何友金,任建存.激光对潜通信仿真系统中纠错码性能研究量子电子学报.2010,11: 45-48
    [30]Y. A. Vlasov, M.O Boyle, H. F. Hamann, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature,2005,438:65-69
    [31]Yin S, Purwadi P, Guo Z, et al. A polarization independent athermal design for electro-optic modulators and variable optical attenuators. In:Proc. of SPIE,2003,499:22-29
    [32]Liang, H. Chik, J. M. Xu. Nonlithographic fabrication of lateral superlattice for nanometric electromagnetic-optic applications, IEEE J. Sel. Topics Quantum Electron.2002,8(5)998-1008
    [33]Kawanishi, T., Higuma, K., Fujita, T. et al. LiNbO3 high-speed optical FSK odulator. Electron. Lett.,2004,40(11):691-692
    [34]Kawanishi, T., Sakamoto, T., Izutsu, M.. High-speed control of lightwave amplitude, phase, and frequency by use of electrooptic effect. IEEE J. Sel. Top. Quantum Electron.,2007,13(1):79-91
    [35]Kiyat I, Aydinli A, Dagli N. High-Q silicon-on-insulator optical rib waveguide racetrack resonators. Optics Express,2005,13 (6):1900
    [36]KondoJ, KondoA. High-speed and low-driving-voltage X-cut LiNbO3 optical modulator with two step backside slot. Lectrnic Letter,2002,38(10):427
    [37]LIAO Huan-lin, WANG Ling-xiao, WU Bo-yu, et al. Measurement of microwave equivalent refractive index of traveling wave electrode in LiNbO3 electro-optic modulator. Journal of Electroncs & Information Technology,2003,25(2):284-288
    [38]M. J. Chen, J. L. Yen, J. Y. Li, et al. Stimulated emission in a nanostructured silicon pn junction diode using current injection. Appl. Phys. Lett.,2004,84:2163-2166
    [39]S. G. Cloutier, C.-H. Hsu, P. A. Kossyrev, et al. Enhancement of radiative recombination in silicon via phonon localization and selection-rule breaking. Adv. Mater,2006,18:841-844
    [40]Saperstien, R. E., Alic, N. et al. Time-domain waveform processing by chromatic dispersion for temporal shaping of optical pulses. J. Opt. Soc. Am. B,2005,22:2427-2436
    [41]甘小勇.高速铌酸锂波导电光调制器关键技术研究:[博士学位论文].成都:电子科技大学光学工程系,2004
    [42]张兵,吴伯瑜,周伟勤等.40GHz铌酸锂电光调制器.光电子·激光,2001,12(11):1199-1201
    [43]周伟勤,吴伯瑜.160GHz带宽LiNbO3电光调制器微波损耗的限制.光电子.激光.2001,12(6):608~610
    [44]李琰斐.100GHz铌酸锂电光调制器的研制:[硕士学位论文].北京:清华大学电子科学与技术系,2000
    [45]钟先琼,向安平.高阶色散下与扰动频率相关的调制不稳定性.光电子·激光.2007,18(7):863-866
    [46]陈长勇,乔学光,王小凤等.基于实时校准技术的光纤光栅传感解调系统.中国激光.2005,32(2):825-828
    [47]李营,张书练.基于可调谐F2P滤波器的光纤光栅解调系.激光技术.2005,29(3):237-240
    [48]陈福深,李其聪.X切liNbO脊形结构集成电光M-Z型调制器.中国激光.2002,A29(3):209-212
    [49]宋哲,刘立人,周煜等.入射光偏振方向对LiNbO3晶体近光轴电光调制的影响.中国激光.2005,32(3): 319-322
    [50]邵永红,冯进良,姜耀亮等.一种新型偏振无关光交错复用器的设计.光子学报.2004,33(5):533-535
    [51]肖志刚,李斌成.多模与单模光纤级联系统对激光束的传输.中国激光.2008,35(6):855-859
    [52]高应俊,姚胜利,高风.用自聚焦透镜作平行光束与单模光纤的最佳耦合.光子学报,1999,28(2):176-179
    [53]郑传涛,马春生,闫欣等.Y型零偏压屏蔽推挽高速电光调制器的设计.光学学报.2009,29(s2):118-124
    [54]张登伟,刘承.轴向磁场对铌酸锂半波电压的影响.光电工程.2006,33(12):123-126
    [55]K. Tsuzuki. Low-driving voltage 40 Gbits/s n-i-n Mach-Zehnder Modulator fabricated on InP Substrate. IEICE Tran. On Electron.,2005, E88(5):960-966
    [56]Ken TSUZUKI, Tadao ISHIBASHI, Tsuyoshi ITO, et al. A 40-Gbps InGaAIAs-InAIAs MQW n-i-n Mach-Zehnder modulator with a drive voltage of 2.3V. IEEE Photonic Technology Letters,2005,17(1):46-48
    [57]高磊,高伟男,邓玲等.有机无机杂化型共面波导行波电极电光调制器.光学学报.2009,29(12): 3511-3514
    [58]王智,张金磊,孟庆文.光纤聚合物电光调制器电极对波导特性的影响.中国激光.2007,34(3):379-382
    [59]鄂辰熹,刘训春,王润梅,袁志鹏.一种简化的光调制器驱动电路.半导体学报.2005,13(7):98-103
    [60]W. K. Kim, W-S. Yang, H-Y. Lee. Effects of Parasitic Modes in High-Speed LiNbO3 Optical Modulators. Optics Express,2004,12(12):2568-2573
    [61]Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Selected Topics in Quantum Electron.,2000,6(1):69-82
    [62]Y Tian. P L Lewin, M Webb, S I Sutton, et al. Continuous monitoring of partial discharges in power cables using capacitive couplers and trend analysis. In:Proc. of 13th ISH, Delft, the Netherlands, 2003:504-505
    [63]T. KAWANISHI, S. OIKAWA, K. HIGUMA, et al. Low driving voltage band operation LiNbO3 modulator with lightwave reflection and double stub structure. Electronics Letters,2002,38 (20):1204-1205
    [64]胡军,张蓉竹.温度对铌酸锂电光相位调制特性的影响.光学与光电技术.2009,7(5):5-8
    [65]Cossu, A., Gilardi, G., Tommasino, P., et al. A method for microwave characterization of LiNbO3 modulators. IEEE Microw. Wirel. Compon. Lett.,2003,13, (2):60-62
    [66]Kondo J, Kondo A, Aoki K, et al.40-Gbps X-cut LiNbO3 optical modulator with two-step back-slot structure. J. Lightwave Technol.,2002,20(12):2110-2114
    [67]王红亚.大气激光通信系统及其主要器件的研究:[硕士学位论文].天津:天津大学光学工程系,2004
    [68]Mark Lee, Howard E Katz, Christoph Erben, et al. Broad-band modulation of Iight by using an eIectro-optic polymer. Science,2002,298(15):1401-1403
    [69]M. Lipson. Compact Electro-Optic Modulators on a Silicon Chip. IEEE J. Sel. Topics Quantum Electron. 2006,12 (6):1520-1526
    [70]Xu, S. Manipatruni, B. Schmidt, et al.12.5Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Opt. Express,2007,15:430-436
    [71]R. A. Soref, S. J. Emelett, W. Buchwald. Silicon waveguided components for the long-wave infrared region. J. Opt. A(U. K.), Pure Appl. Opt.,2006,8:840-848
    [72]J. Shin, C. Ozturk, S. R. Sakamoto, et al. Novel T-rail electrodes for substrate removed low-voltage high-speed GaAs/AlGaAs electrooptic modulators. IEEE Transactions on Microwave Theory and Techniques,2005,53:636-643
    [73]Aoki K, Knodo J, Kondo A, et al. High-performance optical modulator with a wide center electrode and thin X-cut LiNbO3 substrate. IEEE Photon. Technol. Lett.,2004,16(12):2610-2612
    [74]A. J. Seeds, Microwave photonics. IEEE Transactions on Microwave Theory and Techniques,2002, 50:877-887
    [75]Ramana, K. Sudharsanam, S. Pethkar, et al. Optical design and integration of polymeric EO modulator with laser diode. IEEE Electronics Packaging Technology,2003 5th Conference(EPTC 2003),2003, 424:839-846
    [76]Y Tian. P L Lewin, A E Davies, et al. PaRial Discharge Delection in Cables using VHF Capacitive Couplers. IEEE Trans. DEI,2003,10:343-353
    [77]F. Y. Gardes, G. T. Reed, N. G. Emerson, et al. A sub-micron depletion-type photonic modulator in silicon on insulator. Opt. Express,2005,13:8845-8854
    [78]Jacobsen, K. Andersen, P. Borel, et al. Strained silicon as a new electro-optic material, Nature, 2006,441:199-202
    [79]B M A Rahman, S Haxha. Optimization of microwave properties for ultrahigh2speed etched and undetached lithium niobate electrooptic modulators. Journal of Light wave Technology,2002,20(10): 1856-1863.
    [80]Schmidt, Q. Xu, J. Shakya, et al. Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. Opt. Express,2007(15):3140-3148
    [81]Champenois. Evaluation of the ultimate performances of a Ca+single-ion frequency standard. Phys. Lett. A,2004,5:298-311
    [82]Cialdi, S., Boscolo, I., Flacco, A.. Features of a phase-only shaper set for a long rectangular pulse. J. Opt. Soc. Am. B,2004,21:1693-1698
    [83]Donald A P, Tigran V G, Roger A L. Polarization independent grating coupling in planar wave-guide using photo-induced birefringence. In:Proc. of SPIE,2003,4833:719-726
    [84]Gill D M, Jacobson D, White C A, et al. Ridged LiNbOa modulators fabricated by a novel oxygen-ion implant wet-etch technique. J. Lightwave Technol.,2004,22(3):887-894
    [85]孔勇发,许京东,张光寅等.多功能光电材料一一铌酸锂晶体.北京:科学出版社,2005:94-148
    [86]王忠敏.铌酸锂晶体的发展简况.人工晶体学报.2002,31(2):173-175
    [87]张克从,王希敏.非线性光学晶体材料科学.北京:科学出版社,1996,46-48,201-203
    [88]Nagata, H.. Activation energy of DC-drift of x-cut LiNbO3 optical intensity modulators, IEEE Photon. Tech. Lett.,2000,12(4):386-388
    [89]Aoki K, Knodo J, Kondo A, et al. Single-drive X-cut thin-sheet LiNbO3 optical modulator with chirp adjusted using asymmetriv CPW electrode. J. Lightwave Technol.,2006,24(5):2233-2237
    [90]C. A. Barrios, M. Lipson. Electrically-driven silicon resonator light emitting device based on light emitting device based on slot-waveguide. Opt. Express,2005,13:10092-10101
    [91]张军,韩胜元,卢贵武等.夏海瑞.铌酸锂晶体电子结构和光学性质计算.中国激光.2007,34(9): 1227-1231
    [92]Gaetano Palumbo, Salvatore Pennisi. Analysis of the noise characteristics of current-feed back operational amplifier. Micro electronics Reliability,2002,40:321-327
    [93]A. W. Fang, H. Park,O. Cohen, el al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express,2006,14(20):9203-9210
    [94]詹伟达,李洪祚,王志坚等.空间光通信中高频率大功率激光调制器分析及设计.激光与光电子学进展.2010,47(12):120604
    [95]Yang Xingyu, Yang Guangqiang. Generation of compressed pulse pair based on cross-phase modulation in Single-mode fibers. In:Proc. of IEEE2002, opto-electronics,2002,149(1):17-20
    [96]陈开鑫.聚合物电光调制及光波导器件的研究:[博士学位论文].长春:吉林大学微电子学与固体电子学系,2002
    [97]M. B. Bauer, J. Kouvetakis, J. Menendez. Growth of SnGe on Si for strain-balanced Ge/SnGe quantum well heterostructures. presented at the 3rd Int. Conf. SiGe Epitaxy Heterostruct., Santa Fe, NM, 2003:9-12
    [98]Tian Y., P. L. Lewin, A. E. Davies, et al. Partial Discharge Detection in Cables using VHF Capacitive Couplers, IEEE Trans. DEI,2003,10(2):343-353
    [99]V. R. Almeida, Q. Xu, M. Lipson. Ultrafast integrated semiconductor optical modulator based on the plasma-dispersion effect, Opt. Lett.,2005,38:2403-2405
    [100]鹿飞.聚合物电光调制器行波电极系统研究:[硕士学位论文].北京:清华大学电子科学与技术系,2004
    [101]S. J. Emelett, R. A. Soref. Design and simulation of silicon microring optical routing switches, J. Lightw. Technol.,2005,4:1800-1807
    [102]Masanovic G Z, Passaro V M N, Reed G T. Coupling to nano-photonic waveguides using a dual grating-assisted directional coupler. IEE Proceedings-Optoelectronics,2005,152(1):41
    [103]Tanabe, T., Notomi, M., Shinya, A., et al. Alloptical switches and memories fabricaton on a silicon chip using photonic crystal nanocavities. Opt. Photonics News,2005,16, (12):35-37
    [104]Y Tian, P L Lewin, J S Witkinson, et al. Optically Based Partial Discharge Continuous Monitoring System for HV Cable Joints. In:Proc. of CEIDP,2004:21-24
    [105]S. J. McNab, N. Moll, Y. A. Vlasov. Ultra-low-loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express,2003,11:2927-2939
    [106]LU Fei, LIANG Kun, SONG Qiong, et al. Traveling-wave electrode for polymer electro optic modulator. Journal of Optoelectonics-Laser,2005,16(3):267-270
    [107]M. Rouviere, L. Vivien, X. LeRoux, et al.35 GHz bandwidth germanium-on-silicon photodetector. presented at the 2nd IEEE Int. Conf. Group IV Photon., Antwerp, Belgium,2005:FB2
    [108]C Cheng, X W ang, Z Fang, et al. Nonlinear copropagation of two optical pulses of different frequencies in photonic crystal fibers. Applied Physics B.2005,80:291-294.
    [109]Michael N. Sweeney, Gerald A. Rynkowski, et al. Design considerations for fast-steering mirrors(FSMs). Optical Scanning 2002, In:Proc. of SPIE 4773,2002:63-73
    [110]Tian Y., P. L. Lewin, A. E. Davies, et al. Comparisonof On-line Partial Discharge Detection Methods for HVCable Joints, IEEE Trans. DEI,2002,9(4)604-615
    [111]Y Tian. PLLewin, A E Davies, S G Swingler, et al. Comparison of On-line Partial Discharge Detection Methods for HV Cable Joints. IEEE Trans. DEI,2002,9:604-615
    [112]S Haxha, B M A Rahman. Bandwidth calculation of high-speed optical modulators. IEEE 7 th High Frequency Postgraduate Student Colloquium,2002,5-13
    [113]J. H. Shin, S. Wu, Dagli. High-Speed, Low-Voltage Substrate-Removed GaAs/AlGaAs Electro-optic Modulators, International Topical Meeting on Microwave Photonics (MWP'04), Paper W2-5, Ogunquit, Maine,2004:4-6
    [114]YTian, PLLewin, J SWilkinson, et al. Continuous Online Monitoring of Partial Discharges in High Voltage Cables. Conf. Record of IEEE ISEI.2004:19-22
    [115]ZHANG Bing, WU Bo-yu. Design of optical ridge waveguide in polymer devices. Journal of Optoelectronics·Laser,2003,14(5):445-448
    [116]Michele Goano, Francesco Bertazzi, et al. A General Conformal-Mapping Approach to the Optimum Electrode Design of Coplanar Waveguides With Arbitrary Cross Section. IEEE Trans. MTT,2001, 49(9):1573-1580
    [117]彭月平,侯磊,张伯虎.高速激光驱动器MAX3296及其应用.国外电子元器件.2001,13(2):116-120
    [118]Araz YACOUBIAN. A mechanically biased electrooptic polymer modulator. IEEE Photonic Technology Letters,2002,14(5):618-620.
    [119]Courjal N, Porte H, Martinez A, et al. LiNbO3 MachZehnder modulator with chirp adjusted by ferroelectric domain inversion. IEEE Photon. Technol. Lett.,2002,14(11):1509-1511.
    [120]Gilardi, G., Tommasino, P., Trifiletti, A., et al. Ameasurement-based model of high-speed electro-optic Mach-Zehnder modulators.3rd ESA Workshop on Millimetre Wave Technology and Applications,2003:183-186
    [121]Kekatpure R D, Brongersma M L, Shenoy R S. Design of a silicon-based field-effect electro-optic modulator with enhanced light-charge interaction. Opt Lett,2005,30(16):2149
    [122]王俊杰,马铁华,祖静.半导体激光器调制驱动电路的研制与实践.华北工学院测试技术学报.2000,10(5):114~120
    [123]M, Gill, A. Chowdhury. Electro-optic Polymer-Based Modulator Design and performance for 40Gbps System Applications. Joarnal of L. T.2002,20(12):2145-2152
    [124]B. E. Cohanim, J. N. Hewitt, and 0. de Weck. The Design of Radio Telescope Array Configurations using Multiobjective Optimization:Imaging Performance versus Cable Length, ApJS.,2004:754
    [125]L. Zhou, A. W. Poon, Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators, Opt. Express,2006,14:6851-6857
    [126]S. K. Kim, K. Geary, D. H. Chang, et al. Tm-pass polymer modulators with poling-induced waveguides and self-aligned electrodes. Electron. Lett.2003,39(9):1915-1918
    [127]朱灿,邱琪.高速光突发模式外调制器驱动电路设计.半导体光电.2005,11(21):88-92
    [128]Chan S P, Png C E, Lim S T, et al. Single-mode and polariza-tion-indepengent silicon-on-insulator waveguides with small cross scction. J Lightwave Technol,2005,23(6):2003
    [129]M. Notcutt, L.-S. Ma, J. Ye, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity. Opt. Lett.2005,30:1815-1817
    [130]Boyraz, B. Jalali. Demonstration of a silicon Raman laser. Opt. Express,2004,12:5269-5273
    [131]S. G. Cloutier, P. Kossyrev, J. M. Xu. Optical gain and stimulated emission in periodic nanopatterned silicon. Nat. Mater.,2005,4:887-891
    [132]Jungo Kondo, Atsuo Kondo, et al.40Gbps X-Cut LiNbO3 Optical Modulator With Two-Step Back-Slot Structure. J. Lightwave Technol.,2002,20(12):2110-2114
    [133]Liao L, Samara-Rubio D, Morse M, et al. High speed silicon Mach-Zehnder modulator. Optics Express, 2005,13(8):3129
    [134]Liu A, Jones R, Liao L, et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature,2004,427:615
    [135]Fukuda. Four-wave mixing in silicon wire waveguides. Opt. Express,2005,13:4629-4637
    [136]T. Indukuri, P. Koonath, B. Jalali. Three-dimensional integration of metal-oxide-semiconductor transistor with subterranean photonics in silicon, Appl. Phys. Lett.,2006,88:108-121
    [137]Fijol J J. Fike E E. Keating P B, et al. Fabrication of silicon-on-insulator adiabatic tapers for low-loss optical interconnection of photonic devices in photonics packaging and integration. In:Proc. of SPIE,2003,15:4997
    [138]H. Rong, A. Liu, R. Jones, et al. An all-silicon Raman laser, M. Paniccia, An all-silicon Raman laser, Nature,2005,435:292-294
    [139]杨艳芳,徐凯,何英等.聚合物电光调制器的热稳定性研究.光学学报,2010,30(5):1483-1486
    [140]单江东.大功率半导体激光器驱动与控制技术的研究:[硕士学位论文].长春:吉林大学电子科学与技术系,2008
    [141]C. J. Huang, C. A. Schuetz, R. Shireen, et al. LiNbO3 Optical Modulator for MMW Sensing and Imaging. SPIE,2007,5(21):75-78
    [142]G. Roelkens, D. Van Thourhout, R. Baets. Coupling schemes for heterogeneous integration of Ⅲ-Ⅴ membrane devices and silicon-on-insulator waveguides. J. Lightw. Technol.,2005,23(11):3827-3831
    [143]Jae Hyuk Shin, Shaomin Wu, Nadir Dagli. Bulk undoped GaAsAlGaAs substrate-removed electrooptic modulators with 3.7-V-cm drive voltage at 1.55 μm. IEEE Photonics Technology Letters,2006, 18(21):2251-2253
    [144]M. J. Chen, C. S. Tsai. A model calculation on optical gain and costimulated emission of photons and phonons in silicon. presented at the 2nd IEEE Int. Conf. Group IV Photon., Antwerp, Belgium, 2005,21:2
    [145]PENG Hai-bo, WU Bo-yu, SONG Qiong, et al. Hybrid electrodes used in polymei electro-optic modulator with ultra-broadband. International Journal of infrared and Millimeter Waves,2003,24(9):1587-1596.
    [146]S. A. Maier, P. E. Barclay, T. J. Johnson, et al. Low-loss fiber-accessible plasmon waveguide for planar energy guiding and sensing. Appl. Phys. Lett.,2004,84:3990-3992
    [147]Xu Q F, Schmidt B, Pradhan S, et al. Micrometer-scale silicon electro-optic modulator. Nature, 2005,435:325-327
    [148]Tanabe, T., Notomi, M., Kuramochi, E. et al. Trapping and delaying photons for one nanosecond in an ultra-small igh-Q photonic-crystal nanocavity. Nature Photonics,2007,1(1):124-128
    [149]周震,崔芳,孙雨南等.用于LD光束准直整形的GRIN透镜的设计.光子学报.2000,29(Z1):237-241
    [150]肖金标,孙小苗,张明德等.基于GaAs/GaAlAs条形光波导的定向耦合器分析.电子学报.2002,30(5):705-707
    [151]周洪娟,刘帅,鲍振武等.LiNbO3光线型行波光调制器的有限元分析与设计.激光与红外.2006,36(6):480-483
    [152]Suntak Park, Jung Jin Ju, Jung Yun Do, et al. Thermal stability enhancement of electrooptic polymer modulator. IEEE Photonics Technology Letters.2004,16(1):93-95
    [153]Xu D X, Cheben p, Dalacu D, et al. Eliminating the birefrin-gence in silicon-on-insulator ridge waveguides by use of cladding stress. Opt LETT,2004,29(20):2384-2385
    [154]马晓红,于晋龙,杨恩泽等.2.5Gbps光外调制器及驱动器.半导体光电.2009,12(3):25~28
    [155]Yongqiang Shi. Micromachined Wide-Band Lithium Niobate Electrooptic Modulators. IEEE Transactions on Microwave Theory and Techniques,2006,5(2):810-815
    [156]Shinya, A., Mitsugi, S., Tanabe, T., et al. All-optical flip-flop circuit composed f coupled two-port resonant tunneling filter in two-dimensional photonic rystal slab. Opt. Express,2006, 14, (3):1230-1235
    [157]俞建杰,谭立英,马晶等.一种提高卫星光通信终端发射效率的新方法.中国激光.2009,36(3): 581-586
    [158]贾楠.卫星间激光通信激光调制器的研究:[硕士学位论文].哈尔滨:哈尔滨工业大学物理电子学系,2004
    [159]She W L, Lee W K. Wave coupling theory of linear electrooptic effect. Optics Communication,2001, 195(1-4):303-311
    [160]Isaac I. Kim, Eric Korevaar. Availability of free space optics(FSO)and hybrid FSO/RF systems. Optical Wireless Communications IV, In:Proc. of SPIE 4530,2001:84-95
    [161]L. R. Dalton. Novel Polymer-based, High Speed Electrooptic Devices. In:Proc. of the 23rd European Conference on Optical Communications/14th International Conference on Integrated Optics and Optical Fibre Communication,2003,2:246-249
    [162]李睿,赵洪利,曾德贤.空间激光通信及其关键技术.应用光学.2006,27(2):152-154
    [163]陈建文,姚亚峰,刘自力等.空间光通信系统的设计及实现.光电工程.2004,31(9):14~17
    [164]朱震,陈凌.自由空间光通信技术.无线光通信技术.2003,(1):22-26
    [165]李晓峰,胡渝.空-地激光通信链路总体设计思路及重要概念研究.应用光学.2005,26(6):57-62
    [166]刘智颖,胡源,张磊等.光通信中的功率计算与通信距离等效验证.光学学报.2008,28(s2):188-190
    [167]詹伟达,李洪祚,王志坚.空间光通信链路方程修正方法及功率预算.中国激光.2010,37(S1):198-203
    [168]Y. H. Kuo, Y. Lee, Y. Ge, et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature,2005,437:1334-1336
    [169]Tatsuo HATTA, Toshiharu MIYAHARA, Mitsunori ISHIZAKI, et al. Inductance-controlled electroabsorption modulator modules using the flip-chip bonding technique. Journal of Lightwave Technology,2005,23(2):582-587
    [170]Rabiei P, H. Steier W. Electro-optic waveguide modulators fabricated using thin films of lithium niobate.2005 Quantum Electronics and Laser Science Conference (QELS).2005.945-947
    [171]朱勇,孙晓霞.星地激光通信中接收光信号的仿真方法.光学学报.2008,28(s2):134-138
    [172]Kondo J, Aoki K, Kondo A, et al. High-speed and low-driving-voltage thin-sheet X-cut LiNbOs Modulator with laminated low-dielectric-constant adhesive. IEEE Photon. Technol. Lett.,2005, 17(10):2077-2079.
    [173]L. Liao, D. Samara Rubio, M. Morse, et al. High speed silicon Mach-Zehnder modulator. Opt. Express, 2005,13:3129-3135
    [174]Burns W K, Howerton M M, Moller R P, et al. Low drive voltage, broad-band LiNbO3 modulators with and without etched ridges. J. Lightwave Technol.,2007,07(12):2551-2555
    [175]L. Liao, D. Rubin, H. Nguyen, el al. High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 2007,15:660-668
    [176]陈旺,曲欣,王晓林等.40GHz共面波导电极聚合物电光调制器的研究.光学学报.2009,29(s2):36~40
    [177]杨纪超,宋牟平.基于MOS电容电极的硅基马赫曾德尔电光调制器的性能研究.中国激光.2010,37:141~146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700