用户名: 密码: 验证码:
乙醇脱水制乙烯几种改性HZSM-5催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木文以HZSM-5分子筛为基础进行了多种改性方法的研究,对各种改性催化剂进行了XRD、SEM、ICP-AES、NMR、BET、NH3-TPD及IR等表征,并利用连续固定床反应器探讨了改性催化剂对乙醇脱水制乙烯反应的催化性能。得出如下主要结论:
     一、制备了一种新的乙醇脱水制乙烯的HZSM-5/SAPO-11复合分子筛催化剂。考察了原料比、模板剂和晶化时间对样品结构及乙醇脱水催化性能的影响,得出以下主要结论。
     1、在本实验条件卜合成了HZSM-5/SAPO-11复合分子筛,该分子筛催化剂在乙醇脱水制乙烯反应中表现出良好的催化性能,最佳乙醇转化率和乙烯选择性分别达到99.8%和99.5%;连续反应150h,乙醇转化率和乙烯选择性均保持在95%以上,表明其具有较好的活性和稳定性
     2、通过复合分子筛HZSM-5/SAPO-11合成条件的优化实验,确定了最佳制备条件为:原料比DPA:HZSM-5:Al2O3=8:4:1,模板剂为二正内胺,晶化时问为24h,晶化温度为185℃
     3、通过对合成的复合分子筛的一系列分析表征,发现其结构为以HZSM-5为核SAPO-11为壳的核壳式分子筛。孔结构的变化、强酸量的减少,是复合分子筛催化性能得到改善的内在原因。
     二、对HZSM-5分子筛进行了水热改性和高温热处理改性研究,对改性催化剂进行了详细的分析农征及催化活性评价实验,探讨不同处理温度和时间对催化剂结构、酸性及催化性能的影响,得到了如卜结论:
     1、对HZSM-5分子筛进行了一系列水热和高温热处理改性的研究。发现水热处理和高温热处理改性催化剂的催化性能得到进一步改善,水热改性催化剂最佳乙醇转化率和乙烯选择性分别为99.5%和99.4%,比原HZSM-5分子筛略有提高。但其稳定性得到明显改善,连续反应350h,乙醇转化率和乙烯选择性仍可达到94.4%和96.0%;高温热处理改性催化剂副反应减少、乙烯选择性增大,800℃热处理催化剂的乙醇转化率和乙烯选择性分别达到99.5%和99.6%,260℃时连续反应300h,乙醇转化率和乙烯选择性均保持在95%以上
     2、通过对改性催化剂酸量表征可知,改性对HZSM-5分子筛表面酸量及酸强度有很大影响,尤其对强酸中心影响较大。NH3-TPD分析表明强酸量明显减少,酸强度减弱;Py-IR表明B酸中心及总酸量减小,B/L值减小。由低温氮吸脱附表征可知:水热和高温热处理过程都发生了骨架脱铝形成了大量的介孔,增大分子筛的外表而积和介孔孔容,将分子筛单一的微孔结构变成了介-微孔道结构。适度的酸量和酸分布以及介-微孔道结构都是脱铝改性催化剂催化胜能提高的原因。
     3、适度的水热和高温热处理可提高乙醇脱水反应的活性和稳定性。但过度处理会使HZSM-5分子筛酸量明显减小,既不利于催化剂微孔结构的保持,也不利于形成新的介孔,从而使催化活性明显降低。
     三、通过碱处理改性制备了一系列碱脱硅改性催化剂,并对改性催化剂进行了详细的表征及催化活性评价,探讨了碱处理浓度和温度对HZSM-5分子筛酸性、孔结构及乙醇脱水制乙烯催化性能的影响,得到了如下主要结果:
     1、通过碱改性HZSM-5催化剂的催化活性研究,结果表现碱改性催化剂活性和寿命都得到进一步的提高。不同条件下处理的HZSM-5分子筛低温活性增大;NaOH溶液浓度为0.2M,65℃,搅拌120min时的催化在乙醇脱水制乙烯反应中表现出优异的催化性能,乙醇转化率和乙烯选择性均都达到99.6%,连续反应350h,乙烯选择性仍保持在95%以上。
     2、通过对碱改性催化剂的表征及催化实验可知:碱改性催化剂催化性能的提高与碱处理过程中表而酸性变化及形成的介孔有关。
     3、对改性分子筛催化剂的一系列表征可知,碱处理可以选择性的脱除分子筛骨架上的硅原子,在微孔结构基本不被破坏的情况下改性分子筛均不同程度地产生介孔结构;碱改性对分子筛酸性造成一定的影响,碱浓度较低时HZSM-5分子筛强酸量及总酸量基本不变化,碱浓度增大时强酸量及总酸量降低;碱处理温度对分子筛的酸性影响作用小于碱浓度的影响。
     4、通过对反应后的分子筛催化剂进行BET分析,可得出在脱水反应中形成的积炭更容易沉积在分子筛的介孔中,而微孔中的积炭相对较少,因此碱处理过程中脱硅形成的介孔有利于催化剂寿命的提高。
     5.通过正交实验和乙醇脱水催化实验得到碱处理条件对分子筛催化性能的影响,碱溶液浓度>碱处理温度>碱处理时间。
     四、通过三种改性方法制备了一系列改性催化剂,并对改性催化剂进行了表征及催化活性评价,比较了三种改性方法对HZSM-5分子筛酸性、孔结构及乙醇脱水制乙烯催化性能的影响,并对较为理想的碱改性催化剂进行了再生研究,得到了如卜主要结果:
     1、通过对三种改性催化剂催化性能的研究可知,改性催化剂的催化性能都得到进一步的改善,催化活性和稳定性得到提高。相比较未处理HZSM-5分子筛,改性催化剂乙烯选择性都略有升高,而稳定性则得到大大提高,高温热处理、水热处理、碱处理催化剂稳定性分别提高到300h、350h、350h。
     2、通过对改性催化剂一系列表征可知:三种改性方法都减少了分子筛表面强酸中心数量,这抑制了强酸中心上积炭等副反应的发生;同时都不同程度形成了介孔,这有利于反应物和产物分子在分子筛孔道内扩散,减少了积炭的发生,大大提高了分子筛的稳定性。
     3、通过对碱改性催化剂进行了再生研究,发现程序升温再生能够保证积炭的烧除井且再生后微孔恢复程度比恒温再生好。再生后的碱改性催化剂催化活性得到恢复,反应250h,其乙醇转化率和乙烯选择性均保持95%以上。综合考虑催化剂的活性、稳定性及再生性,碱改性催化剂更适合乙醇脱水制乙烯反应。
The reaction of ethanol dehydration to ethylene was studied over modified catalyst in this thesis. HZSM-5/SAPO-11composite was synthesized by embedding methods. Micro/mesoporous HZSM-5zeolites was prepared using dealumination and desilication method. The activity and stability of the catalysts were tested in a continuous flow fixed-bed reactor. The modified catalysts were characterized by XRD、SEM、ICP-AES、NMR、BET、NH3-TPD and IR. The reason of improved stability of modified catalysts was investigated by catalytic performance. The main conclusions are as following:
     1、A new catalyst HZSM-5/SAPO-11composite for ethanol dehydration to ethylene was synthesized. The influence of ratios of raw materials, template and crystallization on catalytic performance was studied. The main conclusions are as following:
     Micro/microporous HZSM-5/SAPO-11melecular sieve was synthesied in the best synthesis conditions. HZSM-5/SAPO-11composite molecular sieve exhibted better catalytic performance for ethanol dehydration to ethylene. Ethanol conversion and ethylene selectivity were99.8%and99.5%. They were above95%after150hours run.
     The optimum synthesis condition was determined by varing the synthesis parameters. The optimum synthesis condition was as follow:ratios of raw materials was DPA:HZSM-5:Al2O3=8:4:1. DPA as template agent, crystalliza-tion time was24h and temperature was185℃
     Characterizations indicated that the composite zeolites existed in a form of a core-shell structure, with the HZSM-5phase as the core and the SAPO-11as the shell. Results indicated that the improved catalytic performance was related not only to the pore structure, but to the catalyst acid number.
     2、The modified catalysts were characterized and the catalytic performance were tested. The effect of hydrothermal and high temperature treatment on HZSM-5catalysts was analyzed during dehydration of ethanol to ethylene. The main conclusions are as following:
     Modified zeolites showed good catalytic performance. Ethanol conversion and ethylene selectivity of hydrothermal teated catalyst were99.5%and99.4%. they were94.4%and96.0%after350hours run at280℃. High temperature treated zeolite suppressed the formation of carbon deposit and improved ethylene selectivity. Ethanol conversion and ethylene selectivity were99.8%and99.5%and were still above95%after300hours run at260℃.
     Hydrothermal and high temperature treatment adjusted surface acidic distribution of HZSM-5zeolites. The total acidic amount decreased and the strength of acid sites weakened. BrOnsted acid sites and the strong acid sites were decreased; more Lewis acid sites were produced. Some of A1was removed from the framework of zeolite and extracted out of the zeolite channels after hydrothermal and heat treatment. Mesopores were formed after high temperature heat and hydrothermal treament. The improvement of catalytic performance can be attributed to suitable acidity and new complex meso/microporous structure.
     Moderate hydrothermal and high temperature treatment improved the catalytic performance. However, the severe treatment led to partial destruction of the zeolite framework, which was disadvantageous not only for the micropores but also for the formation of mesopores.
     3、A series of mesoporous HZSM-5were synthesized by desilication and the effects of the alkali treatment conditions on catalytic dehydration of ethanol to ethylene were investigated. The main conclusions are as following:
     The experiment of catalytic dehydration of ethanol showed that alkali-treated HZSM-5zeolites improved not only the catalytic activity but the stability. Ethanol conversion and ethylene selectivity were99.6%and the ethylene selectivity remained above95%after350hours run.
     The experiment of catalytic dehydration of ethanol indicated improved catalytic activity and excellent catalytic stability of alkali-treated HZSM-5catalyst was related not only to the catalyst acid number and strength, but to the created mesopores by desilication.
     The complexed meso/microporous HZSM-5zeolites were formed owing to alkali-treatment desilication. The amount of strong acid sites of modified zeolites decreased and weak acid sites increased.
     The coke produced in the reaction procedure tended to deposit in the mesopores of the zeolites. So, the newly created mesoropores by desilication led to the improvement of catalytic stability.
     The effects of several alkali-treatment parameters on the catalytic performance of HZSM-5zeolite were investigated by orthogonal and dehydration of ethanol. The results was concentration> alkali treatment temperature> alkali treatment time.
     4、A series of modified HZSM-5were prepared by hydrothermal treatment, high temperature treatment and desilication. The effects of the treatment conditions on pore structure, surface acidity and catalytic dehydration of ethanol to ethylene were investigated. Regeneration of alkali-treated catalyst was studied. The main conclusions are as following:
     Modified zeolites showed good catalytic performance. Ethylene selectivity of modified catalysts was improved. The lifetime of hydrothermal treated catalyst, high temperature treated catalyst and alkali-treated catalyst was350h,300h and350h.
     The improvement of catalytic performance can be attributed to suitable acidity and new complex meso/microporous structure.
     Temperature programming regeneration would obtain a better coke burning and microporous recovery than constant temperature regerneration. The regenerated catalyst showed good catalytic stability. Ethanol conversion and ethylene selectivity remained above95%after250hours run. Considering the activity, stability and regerneration of alkali-treated HZSM-5zeolites catalyst comprehensively, the alkali-treated mesoporous HZSM-5zeolites was the suitable catalyst in the dehydration of ethanol to ethylene.
引文
[1]夏磊.世界乙烯产需概况及展望[J].石油化工技术经济2005,21(1):51-54.
    [2]中国石油和石化工程研究会组织编写,当代石油和石化工业技术普及读本乙烯,北京:中国石化出版社,2000,7:1-23.
    [3]Kochar N k, Ethylene from ethanol, Chemical Engineering [J].1980,28 (1):80-81.
    [4]张旭之,王松汉,戚以政.乙烯衍生物工学,北京:化学工业出版社,1985:1-10.
    [5]潘峰,吴玉龙,张建安,等.生物发酵乙醇催化脱水制乙烯发展状况[J].现代化工2006,26(2):27-31.
    [6]天津大学物理化学教研室编,物理化学(第三版),北京:高等教育出版社,1993,6:365-371.
    [7]刘欣WO3/HZSM-5催化剂上乙醇脱水制乙烯的研究[M].天津:天津大学,2008.
    [8]潘履让,李赫晅.乙醇脱水制乙烯新型催化剂的研制[J].石油化工,1985,14(3):154-157.
    [9]Sawane B, Saroru N, Shigeru T, et al. Ethanol conversion over ion-exchanged ZSM-5 zeolites [J]. Appl Catal.,1990,59 (1):13-29.
    [10]潘履让,蒋德林,李赫晅.乙醇脱水制乙烯新型催化剂的研制[J].石油化工,1986,15(3):155-159.
    [11]Zaki T. Catalytic dehydration of ethanol using transition metal oxide catalysts [J]. Colloid Interface Sci,2005,284 (2):606-613.
    [12]Winter O, Ming-teck E. Make ethylene from ethanol [J]. Hydrocarbon process,1976,11: 125-133.
    [13]赵本良,王静波,王春梅,等.杂多酸催化剂催化乙醇脱水制乙烯[J].东北师大学报自然科学版,1997.3(1):41-43.
    [14]Chaudhuri S N. Halik C. Lercher J A. Reactions of ethanol over HZSM-5[J]. J. Mol.Catal.,1990,62 (3):289-295.
    [15]顾志华.乙醇制乙烯技术现状及展望[J].化工进展2006.25(8):847-851.
    [16]Kojima M, Aida T. Asami Y. Ethanol dehydration catalyst for ethylene product consists of highly pure activated alumina, opt. contg. Metal phosphate:US,4302357,1980-04-23
    [17]李慧,胡燚,苏国东,等.合成方法对γ-Al_2O_3催化剂乙醇脱水性能的影响[J].石油化 工,2009,38(4):373-378.
    [18]黎颖,陈晓春,孙巍,等.γ-Al_2O_3催化剂上乙醇脱水制乙烯的实验研究[J].北京化工大学学报(自然科学版),2007,4(5):449-452.
    [19]刘铭,初旭明,李慧,等.Fe2O3/γ-Al2O3催化乙醇脱水制乙烯[J].石油化工,2010,39(8):861-865.
    [20]吴文清,俞玉萍.郑宇,等.高比表面积活性炭负载磷钨酸催化乙醉制乙烯[J].上海化工,2009,34(4):6-9
    [21]Dilek Varisli, Timur Dogu, Gulsen Dogu. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts [J]. Chem. Eng. Sci., 2007,62 (18-20):5349-5352.
    [22]赵本良,王静波,赵宝中,等.杂多酸催化剂催化乙醇脱水制乙烯[J].东北师大学报自然科学版,1997,3:41-43.
    [23]李本祥,常胜,董新荣.负载型杂多酸催化剂催化乙醇脱水制乙烯[J].化学工程师,2007,142(12):1-3.
    [24]周志清.低浓度乙醇制乙烯的研究[J].精细石油化工,1993,(1):35-37.
    [25]Xiao Y Y, Li X J, Yuan Z H. et al. Catalytic dehydration of ethanol to ethylene onTiO2/4A zeolite composite catalysts [J]. Catal Lett.,2009,130:308-311.
    [26]严爱珍,刘杨,于振臣,等SAPO-11分子筛的酸性及催化性能[J].高等化学学报.1990,11(12):1391-13195.
    [27]王定一,李景林,范闽光SAPO-34分子筛的合成及用于乙醇脱水的研究[J].催化学报,1992,13(3):234-236.
    [28]Daniel A, Alicia C, Mara L C, et al.. The transformation of ethanol over AlPO4 and SAPO molecular sieves with AEL and AFI topology. Kinetic and thermodynamic approach [J]. Catal. Lett.,1997,45(1):51-58.
    [29]Zhang Xian, Wang Ri jie, Yang Xiao xia, et al.Comparision of four catalysts in the catalytic dehydration of ethanol to ethylene [J]. Micropor Mesopor Mater.,2008,116 (1-3): 210-215
    [30]Anderson, Robert J, Anand R. et al.Improved zeolite catalysts:Method for their preparation and their use in the conversion of ethanol into ethylene and of both into higher hydrocarbons [P]. EP:0022640.1979
    [31]Chang C D, Silvestri A J, The conversion of methanol and other o-compounds to hydrocarbons over zeolites catalysts [J]. J Catal.,1977.47 (2):249-259.
    [32]Oudejans J C, Van Den Oosterkamp P F, Van Bekkum H. Conversion of Ethanol Over Zeolite H-ZSM-5 in the Presence of Water[J]. Appl Catal.,1982,3 (2):109-115.
    [33]Talukdar A K, Bhattacharyya K G, Sivansanker S. HZSM-5 catalysed conversion of aqueous ethanol to hydrocarbons [J]. Appl Catal A,1997,148 (2):357-371.
    [34]张跃,侯延建,严生虎,等.到HZSM-5型分子筛催化乙醇溶液脱水制备乙烯的工艺[J].南京工业大学学报,2007.29(3):67-70.
    [35]Mao R L V.Catalytic conversion of aqueous ethanol to ethylene [P]. US:4873392, 1989-10-10.
    [36]贾宝莹,杜平,杜风光,等.生物乙醇制乙烯初探[J].化工进展,2012,31(5):1028-1031.
    [37]Moser W R, Thompson R W, Chiang C C, et al. Silicon-rich H-ZSM-5 catalyzed conversion of aqueous ethanol to ethylene [J]. J Catal.,1989,117 (1):19-32.
    [38]Cory B. Phillips, Ravindra Datta. Production of Ethylene from Hydrous Ethanol on H-ZSM-5 under Mild Conditions[J]. 1nd Eng Chem Res,1997,36 (11):4466-4475.
    [39]陆翠云,张叶龙,韩毓旺,等Mo/HZSSM-5催化乙醇脱水制乙烯[J].石油化工,2011,40(12):1281-1286
    [40]沈德建,刘宗章.,张毓华.改性HZSM-5催化乙醇脱水制乙烯的研究[J].分子催化,2012,3:225-232.
    [41]胡彤宇,,郭翠梨,程景耀,等WO3/HZSM-5催化乙醇脱水制乙烯[J].化学工业与工程,2011,28(4):34-38.
    [42]王殿中,舒兴田,何鸣元.MMM分子筛的制备与表征[J].催化学报.2003,24(3):208-212.
    [43]Rajagopalan K, Peters A W, Edwards G. C. Influence of zeolite particle size on seleetivity during fluid catalytic craking [J]. Appl Catal.,1986,23 (1):69-80.
    [441 Vood P, Van Bekkum H. Limitation of n-hexane and 3-methylpentane conversion over zeolite ZSM-5 by intracrystalline diffusion [J]. Appl Catal..1990,59 (1):311-331.
    [45]Bellussi G. Pazzueoni G, Perego C, et al. Liquid-phase alkylation of benzene with light olefins catalyzed by -zeolites [J]. J Catal.,1995,157 (1):227-234.
    [46]Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002, 417(6891):813-821.
    [47]许春慧.分子筛传质性能的改性研究:合成和后处理[D].浙江:浙江帅范大学,2009.
    [48]Huang L M, Guo W P, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites [J]. J Phys Chem B.,2000,104 (13):2817-2823.
    [49]Liu Y, Zhang W Z. Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds [J]. J Am Chem Soc.,2000,122 (36):8791-8792.
    [50]Zhang Z T, Han Y, Xiao F S, et al. Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures [J]. J Am Chem Soc.,2001,123 (21):5014-5021.
    [51]Wang H, Pirmavaia T J. MFI Zeolite with small and uniform intracrystal Mesopores [J]. Angew Chem Int Ed.,2006,45(45):7603-7606.
    [52]Choi M, Cho H S, Srivastava R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nat Mater.,2006,5 (9):718-723.
    [53]Ogura M, Shin-ya Shinomiya, Junko Tateno, et al. Alkali-treatment technique- new method for modification of structural and acid-catalytic properties of ZSM-5 zeolite [J]. Appl Catal A,2001,219 (1-2):33-43.
    [54]Li Yuning, Liu Shenglin, Zhang Zekai. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:improved reaetion stability [J]. Appl Catal A.2008.338 (1-2): 100-113.
    [55]Janssen A H, Koster A J. de Jong K P. Three-dimensional transmission electron microscopic observations of mesopores in dealuminated zeolite Y [J]. Angew Chem Int Ed. 2001,40(6):1102-1104.
    [56]Giudici R, Kouwenhoven H W, Prins R. Comparison of nitric and oxalic acid in the dealumination of mordenite [J]. Appl Catal A,2000.203 (1):101-110.
    [57]冯会.含ZSM-5新型催化材料的合成与表征[Dj].东营:中国石油大学,2009.
    [58]Janssen A H. Schmidt I, Jacobsen C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis [J]. Micropor Mesopor Mater,2003,65 (1):59-65.
    [59]陆璐,张会贞,柱学栋.多级孔ZSM-5分子筛的合成及催化苯、甲醇烷基化反应的 研究[J].石油学报(石油加工),2012,S1:155X
    [60]徐如人,庞文琴,于吉红,霍启升,陈接胜.分子筛与多孔材料化学(21世纪科学版化学专著系列)[M].北京:科学出版社.2004, 436-439.
    [61]Cartlidge S,Nissen H U,Wessicken R. Ternary mesoporous structure of ultrastable zeolite CSZ-1 [J]. Zeolites,1989,9 (4):346-351.
    [62]Lu Renqing, Cao Zuogang, Liu Xinhai. Catalytic activity of phosphorus and steam modified HZSM-5 and the theoretical selection of phosphrous grafting model [J]. Journal of Natural Gas Chemistry,2008 (17):142-148.
    [63]Marellly C R, Petrole. Zeolites:structures, synthesis and modifications [J]. Techniques, 1986,328:12-15.
    [64]吕仁庆,罗立文,项寿鹤,等.水热处理的HZSM-5分子筛的孔结构及活性研究[J].石油大学学报(自然科学版),2002,26(3):97-100.
    [65]Zhao L, Wang H B, Liu M, et al. Shape-selective methylation of 2-methylnaphalene with methanol over hydrothermal treated zeolite catalysts [J]. Chem Eng Sci.,2008,63:5298-5303.
    [66]张铭金,陈雷,易德莲,等.丝光沸石水蒸气/酸浸渍脱铝的多核固体核磁共振研究[J].高等学校化学学报2004,8:1490-1494.
    [67]Barrer R M, Makki M B, Molecular sieve sorbents from clinoptilolite [J]. Canadian Journal of Chemistry,1964,42(6):1481-1487.
    [68]Kornatowski J, Werner H B, Gerhard P, et al. Dealumination of large crystals of zeolite ZSM-5 by various methods [J], J Chem Soe,1992,88(9):1339-1343.
    [69]Sharelle M C, David M B, Janm C, et al. Dealumination of HZSM-5 Zeolites [J]. J Catal., 1996,161 (1):338-349.
    [70]Antoniod L, Canizares P, Durn A, et al. Dealumination of HZSM-5 zeolites:Effeet of steaming on acidity and aromatization activity [J]. Appl Catal A:Gen,1997,154 (1-2): 221-240.
    [71]Datka J, Marsehmeyer S, Neubauer T, et al. Physieoehemical and catalytic properties of HZS-5 zeolites dealuminated by the treatment with steam [J]. J Phys Chem.,1996,100 (34): 14451-14456.
    [72]程晓维,汪靖,郭娟,等.无粘结剂ZSM-5沸石催化剂骨架脱铝改性的研究[J].化学 学报,2008.66(19):2099-2106.
    [73]Fan Y.Bao X J. Lin X Y, et al. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric treatments [J] . J Phys Chem B, 2006. 110 (36): 15411-15416.
    [74]Mcqueen D, Chiehe B H. Fajula F, et al. A multitechnique characterization of the acidity of dealuminated mazzite [J]. J Catal., 1996, 161 (2): 587-596.
    [75]Boreave A, Auroux A, Guimon C. Nature and strength of acid sites in HY zeolites: a multitechnical approach [J]. Micropor Mater. 1997, 11 (5-6): 275-291.
    [76]万克树,张村满.热处理制备微孔介孔双孔分子筛[J].无机材料学报,2003,18(2):9-15.
    [77]Zhang C. Liu Q, Xu Z, et al. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment [J]. Micropor Mesopor Mater., 2003. 62 (3): 157-163.
    [78]Groen J C. Peffer L A A, Moulijn J A, et al. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium [J]. Colloids and Surfaces A: Physicochem Eng Aspects. 2004. 241 (l):53-58.
    [79]Groen J C, Moulijn J A, Perez-Ramirez J. Alkaline posttreatment of MFI zeolites from accelerated screening to scaleup [J]. Ind. Eng Chem Res, 2007, 46 (12): 4193-4201.
    [80]Groen J C, Peffer L A A. Moulijn J A. et al. On the introduction of intracrystalline mesoporotsity in zeolites upon desilication in alkaline medium[J].Micropor Mesopor Mater., 2004,69 (1-2): 29-34.
    [81 ]Li Yuning, Liu Shenglin, Xu Longya. et al. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improve reaction stability [J]. Appl Catal A: Gen.,2008, 338(l-2):100-113.
    [82]Ogura M, Shinomiya S, Tateno J, et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution [J]. Chem Lett, 2000, 29 (8): 882-887.
    [83 j Morten B, Finn J, Martin S P, et al. Methanol to gasoline over zeolite H-ZSM-5: improve catalyst performance by treatment with NaOil [J]. Appl Catal A: Gen,2008,345 (1): 43-50
    [84]宋月芹,刘锋,康承琳,等.碱处理法改善Pt/ZSM-5异构化性能[J].催化学报,2009, 30(2):159-164.
    [85]Li Y N, Liu S L, Zhang Z K, et al. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:Improved reaction stability [J]. Appl Catal A:Gern,2008,338 (1-2):100-113.
    [86]Jin L J, Zhou X J, Hu H Q, et al. Synthesis of 2.6-dimethylnapthalene by methylation of 2-methylnaphthalene on mesoporous ZSM-5 by desilication [J]. Catal Commu.2008,10 (3): 336-340.
    [1]吴烈钧.气相色谱检测方法.北京:化学工业出版社,2000.50-76.
    [2]分析化学手册,第四分册:色谱分析.成都科学技术大学分析化学教研室主编.化学工业出版社,1994,228-235.
    [1]曾绍槐.择形催化[M].北京:中国石化出版社,1994: 2-21.
    [2]顾伯锷.工业催化过程导论[M].北京:高等教育出版社,1990: 119-200.
    [1]于云霞,刘必武,NC1301型乙醇脱水制乙烯催化剂的研制[J].化学工业与工程技术,1995,16(2):8-10.
    [2]赵本良,王静波,王春梅等.杂多酸催化剂催化乙醇脱水制乙烯[J].东北师大学报(自然科学版),1997,3(3):41-43·
    [3]潘履让,李赫暄.NKC-034乙醇脱水制乙烯催化剂[J].石油化工,1987,16 (11):764-767.
    [4]张宪NiAPSO-34分子筛合成、表征及其催化乙醇[D].天津:天津大学化工学院,2008.
    [5]Lok B M. Messina C A,Patton R L,et al.Crystalline Silicoaluminophosphates[P]. US: 4440871,1984-04-03.
    [6]严爱珍,刘扬,于振臣,等SAPO-11分子筛的酸性及催化性能[J].高等学校化学学报,1990,11(12):1391-1395.
    [7]张哲,宗保宁.ZSM-5(核)/AIPO4(壳)双结构分子筛的合成与催化裂化性能[J].催化学报,2003,24(11):856-860.
    [8]何长青,刘中民,蔡光宇,等.以二乙胺为模板剂合成磷酸硅铝分子筛[P].CN:1096496,1994-12-21.
    [9]徐东彦.SAPO分子筛的研究与催化应用进展[J].工业催化,2001,9(1):23-25.
    [10]刘月明,张风美,代振宇DPA. DIPA模板剂结构导向性能的探讨[J].石油学报(石油加工),2000,16(4):1-4.
    [11]Roldan R,Sanchez M.Sankar G,et al. Influence of DH and Si contention Si incorporation in SAPO-5 and their catalytic activity for isomerisation of n-heptane over Pt loaded catalysts [J]. Micropor Mesopor Mater.,2007,99 (3):288-298.
    [12]Gomez-Hortigueila L, Cora F, Catlow C R A, et al. Fluorinated dibenzen dimethen ammonium as structure directing agent for the synthesis of AIPO4 and SAPO-5:Effect of fluorine [J]. Stud Surf Sci Catal,2005,158:327-334.
    [13]汪哲明,阎子峰SAPO-11分子筛的合成[J].燃料化学学报,2003,32(4):360-366.
    [14]马忠林,赵天波,宗保宁.ZSM-5/丝光沸石混晶分子筛的合成、表征及性能研究[J].石油学报(石油加工),2004,20(2):21-27.
    [15]张强,李春义,山红红,等.气相转移法与水热合成法合成ZSM-5/SAPO-5核壳结构复合分子筛的比较[J].催化学报,2007,28(6):541-546.
    [16]肖天存,安立敦,王弘立.SAPO-5,-11和-34分子筛模板剂的脱除及其结构的热致变化[I].分子催化1994,8(6):429-436.
    [17]陈彧.ZSM-5型沸石催化剂的结焦与失活[J].精细石油化工,1994,2(1):31-35.
    [1]Ramesh K, Hui L M, Han Y F, et al. Structure and reactivity of phosphorous modified H-ZSM-5 catalysts for ethanol dehydration [J]. Catal Commun,2009.10 (5):567-571.
    [2]程晓维,汪靖、郭娟,等.无粘结剂ZSM-5沸厂催化剂骨架脱铝改性的研究[J].化学学报,2008,66(16):2099-2106.
    [3]吕仁庆,罗立文,项寿鹤,马荔.水热处理的HZSM-5分子筛的孔结构及活性研院[J].石油大学学报.2002,26(3):97-100.
    [4]柯明,汀燮卿,张凤美.高温水热处理后磷改性HZSM-5分子筛的结构变化[J].石油化工,2005.34(3):226-232.
    [5]Fan Y,Bao X J, Lin X Y, et al. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric treatments [J].J Phys Chem B.2006.110 (36): 15411-15416.
    [6]Triantafillidis C S, Vlessidis A G, Nalbandian L, et al. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites[J]. Micropor Mesopor Mater.,2001,47 (2-3):369-388.
    [7]Guo X W, Shen J P, Sun L, et al. Effect of SiO2/Al2O3, MgO modification and hydrothermal treatment on the catalytic activity of HZSM-5 zeolites in the methylation of 4-methybiphenyl with methanol [J]. Appl Catal A.2004,261 (2).183-189.
    [8]Topsoe N Y, Joensen F, Derouane E G. IR Studies of the Nature of the Acid Sites of ZSM-5 Zeolites Modified by Steaming [J]. J Catal.,1988,110 (2):404-409.
    [9]Kumar S,Sinha A K, Hegde S G, Sivasanker S. Influence of mild dealunination on physicochemical, acidic and catalytic properties of H-ZSM-5 [J]. J Mol Catal A,2000,154 (1-2):115-119.
    [10]Sombatchaisak S, Praserthdam P, Chaisuk C, et al. An alternative correlation equation between particle size and structure stability of H-Y zeolite under hydrothermal treatment conditions [J]. Ind Eng Chem Res,2004,43 (15):4066-4069.
    [11]Praserthdam P, Mongkolsiri N, Kanchanawanichkun P. Effect of crystal size on the durability of Co/HZSM-5 in selective catalytic reduction of NO by methane [J]. Catal Commun.,2002,3 (5),191-197.
    [12]汪树军,梁娟,郭文硅,等.HZSM-5沸石水热脱铝规律的研究[J].天然气化工,1991.16(4):17-22
    [13]Mao D S. Guo Q S, Meng T, et al. Effect of hydrothermal treatment on the acidity and catalytic performance of nanosized HZSM-5 zeolites for the conversion of Methanol to propene [J]. Acta Phys Chim Sin,2010.26 (2):338-342.
    [14]Ding C H, Wang X S, Guo X W, et al. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst [J]. Catal Commun.,2008,9 (4):487-493
    [15]郭新闻,王祥生,沈剑平,等.4-甲基联苯与甲醇择形甲基化合成4,4’-二甲基联苯[J].石油学报(石油加工),2004,20(1):6-11.
    [16]杨小明,罗京娥.磷氧化物改性对ZSM-5沸石物化性质及择形催化性能的影响[J].石油化工与炼制,2001,32(11):48-51,
    [17]Datka J, Marschmeyer S, Neubauer T,et al. Physicochemical and catalytic properties of HZSM-5 zeolites dealuminated by treatment with steam [J]. J Phys Chem C,1996,100 (34): 14451-14456.
    [18]程晓维,汪靖,郭娟,等.无粘结剂ZSM-5沸石催化剂骨架脱改性的研究[J].化学学报.2008,66(19):2099-2106.
    [19]龙化云.王祥生,孙万付,等.脱铝方法对纳米HZSM-5物化性能的影响[J].石油学报(石油加工),2009,25(3):332-338.
    [20]Zhang D S, Wang R J, Yang X X. Effect of P content on the catalytic performance of P-modified HZSM-5 catalysts in dehydration of ethanol to ethylene [J]. Catal Lett 2008,124: 384-392.
    [21]Varisli D, Dogu T, Dogu G, Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts[J]. Chem Eng Sci 2007,62(18-20): 5349-5353.
    [22]Liu J, Zhang C X, Shen Z H, et al. Methanol to propylene:Effect of phosphorus on a high silica HZSM-5 catalyst [J]. Catal Commun,2009,10 (11):1506-1509.
    [23]毛东森,郭强胜,卢冠忠.分子筛品粒大小及磷改性对ZSM-5催化甲醇转化制丙烯的影响[J].石油学报(石油加工).2009,25(4):503-508.
    [24]Aguayo A T, Gayubo A G, Atutxa A, et al. Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons kinetic modeling and acidity deterioration of the catalyst [J]. Ind Eng Chem Res,2002,41 (17):4216-4221.
    [25]蒋毅,梁鹃,赵素琴ZnZSM-5芳构化催化剂积炭影响因索的研究[J].催化学报,1994,15(6):463-467.
    [26]Nguyen, T.M.; Le Van Mao. R. Conversion of ethanol in aqueous solution over ZSM-5 zeolites:study of the reaction network [J]. Appl Catal A,1990,58 (1):119-129.
    [27]温鹏宇,梅长松,刘红星,等.甲醇制丙烯过程中ZSM-5催化剂的失活行为[J].石油学报(石油加工),2008,24(4):446-450.
    [1]Groen J C,Moulijn J A,Perez-Ramirez J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination [J]. Micropor Mesopor Mater.,2005,87 (2):153-161.
    [2]程晓维,汪靖、郭娟,等.无粘结剂ZSM-5沸厂催化剂骨架脱铝改性的研究[J].化学学报,2008,66(16):2099-2106.
    [3]Ogura M, Shinomiya S Y, Tateno J, et al. Alkali-treatment technique- new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites [J]. Appl Catal A, 2001,219 (1-2):33-43.
    [4]Ates A, Reitmann A. The interaction of N2O with ZSM-5-type zeolites:A transient, multipulse investigation [J]. J Catal,2005,235 (I):164-174.
    [5]陈雷,邓风,叶朝辉HZSM-5分子筛焙烧脱铝的27A l MQMAS NMR(?)研究[J].物理化学学报,2002,18(9):786-790.
    [6]Katovic A. Giordano G. Synthesis of Porous Materials [J]. Zeolites Clays and Microstructures.1997.127-137.
    [7]Zhang C M, Liu Q, Xu Z, et al. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment [J]. Micropor Mesopor Mater,2003,62 (3):157-163.
    [8]Coughlan B. Keane M A. Benzene ethylation and cumene dealkylation over nickel-loaded Y zeolites [J]. J catal,1992,138 (1):164-178.
    [9]Pekka T, Pakkanen T T. Modification of ZSM-5 zeolite with trimethyl phosphite part I. structure and acidity [J]. Micropor Mesopor Mater,1998,20 (4-6):363-369.
    [10]Weitkamp J, Lothar P. Catalysis and zeolites:fundamentals and applications [M]. New York:German:Springer,1999:224-231.
    [11]Cabral de Menezes S M, Lam Y L, Damodaran K, Pruski M. Modification of H-ZSM-5 zeolites with phosphorus. I. Identification of aluminum species by 27Al solid-state NMR and characterization of their catalytic properties [J]. Micropor Mesopor Mater.,2006,95 (1-3): 286-295.
    [12]Blasco T, Corma A, Martinez T J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition [J]. J Catal.,2006,237 (2):267-277.
    [13]Varisli D, Dogu T, Dogu G. Ethylene and diethyl-ether production by dehydration reaction of ethanol over different heteropolyacid catalysts [J]. Chem Eng Sci,2007,62 (18-20):5349-5352.
    [14]陆铭,孙洪敏,郭燏,等.ZSM-5沸石催化剂的的失活历程和活性稳定性[J].石油学报(石油加工),2001,17(4):59-63.
    [15]蒋毅,梁鹃,赵素琴.ZnZSM-5芳构化催化剂积炭影响因素的研究[J].催化学报,1994,15(6):463-467.
    [1]Groen J C, Peffer L A A. Moulijn J A. Perez-Ramirez J. Mesoporosity development in ZSM-5 zeolite upon optimized desilication conditions in alkaline medium [J]. Colloids Surf A, 2004,241 (1-3):53-58.
    [2]Groen J C, Moulijn J A, Perez-Ramirez J.Alkaline posttreatment of MFI Zeolites. From accelerated screening to scaleup [J]. Ind. Eng Chem Res,2007,46 (12):4193-4201
    [3]Groen J C, Peffer L A A, Moulijn J A, et al. On the introduction of intracrystalline mesoporotsity in zeolites upon desilication in alkaline medium [J]. Micropor Mesopor Mater., 2004,69(1-2):29-34.
    [4]Adri N C van laak. Lei Z. Andrei N P. et al. Alkaline treatment of template containing zeolites:Introducing mesoporosity while preserving acidity [J].Catal Today,2011,168 (1): 48-56.
    [5]Song Y Q, Zhu X X, Xu L Y, et al. An effective method to enhance the stability on-stream of butene aromatization:Post-treatment of ZSM-5 by alkali solution of sodium hydroxide, Appl Catal A,2006,302 (1):69-77.
    [6]Bjoergen M, Joensen F, Svelle Stian, et al. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH [J]. APP1 Catal A,2008,345 (1): 43-50.
    [7]Sander van D, Andries H J, Johannes H B, et al. Generation, characterization, and impact of mesopores in zeolite catalysts [J]. Cata Rev,2003,45 (2):297-319.
    [8]Wei X T, Smirniotis P G. Devolpment and characterization of mesoporosity in ZSM-12 by desilication [J]. Micropor. Mesopor. Mater,2006,97 (1-3):97-106.
    [9]Linn S, Davide M, Stian Svelle, et al. Mesopore formation in zeolite H-SSZ-13 by desilication with NaOH[J]. Micropor Mesopor Mater.,2010,132 (3):384-394.
    [10]Gao X H, Tang Z C, Lu G X, et al. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication [J]. Solid State Sci.,2010,12 (7):1278-1282.
    [11]Jin L J, Zhou X J, Hu H Q, et al. Synthesis of 2,6-dimethylnaphalene by methylation of 2-methylnaphalene on mesoporous ZSM-5 by desilication [J]. Catal Commun.,2008,10 (3): 336-340.
    [12]Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem.1985.57(4).603-619.
    [13]Suzuki T, Okuhara T, Tateno J, ct al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution [J]. Chem Lett,2000,29 (8):882-883.
    [14]Ogura M, Shinomiya S Y, Tateno J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolite [J]. Appl Catal A, 2001,219 (1-2):33-43.
    [15]Ajot H, Joly J F, Lynch J, et al. Formation of secondary pores in zeolites during dealumination:Influence of the crystallographic structure and of the Si/Al ratio [J]. Stud Surf Sci Catal,1991,62:583-590.
    [16]Li Y N, Liu S G, Xu L Y, et al. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites:Improve reaction stability [J]. Appl Catal A,2008,338 (1-2): 100-113.
    [17]Groen J C, Moulijn J A, Perez-Ramfrez J J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination [J]. Micropor Mesopor Mater.,2005,87 (2),153-161.
    [18]Williams B A, Babitz S M. Miller J T, et al. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites [J]. Appl Catal A,1999,177 (2): 161-175.
    [19]Xiao Y Y, Li X J, Yuan Z H, et al. Catalytic dehydration of ethanol to ethylene on TiO2/4A zeolite composite catalysts [J]. Catal Lett.2009,130 (3-4),308-311.
    [20]De Lucas A, Canizares P, Duran A. et al. Dealumination of HZSM-5 zeolites:effect of steaming on acidity and aromatization activity [J]. Appl Catal A 1997,154 (1-2):221-240.
    [21]De Lucas A, Sanchez P, Dorado F, et al. Kinetic model of the n-octane hydroisomerization on PtBeta agglomerated catalyst:influence of the reaction conditions [J]. Ind Eng Chem Res.,2006,45 (3):978-985.
    [22]Kim S W, Son S U,Lee S I, et al. Cobalt on mesoporous Silica:the first heterogeneous pauson-khand catalyst [J]. J Am Chem Soc.,2000,122 (7):1550-1551.
    [1]沈晓洁.沸石分子筛的发展及在石油化工中的应用[J].辽宁化工,1997,26(3):139-140.
    [2]王殿中,舒兴中.何鸣元.MMM分子筛的制备与表征[J].催化学报,2003,24(3):208-212.
    [3]Muller M, Hatvey G, Prins R. Quantitative multinuclear MAS NMR studies of zeolites [J]. Micropor Mesopor Mater.2000,34 (3):135-147.
    [4]Le Van Mao R, Le S T, Ohayon D, et al. Modification of the micropore characteristics of the desilicated ZSM-5 zeolite by thermal treatment [J]. Zeolites,1997,19 (4):270-278.
    [5]Cizmek A, Suboti B, Smit I, et al. Dissolution of high-silica zeolites in alkaline solutions Ⅱ. Dissolution'activated'silicalite-1 and ZSM-5 with different aluminum content [J]. Micropor Mater,1997.8 (3):159-169.
    [6]Rajagopalan K, Peters A W, Edwards G. C. Influence of zeolite particle size on selectivity during fluid catalytic craking [J]. Appl Catal,1986,23 (1):69-80.
    [7]Vood P, Van Bekkum H. Limitation of n-hexane and 3-methylpentane conversion over zeolite ZSM-5 by intracrystalline diffusion [J]. Appl Catal,1990.59 (1):311-331.
    [8]Bellussi G, Pazzueoni G, Perego C, et al. Liquid-phase alkylation of benzene with light olefins catalyzed by -zeolites [J]. J Catal,1995,157 (1):227-234.
    [9]Katovic A, Giordano G. Synthesis of Porous Materials [J]. Zeolites Clays and Microstructures,1997.127-137.
    [10]Zhang C M. Liu Q, Xu Z, Wan K S. Synthesis and characterization of composite molecular sieves with mesoporous and microporous structure from ZSM-5 zeolites by heat treatment [J]. Micropor Mesopor Mater,2003,62 (1):157-163.
    [11]王莅,余少兵,李永红,等.水蒸气处理条件对β沸石合成MTBE催化性能的影响化学反应工程与工艺[J].2001,17(1):35-38.
    [12]高放,程晓维.催化量OP乳化剂促进THF-FER沸石晶化作用研究,化学学报,2006,64(14):1423-1428.
    [13]戴跃玲,陈连璋.硅烷化改性[B]ZSM-5沸石表面酸性及催化性能的研究[J].抚顺石油学院学报,1994,14(3):1-7.
    [14]Sing KS, Everett W D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem.,1985,57(4).603-619.
    [15]Ogura M, Shinomiya S Y, Tateno J, et al. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites [J]. Appl Catal A, 2001,219(1-2),33-43.
    [16]Ogura M, Shinomiya S, Tateno J, et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution [J]. Chem Lett,2000,29 (8):882-887.
    [17]Groen J C, Moulijn J A, Perez-Ramfrez J J. Decoupling mesoporosity formation and acidity modification in ZSM-5 zeolites by sequential desilication-dealumination [J]. Micropor Mesopor Mater.,2005,87 (2):153-161.
    [18]Coughlan B. Keane M A. Benzene ethylation and cumene dealkylation over nickel-loaded Y zeolites [J]. J Catal.,1992,138 (1):164-178.
    [19]Williams B A, Babitz S M, Miller J T, Set al. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites [J]. Appl Catal A,1999,177 (2):161-175.
    [20]龙化云,王祥生,孙万付,等.脱铝方法对纳米HZSM-5物化性能的影响[J].石油学报(石油加工),2009,25(3):332-338.
    [21]蒋毅,梁鹃,赵素琴.ZnZSM-5芳构化催化剂积炭影响因素的研究[J].催化学报,1994,15(6):463-467.
    [22]陈彧.ZSM-5型沸石催化剂的结焦与失活[J].精细石油化工,1994,2(1):31-35.
    [23]Karge H G, Nieben W, Bludau H. In-situ FTIR measurements of diffusion in coking zeolite catalysts [J]. Appl Catal A,1996,146 (2):339-349.
    [24]Sahoo S K, Viswanadham N, Ray N, et al. Studies on acidity, activity and coke deactivation of ZSM-5 duringn-heptane aromatization [J]. Appl Catal A,2001,205 (1-2): 1-10.
    [25]Kim S W, Son S U,Lee S I, Hyeon T, Chung Y K. Cobalt on mesoporous Silica:the first heterogeneous pauson-khand catalyst [J]. J Am Chem Soc,2000,122 (7):1550-1551.
    [24]宋月芹,徐龙伢,谢素娟.ZSM-5分子筛催化剂上液化石油气低温制取高辛烷值汽油[J].催化学报,2004,25(3):199-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700