用户名: 密码: 验证码:
几种纳米复合薄膜的制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了TiO2/GE、树枝纳米Ag/Cu及Pd/Ag纳米复合薄膜材料的电化学制备方法、形貌分析及其在光催化降解、表面增强拉曼散射效应和超疏水性能等方面的应用,重点研究了半导体纳米TiO2对室内环境污染物甲醛的降解机理。应用阳极响应电流、阴极极化曲线、X-射线粉末衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、X光电子能谱(XPS)和拉曼光谱等技术研究所制得的纳米薄膜材料的性质与应用。论文主要内容包括:
     1.采用电泳沉积法分别在石墨电极(GE)和导电玻璃(ITO)表面沉积纳米YiO2,得到TiO2/GE薄膜电极和TiO2/ITO薄膜电极,并用X-射线粉末衍射(XRD)、场发射电镜(FE-SEM)及阳极响应电流试验对两种薄膜电极进行了表征分析。研究表明:和相同条件下制备的纳米TiO2/ITO电极相比,纳米TiO2/GE电极具有更强更稳定的光电流,能更有效地降低TiO2分子内光生电子与空穴的复合几率。通过对光催化降解酸性大红G的实验结果进一步证明,TiO2/GE电极对酸性大红的光催化降解效率更高,并可以重复利用。
     2.以纳米二氧化钛(TiO2)光催化降解甲醛,使用2-甲基-2-亚硝基丙烷(2-methyl-2-nitroso-propane, MNP)作为自旋捕截剂(spin trap, ST),研究了反应过程中的自由基中间体,得到了一种新的自旋加合物(spin adduct, ST-R)。电子顺磁共振(Electron Paramagnetic Resonance, EPR)的结果表明,甲醛在水溶液中降解的反应中间体为·CH(OH)2,并提出了一种新的降解机理。用Gaussian 98对自旋加合物的分子结构进行了几何优化计算,确定了其最稳定的构象,一些二面角的数据证明了EPR的实验结果。
     3.枝状分级的Ag纳米晶通过简单的置换反应制备,即AgNO3溶液与电沉积在ITO玻璃上的Cu微球间的化学反应得到。所制备树枝纳米Ag/Cu膜的组成、晶体结构及表面形貌分别由XPS、EDX、XRD及SEM表征。以罗丹明6G(R6G)为探针分子,表面增强拉曼散射光谱证明树枝纳米Ag/Cu膜具有很高的表面拉曼增强效应;经过十二硫醇的化学修饰,树枝纳米Ag/Cu膜表面呈现超疏水特性及低的接触角滞后性能。
     4.采用无电沉积的方法,分别以Ag和Pd催化晶籽层沉积Pd/Ag薄膜。薄膜的形态和组成分别用原子力显微镜(AFM)和X光电子能谱(XPS)表征。实验表明Ag晶籽不能催化Pd纳米粒子的沉积,得到的只是纯Ag,而非Pd/Ag合金;Pd晶籽却能催化Ag纳米粒子的沉积,得到的是Pd/Ag合金。同时,Ag纳米粒子在Pd晶籽上的沉积速率比在Ag晶籽上的快得多。以所制得的薄膜为工作电极,在暗态条件下测其阴极极化曲线,考察了析氢反应情况。
In this thesis, TiO2/GE, dendritic Ag/Cu and Pd/Ag nano composite thin films are prepared by electrochemical or electroless techniques. The morphology and composition of the films are studied comparatively by using XRD, SEM, AFM and XPS. Promising multifunctional applications are obtained including photocatalytic degradation, strong surface-enhanced Raman scattering (SERS) enhancement and superhydrophobic application. The main contents are described as follows:
     1. Nano-TiO2 particles were immobilized on graphite electrode (GE) and indium-tin oxide coated glass (ITO) using electrophoretic deposition, respectively. The obtained TiO2/GE and TiO2/ITO film electrodes were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and anodic photocurrent response test. It was found that TiO2/GE electrode had much higher photocurrent and more effectively reduced the recombination rate of the photo-induced electron-hole pairs, compared with TiO2/ITO electrode. The photocatalytic activity of TiO2/GE was higher than that of TiO/ITO for the photocatalytic degradation of acid red G.
     2. Formaldehyde was degradated with photo-catalysis by TiO2 nanoparticles and 2-methyl-2-nitro-propane (MNP) was used as a spin trap (ST). The radical intermediates in the process of reaction were studied and a new spin adducts (ST-R) was obtained. The results of Electron Paramagnetic resonance (EPR) indicated that intermediates of formaldehyde degradation in aqueous solution were·CH(OH)2. And a new degradation mechanism was proposed.
     3. Hierarchical and well-defined Ag dendrites were obtained by the reaction between copper microspheres electrodeposited on ITO and a solution of AgNO3. The composition, crystal structure and morphology of the deposits were characterized with XPS, EDX, XRD and SEM, respectively. The dendritic Ag/Cu film show significant SERS effect as probed with Rhodamine 6G (R6G). And also the surface of dendritic Ag/Cu film had a remarkable superhydrophobic property and low contact angle hysteresis after treatment with n-dodecanethiol.
     4. Pd/Ag films were electrolessly deposited onto p-silicon (100)-activated seed layers of Ag and Pd, respectively. The morphology and composition of the films were studied comparatively by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Cathodic polarization curves for hydrogen evolution were recorded in 0.5mol/L H2SO4 without illumination. The experimental results showed that the film obtained on the Ag seed layer was rather a pure Ag film and not a Pd/Ag film, and also the Ag deposition rate on Pd sites was much faster than that on Ag sites.
引文
[1]A. N. Shipway, E. Katz, I. Willner, Nano-particle arrays on surfaces for electronic, optical, and sensor applications, Chem. Phys. Chem.2000,1:18.
    [2]C. N. R. Rao, A. K. Cheetham., Science and technology of nanomaterials:current status and future prospects,J. Mater. Chem.,2001,11:2887.
    [3]C. B. Murray, S. Sun, H. Doyle. T. Betley, Mater. Res. Bull.,2001,26:985.
    [4]A. C. Templeton, W. P. Wuelfing, R.W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res.,2000,33:27.
    [5]L. N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev.,1993,93: 2693.
    [6]M. D. Hughes, Y.-J. Xu, P. Jenkins, P. McMom, P.Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F.King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions, Nature,2005,437:1132.
    [7]W. Yan, S. Brown, Z. Pan, S. M. Mahurin, S. H. Overbury, S. Dai, Ultrastable gold nanocatalyst supported by nanosized non-oxide substrate, Angew. Chem., 2006,118:3696.
    [8]M. Ware, Chrysotype:Photography in nanoparticle gold, Gold Bull.,2006,39: 124.
    [9]S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G.Requicha, H. A. Atwater, Plasmonics-A Route to Nanoscale Optical Devices, Adv. Mater.,2001, 13:1501.
    [10]W. L.Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics, Nature,2003,424:824.
    [11]A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y.Zhang, A. A. Firsov, I. Y. Khrushchev, J. Petrovic, Nan-fabricated media with negative permeability at visible frequencies, Nature,2005,438:335.
    [12]Y. Wu, Y. Li, B. S. Ong, P. Liu, S. Gardner, B. Chiang, High-performance organic thin-film transistors with solution-printed gold contacts, Adv. Mater., 2005,17:184.
    [13]S. Chen, Y. Yang, Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging,J. Am. Chem. Soc.2002,124:5280.
    [14]T.-H. Lee, J. I. Gonzalez, J. Zheng, R. M. Dickson, Single-molecule optoelectronics, Acc. Chem. Res.2005,38:534.
    [15]B. I. Shapiro, A silver halide recording material with luminescence reading, High Energy Chem.,2007,41:43.
    [16]C. R. Yonzon, C. L. Haynes, X. Zhang, J. T. Walsh, Jr.,R. P. Van Duyne, A glucose biosensor based on surface-enhanced raman scattering, improved partition layer, temporal stability, reversibility, and resistance to serum protein interference, Anal Chem.,2004,76:78.
    [17]Y. Kim, R. C. Johnson,J. T. Hupp, Gold nanoparticle-based sensing of "spectroscopically silent" heavy metal ions, Nano Lett.2001,1:165.
    [18]T. A. Taton, C. A. Mirkin, R. L. Letsinger, canometric DNA array detection with nanoparticle probes, Science,2000,289:1757.
    [19]J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, Y. Xia, Gold nanocages. Bioconjugation and their potential use as optical imaging contrast agents, Nano Lett.,2005,5:473.
    [20]J. L. West, N. J. Halas, Engineered nanomaterials for biophotonics applications: Improving sensing, imaging, and therapeutics, Annu. Rev. Biomed. Eng.,2003, 5:285.
    [21]D. P. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Photo-thermal tumor ablation in mice using near inFared-absorbing nanoparticles, Cancer Lett., 2004,209:171.
    [22]L. Qin, S. Zou, C. Xue, A. Atkinson, G. C. Schatz, C. A.Mirkin, Designing, fabricating, and imaging Raman hot spots, Proc. Natl. Acad. Sci.,2006,103: 13300.
    [23]J. Zhao, A. Das, X. Zhang, G. C. Schatz, S. G.Sligar, R. P. Van Duyne, Resonance surface plasmon spectroscopy Low molecular weight substrate binding to cytochrome P450,J. Am. Chem. Soc.,2006,128:11004.
    [24]S. Nie, S. R. Emors, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,Science,1997,275:1102.
    [25]G. Lu, H. Shen, B.Cheng, Z. Chen, C. A. Marquette, L. J. Blum, O. Tillement, S.Roux, G. Ledoux, M. Ou. P. Perriat, How surface-enhanced chemiluminescence depends on the distance fi'om a corrugated metal film, Appl. Phys. Lett.2006,89,223128.
    [26]B. L. Cushing, V. L. Kolesnichenko, C. J. OConnor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev.,2004,104: 3893-3946.
    [27]J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Acc. Chem. Res.,1999,32: 435-445.
    [28]Xin-yong Li, Shu-ben Li, Progress in nanometer semiconductor materials, Progress in Chemistry,1996,8:231-235.
    [29]V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots, Science,2000,290 314-317.
    [30]Z. L. Wang, Characterizing the structure and properties of individual wire-like nanoentities, Adv. Mater.,2000,12:1295-1298.
    [30]C. N. R. Rao, A. Miiller, A. K. Cheetham, The chemistry of nanomaterials: synthesis, properties and applications, W iley-VCH, Weinheim,2004,740.
    [32]K. J. Klabunde, Nanoscale materials in chemistry, Beijing:Chemical Industry Press,2004.239-244.
    [33]张立德,牟季美,纳米材料和纳米结构,北京,科学出版社,2001.
    [34]巩雄,张桂兰,汤国庆,纳米晶体材料研究进展,化学进展,1997,9:349-360.
    [35]冯异,赵军武,齐晓霞,高芬,纳米材料及其应用研究进展,工具技术,2006,40:10.
    [36]V. Vamathevan, R. Amal, D. Beydoun, G Low, S. McEvoy, Silver metallizationof titania particles:effects on photoactivity for the oxidation of organics, Chem.
    Eng.J.,2004,98:127-139.
    [37]F. Zhang, X. Zhang, J. Chen, Z. Liu, W. Gao, R. Jin, N. Guan, Preparation and characterization of Ag/TiO2 nanoparticle catalyst and its photocatalytic activity, Chin. J. Catal.,2003,24:877-880.
    [38]V. Subramanian, E. Wolf, P. V. Kamat, Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B,2001,105:11439-11446.
    [39]F. B. Li, Z. X. Li, The enhancement of photodegradation efficiency using Pt-TiO2 catalyst, Chemosphere,2002,48:1103-1111.
    [40]J. Arana, C. C. Garriga i, J. M. Dona-Rodriguez, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pena, FTIR study of formic acid interaction with TiO2 and TiO2 doped with Pd and Cu in photocatalytic processes, AppL Sur. Sci., 2004,239:60-71.
    [41]V. Vamathevan, R. Amal, D. Beydoun, G Low, S. McEvoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles, Photochem. Photobio. A,2002,148:233-245.
    [42]A. Sclafani, J. M. Hermann, Influence of metallic silver and of platinum-silver bimetallic deposits on the photocatalytic activity of titania (anatase and mtile) in organic and aqueous media,J. Photochem. Photobio. A,1998,113:181-188.
    [43]孔令仁,陈曦,杨曦,附着态半导体光催化剂光解可溶性染料的研究,环境科学学报,1996,16(5):406-411.
    [44]李芳伯,古国榜,黎永津,W03/Ti02复合半导体的光催化性能研究,环境科学,1999,20(4):75-78。
    [45]L. Shi, C. Li, H. Gu, D. Fang, Morphology and properties of ultrafine SnO2-TiO2 coupled semiconductor particles, Mater. Chem. Phys.,2000,62:62-67.
    [46]Y. R. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the photocatalytic activity of TiO2,J. Solid State Chem.,1994,108:198-201.
    [47]薛群基,徐康,纳米化学,化学进展,2000,12:431-444.
    [48]李德胜,关佳亮,石照耀,微纳米技术及其应用,北京,科学出版社,2005.
    [49]田永君,曹茂盛,曹传宝,先进材料导论,哈尔滨,哈尔滨工业大学出版社,2005.
    [50]C. H. de Groot, J. S. Moodera,J. Appl. Phys.,2001,89:4336.
    [51]M. Emziane, R. Le Ny,J. Phys. D:Appl. Phys.,1999,32:1319.
    [52]M. Emziane, S. Marsillac, J.C. Bernede, Mater, Chem. Phys.,2000,62:84.
    [53]D. Manno, G. Micocci, R. Rella, P. Siciliano, A. Tepore, Vacuum,1995,46: 997.
    [54]S. Marsillac, J. C. Bernede, R. Leny, A. Conan, Vacuum,1995,46:1315.
    [55]A. F. Qasrawi, M. Parlak, C. Ercelebi, I. Gunal,J. Mater. Sci.:Mater. Electron., 2001,12:473.
    [56]S. Marsillac, J. C. Bernede, M. Emziane, J. Wery, E. Faulques, P. Le Ray, Appl. Surf. Sci.,1999,151:171.
    [57]M. Emziane, R. Le Ny, Thin Solid Films,2001,385:312.
    [58]H. Bouzouita, N. Bouguila, S. Duchemin, S. Fiechter, A. Dhouib, Renew. Energy,2002,25:131.
    [59]H. M. Manasevit, Appl. Phys. Lett,1968,12:156.
    [60]黄和鸾,辽宁大学学报(自然科学版),1994,21:33.
    [61]吴自勤,王兵,薄腊生长,北京,科学出版社,2001,340.
    [62]赵绪然,裴广庆,秋红,夏长泰,徐军,人工晶体学报,2006,35:1307.
    [63]康昌鹤,杨树人,半导体超晶格材料及其应用,北京,国防工业出版社,1995,72.
    [64]M. J. Ludowise,J. Appl. Phys.,1985,58:R31
    [65]王世敏,许祖勋,傅晶,纳米材料制备技术,北京,化学工业出版社,2002,1-129.
    [66]T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. ElSayed, Shape-controlled synthesis of colloidal platinum nanoparticles, Science,1996, 272:1924-1926.
    [67]Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science,2002,298:2176-2179.
    [68]R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G Zheng, Photoinduced conversion of silver nanospheres to nanoprisms, Science,2001, 294:1901-1903.
    [69]O. Masala, R. Seshadri, Synthesis routes for large volumes of nanoparticles, Ann. Rev. Mater. Res.,2004,34:41-81.
    [70]李博,鲍超,施柏煊,激光消融制备纳米颗粒的研究进展,光学仪器,2002,24,44-47.
    [71]苏品书,超微粒子材料技术,中国台湾,复汉出版社,1989,10-97.
    [72]W. Jiang, K. Yatsui, Pulsed wire discharge for nanosize podwer synthes, IEEE Trans. Plasma Sci.,1998,26:1489-1501.
    [73]娄向东,贾晓华,王晓兵,CdS纳米材料的制备及气敏性研究,传感器技术,2005,24:22-24.
    [74]曹洁明,房宝青,刘劲松,常树全,张防,微波固相反应制备CdS纳米粒子,无机化学学报,2005,21:105-108.
    [75]G. A. Umana-Membreno, G. Parish, FN. ichtenbaum, S. Keller, U. K. Mishra, B. D. Nener, Electrically active defects in gan layers grown with and without Fe-doped buffers by metal-organic chemical vapor deposition,J. Electron. Mater.,2008,37:569-572.
    [76]Y. Wang, Q. Liu, J. Liu, L. Zhang, L. Cheng, Deposition mechanism for chemical vapor deposition of zirconium carbide coatings,J. Amer. Cera. Soc., 2008,91:1249-1252.
    [77]Y. Zhang, B. A. Pint, K. M. Cooley, J. A. Haynes, Formation of aluminide coatings on Fe-based alloys by chemical vapor deposition, Surf. Coat. Technol., 2008,202:3839-3849.
    [78]D. T. Quinto, Technology perspective on CVD and PVD coated metal-cutting tools,J. Refract. Met. Hard Mat.,1996,14:7-20.
    [79]J.W. Cheon, J. Arnold, K.M. Yu, E.D. Bourret, Chem. Mater.,1995,7:2273.
    [80]N. Hiising, U. Schubert, Aerogels-airy materials:chemistry, structure, and properties, Angew, Chem., Int. Ed.,1998,37:22-45.
    [81]A. C. Pierre, G. M. Pajonk, Chemistry of aerogels and their applications, Chem. Rev.,2002,102:4243-4265.
    [82]J. Livage, M. Henry, C. Sanchez, Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem.,1988,18:259-341.
    [83]L. L. Hench, J. K. West, The sol-gel process, Chem. Rev.,1990,90:33-72.
    [84]Y. W. Jun, J. S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chem., Int. Ed., 2006,45:3414-3439.
    [85]E. Ponthieu, E. Payen, J. Grimblot, Ultrafine alumina powders via a sol-emulsion-gel method,J. Non. Cryst. Solids,1992,147-148:598-605.
    [86]Y. J. Zhu, Y. T. Qian, H. Huang, M. Zhang, S.Liu, Sol-gel y-radiation synthesis of titania-silver nanocomposites, Mat. Lett.,1996,28:259-263.
    [87]S. A. Hassanzadeh-Tabrizi, E. Taheri-Nassaj, H. Sarpoolaky, Synthesis of an alumina-YAG nanopowder via sol-gel method,J. Alloys Comp.,2008,456: 282-285.
    [88]D. R. Rolison, B. Dunn, Electrically conductive oxide aerogels:new materials in electrochemistry, J. Mater. Chem.,2001,11:963-980.
    [89]S. Chen, D. L. Carrol, Silver nanoplates:Size control in two dimensions and formation mechanisms,J. Phys. Chem. B,2004,108:5500-5506.
    [90]M. Maillard, S. Giogrio, M. P. Pileni, Tunning the size of silver nanodisks with similar aspect ratios:Synthesis and optical properties,J. Phys. Chem. B,2003, 107:2466-2470.
    [91]M. Maillard, P. Hunag, L. Brus, Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+], Nano Lett,2003,3:1611-1615.
    [92]M. Maillard, S. Giorgio, M. P. Pileni, Silver nanodisks, Adv. Mater.,2002,14: 1084-1086.
    [93]S. Chen, Z. Fan, D. L. Carroll, Silver nanodisks:Synthesis, characterization, and self-assembly,J. Phys. Chem. B,2002,106:10777-10781.
    [94]E. Hao, K. L. Kelly, J. T. Hupp, G. C. Schatz, Synthesis of silver nanodisks using polystyrene mesospheres as Ttemplaets, J. Am. Chem. Soc.,2002,124: 15182-15183.
    [95]P. A. Nelson, J. M. Elliott, G. S. Attard, J. R. Owen, Mesoporous nickel/nickel oxide a nanoarchitectured electrode, Chem. Mater.,2002,14:524-529.
    [96]J. M. Elliott, G. S. Attard, P. N. Bartlett, N. R. B. Colemna, D. A. S. Merckel, J. R. Owe, Nanostructur ed platinum(H1-ePt) films:Effects of electrodeposition conditions on film properties, Chem. Mater.,1999,11:3602-3609.
    [97]E. C. Walter, R. M. Penner, H. Liu, K. H. Ng, M. P. Zach, F. Faiver, Sensors from electrodeposited metal nanowires, Surf. Interface Anal.,2002,34: 409-412.
    [98]Y. Sun, B. Mayers, Y. Xia, Transformation of Silver Nanospheres into nanobelts and trinauglar nanoplates through a themral proeess, Nano Lett.,2003,3: 675-679.
    [99]P. Ganesan, S. P. Kumaraguru, B. N. Popov, Nanostructured Zn-Ni Alloys by pulse electrodeposition, AESF SUR/FIN Conference,2004 & Interfinish 2004 World Congress. USA Chicago,2004.1064-1075.
    [100]H. Natter, R. Hempelmann, Tailor-made nanomaterials designed by electrochemical methods, Eletrochimica Acta,2003,49:51-61.
    [101]W. Paatsch, U. Beck, M. Senoner, Development of reference materials for surface technology in the micrometer and nanometer Range, AESF SUR/FIN Conference,2004 &Interfinish 2004 World Congress. USA Chicago,2004, 369-385.
    [102]李莉,李兰兰,魏子栋,电沉积纳米材料研究现状,全国电子电镀学术年会论文集,重庆:2004.
    [103]R. Qiu, H. G. Cha, H. B. Noh, Y. B. Shim, X. L. Zhang, R. Qiao, D. Zhang, Y. I. Kim, U. Pal, Y. S. Kang, Preparation of dendritic copper nanostructures and their characterization for electroreduction,J. Phys. Chem. C 2009,113: 15891-15896.
    [104]H. Ren, X. Huang, O. Yarimaga, Y.-K. Choi, N. Gu, A cauliflower-like gold structure for superhydrophobicity,J. Colloid Interf. Sci. 2009,334:103-107.
    [105]T. Nakanishi, M. Ozaki, H. S. Nam, T. Yokoshima, T. Oska, Plused electrodeposition of nanocrystalline Co-Ni-Fe soft magnetic thin films, J. Electrochem. Soc.,2001,148:C627-C631.
    [106]E. C. Walter, M. P. Zach, F. Favier,B. J. Murray, K. Inazu, J. C. Hemminger, R. M. Penner, Metal nanowire arrays by electrodeposition, Chem. Phys. Chem., 2003,4:131-138.
    [107]M. L. Klingenberg, E. W. Brooman, T. A. Naguy, Nano-particle composite plating as an alternative to hard chromium and nickel coatings, Plat. Surf. Finish.2005,92:42-48.
    [108]孙伟,叶卫平,黄尚宇,纳米复合电沉积技术及机理研究的现状,材料保护,2005,38:41-44.
    [109]蒋斌,徐滨士,董世运,王红美,纳米复合镀层的研究现状,材料保护2002,35:1-3.
    [110]谭俊,姚琼,徐滨士,杜婧瑶,郭文才,杨红军,镍基纳米陶瓷颗粒脉冲电刷镀复合层的形貌及磨损性能,材料保护2005,38:1-3.
    [111]J. Li, Y. Sun, X. Sun, J. Qiao, Mechanical and corrosion-resistance performance of electrodeposited titania-nickel nanocomposite coatings, Surf. Coat. Technol., 2005,192:331-335.
    [112]E. C. Walter, K. Ng, M. P. Zach, R. M. Penner, F. Favier, Electronic devices from electrodeposited metal nanowires, Microelectron. Eng.,2002,61-62: 555-561.
    [113]A. Kumara, M. He, Z. Chen, P. S. Teo, Effect of electromigration on interfacial reactions between electroless Ni-P and Sn-3.5% Ag solder, Thin Solid Films, 2004,462-463:413-418.
    [114]T. Osaka, N. Takano, T. Yokoshima, Micro fabrication of electro-and electroless- deposition and its application in the electronic field, Surf. Coat. Technol.2003,169-170:1-7.
    [115]H. Xie, B. Zhang, J. Mater. Pro. Technol.,2002,124:8.
    [116]T. Burchardt, The effect of deposition temperature on the catalytic activity of Ni-P alloys toward the hydrogen reaction, Int J. Hydrog. Energy,2002,27: 323-328.
    [117]A. K. VasI, E. Norkus, Autocatalytic processes of copper(Ⅱ) and silver(Ⅰ)
    reduction by cobalt(II) complexes, Electrochim. Acta.,1999,44:3667-3677.
    [118]Lon A. Porter, Jr, Hee Cheul Choi, Alexander E. Ribbe, Jillian M. Buriak, Nano Letters,2002,2:1067.
    [119]Z. Wang, Z. Zhao, J. Qiu, A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions,J. Phys. Chem. Solids, 2008,69:1296-1300.
    [120]W. Ye, C. Shen, J. Tian, C. Wang, L. Bao, H. Gao, Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer, Electrochem. Commun.,2008,10:625-629.
    [121]Z. Cao, D. Xiao, L. Kang, Z. Wang, S. Zhang, Y. Ma, H. Fu, J. Yao, Superhydrophobic pure silver surface with flower-like structures by a facile galvanic exchange reaction with [Ag(NH3)2]OH, Chem. Commun.,2008,23: 2692-2694.
    [122]Homma T, Komatsu I, Tamaki A, Nakai H, Osaka T, Electrochimica. Acta, 2001,47:47.
    [123]Dubin V M, Sacetic acidham-Diamand Y, Zhao B, Vasudev P K, Ting C H, J. Electrochem.Soc,1997,144:898.
    [124]Shacham-Diamand Y, Dubin V, Angyal M, Thin Solid Films,1995,262:93.
    [125]Romankiw L T, Osaka T,Yamazaki Y, Madore C (Eds.), Electrochemical Technology Applications in Electronics. In:Electrochemical Society Proceedings, vol. PV 99-34, The Electrochemical Society, Pennington,2000, NJ.
    [126]O'Sullivan E J, Schrott A G, Paunovic M, Sambucetti C J, Marino J R, Bailey P J, Kaja S, Semkow K W, IBM, J. Res. Dev.,1998,42:607.
    [127]X. Z. Fan, X. Liu, Optical Instruments,2000,22:20.
    [128]J. I. Pankove, Topics in Applied Physics, Berlin:Springer Verlag,1980,40.
    [129]L. J. Meng, C. H. Li, G. Z. Zhong,J. Lumin.,1987,39:11.
    [130]H. Kim, A. Pique, J. S. Horwitz,J. Applied Physics letters,1999,74:3444.
    [131]S. M. Tadayyon, K. Griffiths, P. R. Norton, Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,1999,17:1773.
    [132]许并社编著,纳米材料及应用技术,北京,化学工业出版社,2004。
    [133]吉平,郝向阳编著,纳米科学与技术,北京,科学出版社,2002.
    [134]张素香,Ti02光催化环境净化技术的应用及发展,新疆石油学院学报,2002,14:62.
    [135]H. X. Fu, G. X. Lu, S. B. Li. Adsorption and photo-induced reduction of Cr(VI) ion in Cr(VI)-4CP(4-chlorophenol) aqueous system in the presence of TiO2 as photocatalyst,J. Photochem.& PhotobioL A,1998,114:81-88.
    [136]S., Maria I. K. Dimitris, E. V. Xenophon, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions,J. Appl. Catal B:Environmental,2003,40:271-286.
    [137]H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titanic,J. Appl. Catal B: Environmental,2002,3:75-90.
    [138]W. S. Kuo, P. H. Ho, Solar photocatalytic dec olofization of methylene blue in water, Chemosphere,2001,45:77-83.
    [139]C. Anderson, A. J. Bard., An Improved photocatalyst of TiO2/SiO5 prepared by a sol-gel synthesis,J. Phys. Chem.,1995,99:9882-9885.
    [140]R. W. Mathews, Photooxidative degradation of coloured organics in water using supported catalysts, Wat. Res.,1991,25:1169-1176.
    [141]V Hequet, P. L. Cloirec, C. Gonzalez, B Meunier, Photocatalytic degradation of atrazine by porphrin And phthalocyanine complexes, Chemosphere,2000,41: 379-386.
    [142]M. Barbeni, M. Morello, E. Pramauro, Sunlight Photodegradation of 2, 4,5-Trichloro-phenoxy on TiO2 Identification of Intermediates anddegradation pathway, Chemosphere,1987,16:1165-1179.
    [143]K. Harada, T. Hisanaga, T. K. anaka, Photocatalytic degradation of organophosphorous insecticides in aqueous semiconductor suspensions, Water
    Res.,1990,24:1415-1417.
    [144]陶跃武,赵梦月,陈士大,玻璃纤维附载Ti02光催化降解有机磷农药,环境科学,1996,17:33-35.
    [145]H. Hidaka, H. Kubota, M. Gratzel, Photodegradation of surfactants Ⅱ:degradation of sodium fodecylbenzene sulphonate catalysed by titanium dioxide Particles, J. Photochem.,1986,35:219-230.
    [146]H. Hidaka, J. C. Zhao, E. Pelizzetti, Photodegradation of surfactants comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldodecyldmethyl ammonlum chloride on the TiO2 surface,J. Phys. Chem.,1992,96:2226-2230.
    [147]赵进才,张丰雷,二氧化钛微粒存在下表面活性剂光催化分解机理的研究,感光科学与光化学,1996,14:269-273.
    [148]H. Hidaka, K. Ihara, Y. Fujita, Phootodegradation of surfactants IV hotodegradation of non-ionic surfactants in aqueous titanium dioxide suspensions,J. Photochem.& Photobiol. A:chem.,1988,42:375-381.
    [149]J. Schwitzgebel, J. G. Ekerdt, H. Gerischer, A. Heller, Role of the Oxygen Molecule and of the Photogenerated Electron in TiO2-Photocatalyzed Air Oxidation Reactions,J. Phys. Chem.,1995,99:5633-5638.
    [150]戴遐明,陈永华,李庆丰,王加龙,刘红,环境科学,1996,17:34.
    [151]Serpone N., Ah-You Y.K., Tran T. P., Solar Energy,1987,39:491.
    [152]戚建英,杨启云,刘振义,阚家德,袁波,莫威,高等学校化学学报,2001,22:1907.
    [153]曹亚安,沈东方,张听彤,孟庆句,马颖,吴志芸,白玉白,李铁津,姚建年,高等学校化学学报,2001,22:1910.
    [154]冯良荣,谢卫国,吕绍结,邱发礼,南京师大学报(自然科学版),2002,25:116.
    [155]Klopffer W., Sci Total Environ,1992,122/123:145.
    [156]M. Gratzel, Heterogeneous photochemical electron transfer, CRC Press, Baton Rouge, FL,1988.
    [157]W. Choi, A. Termin, M. R. Hoffman, The Role of Metal Ion Dopants in Quantum-Sized TiO2:Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,J. Phys Chem.,1994,98:13669-13679.
    [158]R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3 and Bi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors,J. Phys. Chem.,1994,98:3183-3188.
    [159]Uchihara T, Matsumura M, Ono J., Effect of ethylene diamine tetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium sulfide and cadmium selenide, J Phys Chem,1990,94:415-418.
    [160]J. Moser, A. S. Punchihew, P. Pierre, Surface complexation of colloidal semiconductors strongly enhances interfacial electron- transfer rates, Langmuir, 1991,7:3012-3018.
    [161]A. P. Hong, D. W. Bahnemann, M. R. Hoffmann, Cobalt (Ⅱ)tetra sulfophthalo-cyanine on titanium dioxide:a new efficient electron relay for the photocatalytic formation and depletion of hydrogen peroxide in aqueous suspensions,J. Phys. Chem.,1987,91:2109-2117.
    [162]K. T. Ranjit, I. Willner, S. B. Bossmann, iron (Ⅲ) phthalo-cyanine-modified titanium dioxide:a novel photocatalyst for the enhanced photodegradation of organic pollutants,J. Phys. Chem. B,1998,102:9397-9403.
    [163]I. M. Butterfield, P. A. Christensen, T. P. Curtis, J. Gunlazuardi, Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric film enhancement, Water Res.,1997,31:675-677.
    [164]张琦,李新军,李芳柏,常杰,物理化学学报,2004,20:507-511.
    [165]张琦,王良众,李新军,李芳柏,何明兴,梁园园,功能材料与器科学报,2002,4:397-401.
    [166]张琦,李新军,李芳柏,王良众,梁园园,中国有色金属学报,2002,12:1299-1304.
    [167]C. Koval, Proceeding of the symposium on photo-electrochemistry The Electrochemical Socialty, Pennington, NJ,1991,326-365.
    [168]S. Lakshmi, R. Renganathan, S. Fujita, Study on TiO2-mediated photocatalytic degradtion of methylene blue,J. Photochemistry and photobiology A: Chemistry,1995,88:163-167.
    [169]Y. Z. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension,J. Wat Res.,2000,34:990-994.
    [1]Wittenberg R., Pradera M. A., Navio J.A., Langmuir,1997,13:2373.
    [2]Byrne J.A., Eggins B.R., Brown N.M.D., McKinney B., Rouse M., Applied Catalysis B:Environmental,1998,17:25.
    [3]Chen M.-T., Lien C.-F., Liao L.-F., Lin J.-L.,J. Phys.Chem. B,2003,107:3837.
    [4]Wu W.-C., Yang S.-J., Ho C.-H., Lin Y.-S., Liao L.-F., Lin J.-L., J. Phys. Chem. B, 2006,110:9627.
    [5]Tachikawa T., Takai Y, Tojo S., Fujitsuka M., Irie H., Hashimoto K., Majima T.,J. Phys. Chem. B,2006,110:13158.
    [6]Fernandez A., Lassaletta G, Jimenez V.M., Justo A., Gonalez-Elipe A.R., Herrmann J.M., Tahiri H., Ait-Ichou Y., Applied Catalysis B,1995,7:49.
    [7]Zhu Yongfa, Zhang Li, Wang Li, Fu Yan, Cao Lili, Acta Chimica Sinica,2000, 58:467.
    [8]Leng Wenhua, Liu Hong, Cheng Sao'an, Zhang Jianqing, Cao Chunan, Journal of Photochemistry and Photobiology A:Chemistry,2000,131:125.
    [9]Venkata Subba Rao K., Rachel A., Subrahmanyam M., Boule P., Applied Catalysis B:Environmental,2003,46:77.
    [10]Asri Nawi Mohd., Lim Choo Kean, Keiichi Tanaka, Sariff Jab Md., Applied Catalysis B:Environmental,2003,46:165.
    [11]Hosseini S.N., Borghei S.M., Vossoughi M., Taghavinia N., Applied Catalysis B: Environmental,2007,74:53.
    [12]Fu Pingfeng, Luan Yong, Dai Xuegang, Journal of Molecular Catalysis A: Chemical,2004,221:81.
    [13]Shi Jianwen, Zheng Jingtang, Wu Peng, Ji Xiaojing, Catalysis Communications, 2008,9:1846.
    [14]Modestov A., Glezer V., Marjasin I., Lev O.,J. Phys. Chem. B,1997,101:4623.
    [15]Li Qingwen, Wang Yiming, Luo Guoan, Materials Science and Engineering C, 2000,11:71.
    [16]Zhang Jingdong, Yang Changzhu, Chang Gang, Zhu Haiyun, Munetaka Oyama, Materials Chemistry and Physics,2004,88:398.
    [17]Zainal Z., Saravanan N., Fang N. S., Materials Science and Engineering:B, 2004,111:57.
    [18]He C., Li X.Z., Graham N., Wang Y, Applied Catalysis A:General,2006,305: 54.
    [19]Manriquez J., Godinez Luis A., Thin Solid Films,2007,515:3402.
    [20]Xie Yibing, Electrochimica Acta,2006,51:3399.
    [21]Zhang Gao K., Ding Xin M., He Fang S., Yu Xin Y., Zhou J., Hu Yan J., Xie Jun W., Langmuir,2008,24:1026.
    [1]Wang L.-F., Zhang, Q., Sakurai Makoto, Kameyama Hideo, Catalysis Communications,2007,8:2171.
    [2]T. Takizawa, T. Watanabe, K. Honda, Photocatalysis through excitation of adsorbates.2. A comparative study of Rhodamine B and methylene blue on cadmisulfide,J. Phys. Chem.,1978,82:1391-1396.
    [3]Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Environmental Applications of Semiconductor Photocatalysis, Chem. Rev.,1995,95:69-96.
    [4]W.S. Kuo, P. H. Ho, Solar photocatalytic decolorization of methylene blue in water, Chemosphere,2001,45:77-83.
    [5]Mills A., Hunte S. Le, An Overview of Semiconductor Photocatalysis,J. Photochem. Photobio.A,1997,108:1-35.
    [6]O. Legrini, E. Oliveros, A. M. Braun, Photochemical processes for water treatment, Chem. Rev.,1993,93:671-698.
    [7]K. Harada, T. Hisanaga, K. Tanaka, Photocatalytic degradation of organophosphoms insecticides in aqueous semiconductor suspensions, Water Res., 1990,24:1415-1417.
    [8]A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature,1972,238:37-38.
    [9]F. Zhang, J. Zhao, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, TiO2-assisted photodegradation of dye pollutants.Ⅱ. Adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation, Appl. CataL B:Environ., 1998,15:147-156
    [10]T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao, N. Serpone, Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,J. Photochem. Photobiol. A:Chem.,2001,140:163-172.
    [11]T. Zhang. T. Oyama. S. Hofikoshi, H. Hidaka, J. Zhao, N. Serpone, Photocatalyzed N-demethylation and degradation of methylene blue in titania dispersions exposed to concentrated sunlight, Solar Ener. Mater. Solar Cells, 2002,73:287-303.
    [12]W. Choi. A. Termin. M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics, J. Phys. Chem.,1994,98:13669-13679.
    [13]S. Maria, I. K. Dimitris, E. V. Xenophon, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions,J. Appl. Catal. B:Environ.,2003,40:271-286.
    [14]H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, M. Ksibi, Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titanic,J. Appl. Catal. B: Environ.,2002,39:75-90.
    [15]S. Lakshmi, R. Renganathan, S. Fujita, Study on TiO2-mediated photocatalytic degradtion of methylene blue,J. Photochem. Photobio. A:Chem.,1995,88: 163-167.
    [16]Amy L Kinsebigler, Lu Guangquan, John T, Jr. Yates, Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results, Chem. Rev.1995,95: 735-758.
    [17]S. Yamazaki, S. Matsunaga, K. Hori, Photocatalytic degradation of trichloroethylene in water using TiO2 pellets, Water Res.,2001,35:1022-1028.
    [18]B. Singha, A. Porwal, A. Sharma, R. Ameta, S. C. Ameta, Photocatalytic degradation of cetylpyridinium chloride over titanium dioxide powder,J. Photochem. Photobio. A,1997,108:85-88.
    [19]Kolenko Y. V., Kovnir K. A., Gavrilov A. I., Garshev A. V., Meskin P. E., Churagulov B. R., Bouchard M., Colbeau Justin, C., Lebedev O. I., Van Tendeloo G., Yoshimura M., Journal of Physical Chemistry B.,2005,109: 20303.
    [20]Kecskes T., Rasko J., Kiss J., Applied Catalysis A:General,2004,273:55.
    [21]Obee T. N., Brown R. T. Environ. Sci. Technol,1995,29:1223.
    [22]Shiraishi F.; Ohkubo D.; Toyoda K., Chem. Eng. J.,2005,114:145.
    [23]Shiraishi F.; Toyoda K.; Miyakawa H., Chem. Eng. J.,2005,114:153.
    [24]Sha J.; Shiraishi F., Chem. Eng. J.,2004,97:203.
    [25]Yang J., Li D., Li Q., Zh Z, et al., A Study on Photocatalytic Oxidation of Formaldehyde on Pt/Fe2O3/TiO2,J. Photochem. Photobiol A:Chem.,2000,137: 197-202.
    [26]Turchi C. S., Ollis D. F.,J. Catal.,1990,122:178.
    [27]Vlasta Brezova, Peter Tarabek, Dana Dvoranova, Andrej Stasko, Stanislav Biskupi.,J. Photochemistry and Photobiology A:Chemistry,2003,155:179.
    [28]Zhang J. Z., Du Z. H., Magnetic Resonance in Biomedicine Science Press, Beijing,2003,261-269.
    [29]Stowell, J. C.,J. Org. Chem.,1971,36:3055.
    [30]Mills A., Williams G.,J. Chem. Soc. Faraday Trans.,1987,83:2647.
    [31]Anders Hagfeldt, Michael Gratzel, Chem. Rev.,1995,95:49-68.
    [32]Janzen E. G., Haire D. L., In Advances in Free Radical Chemistry, Tanner D. D.(ed), USA,1990,253-289.
    [33]Zhang Y.-H., Chen Q., Zhang Y., Yan T.-T., Yu S.-Q., Study of ESR on the Photocatalytic Oxidation of Methanal,Chinese Journal of Chemical Physics, 1998,11:461-464.
    [34]Yang J.-J., Li D.-X., Li Q.-L., Zhang Z.-J., Wang H.-Q., Mechanism of Photocatalytic Oxidation of Formaldehyde, Acta Phys.-Chim. Sin.,2001,17: 278-281.
    [35]Lewis R. S., Tang K. Y., Lee E. K. C., Photoexcited chemiluminescence spectroscopy:Detection of hydrogen atoms produced from single vibronic level photolysis of formaldehyde (A1A2)*,J. Chem. Phys.,1976,65:2910-2911.
    [36]Marling, J. Isotope separation of oxygen-17, oxygen-18, carbon-13, and deuterium by ion laser induced formaldehyde photopredissociation, J. Chem. Phys.,1977,66:4200-4225.
    [37]Clark J. H., Moore C. B., Nogar N. S., The photochemistry of formaldehyde: Absolute quantum yields, radical reactions,J. Chem. Phys.,1978,68: 1264-1271.
    [38]Reilly J. P., Clark J. H., Moore C. B., Pimentel G C. HCO production, vibrational relaxation, chemical kinetics, and spectroscopy following laser photolysis of formaldehyde,J. Chem.Phys.,1978,69:4381-4394.
    [39]Seitner D.,Getoff N.,Monatsh.Chem.,1969,100:1868.
    [40]Bieber R.,Trumpler G,Angenaherte,spektrographische Bestimmung der Hydratationsgleichgewichtskonstanten wassriger Formaldehydlosungen,Helv. Chim.Acta,1947,30:1860-1865.
    [41]Frisch,M.J.;Trucks,G. W.H.;Schlegel,B.G.;Scuseria,E.;Robb,M.A.; Cheeseman,J.R.;Zakrzewski,V G.;Montgomery,J.A.Jr.;Stratmann,R.E.; Burant,J.C.;Dapprich,S.;Millam,J.M.;Daniels,A.D.;Kudin,K.N.;Strain, M.C.;Farkas,O.;Tomasi,J.;Batone,V;Cossi,M.;Cammi,R.;Mennucci,B.; Pomelli,C.;Adalmo,C.;Clifford,S.;Ochterski,J.;Petersson,G. A.;Ayala,P. Y.; Cui,Q.;Morokuma,K.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.; Foresman,J.B.;Cioslowski,J.;Ortiz,J.V;Baboul,A.G.;Stefanov,B.B.;Liu, G;Liashenko,A.;Piskorz,P.;Komaromi,I.;Gomperts,R.;Martin,R.L.;Fox,D. J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y;Nanayakkara,A.;Challacombe,M.; Gill,P.M.W,;Johnson,B.;Chen,W.;Wong,M.W.;Andres,J.L.;Gonzalez,C.; Head-Gordon,M.;Replogle,E.S.and Pople,J.A. Gaussian,Inc.,Pittsburgh PA,1998.
    [42]Becke A.D.,Density-functional thermochemistry.The role of exact exchange,J. Chem.Phys.,1993,98:5648-5652.
    [43]Dewar M.J.S.,Zoebisch E.G.,Healy E.F.,Stewart,J.J.P.Development and use of quantum mechanical molecular models.76.AM1:a new general purpose quantum mechanical molecular model,J.Am.Chem.Soc.,1985,107: 3902-3909.
    [1]Y. Ding, M. W. Chen, J. Erlebacher, Metallic mesoporous nanocomposites for electrocatalysis,J. Am. Chem. Soc.,2004,126:6876-6877.
    [2]F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang, X. Zhang, Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction, Chem. Mater., 2006,18:1365-1368.
    [3]L. Wang, S. Guo, X. Hu, S. Dong, Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures:Electrodeposited superhydrophobic surface, Electrochem. Commun.,2008,10:95-99.
    [4]W. Huang, M. Wang, J. Zheng, Z. Li, Facile fabrication of multifunctional three-dimensional hierarchical porous gold films via surface rebuilding,J. Phys. Chem. C,2009,113:1800-1805.
    [5]C. Shen, C.Hui, T.Yang, C.Xiao, J.Tian, L.Bao, S.Chen, H. Ding, H. Gao, Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties, Chem. Mater.,2008,20:6939-6944.
    [6]Y. Bae, N. H. Kim, M. Kim, K. Y. Lee, S. W. Han, Anisotropic assembly of Ag nanoprisms,J. Am. Chem. Soc.,2008,130:5432.
    [7]X. Wen, Y. T. Xie, M. W. C. Mak, K. Y. Cheung, X. Y. Li, R. Renneberg, S. Yang, Dendritic nanostructures of silver:Facile synthesis, structural characterizations, and sensing applications, Langmuir,2006,22:4836.
    [8]H. Liang, H. Zhang, J. Hu, Y. Guo, L. Wan, C. Bai, Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts, Angew. Chem. Int. Ed.,2004,43: 1540-1543.
    [9]H. Lin, J. Mock, D. Smith, T. Gao, M. Sailor, Surface-enhanced Raman scattering from silver-plated porous silicon, J. Phys. Chem. B,2004,108:11654-11659.
    [10]Y. Sun, Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc., 2004,126:3892-3901.
    [11]Y. Song, Z. Gao, J. J. Kelly, X. Xia, Galvanic deposition of nanostructured noble-metal films on silicon, Electrochem Solid State Lett,2005,8: C148-C150.
    [12]M. Cerruti, G. Doerk, G. Hernandez, C. Carraro, R. Maboudian, Galvanic deposition of Pt clusters on silicon:Effect of HF concentration and application as catalyst for silicon nanowire growth, Langmuir,2010,26:432-437.
    [13]A. J. Monkowski, A. Morrill, N. C. MacDonald, Microarrayed nanostructured titania thin films functionalized for hydrogen detection,J. Electrochem. Soc., 2008,155:J297-J300.
    [14]S. Yae, N. Nasu, K. Matsumoto, T. Hagihara, N. Fukumuro, H. Matsuda, Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions, Electrochim. Acta,2007,53:35-41.
    [15]Jing F., Tong H., Kong L., Wang C., Applied Phys. A.,2003,80:597
    [16]L. Wang, S. Guo, S. Dong, Facile electrochemical route to directly fabricate hierarchical spherical cupreous microstructures:Toward superhydrophobic surface, Electrochem. Commun.,2008,10:655-658.
    [17]X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature,2000,404:59-61.
    [18]D. Zhang, L. Sun,; J. Zhang, Z. Yan, C. Yan, Hierarchical construction of ZnO architectures promoted by heterogeneous nucleation, Cryst. Growth Des.,2008, 8:3609-3615.
    [19]T. A. Witten, L. M. Sander, Diffusion-limited aggregation, A kinetic critical phenomenon, Phys. Rev. Lett.,1981,47:1400-1403.
    [20]W. Ye, C. Shen, J. Tian, C. Wang, C. Hui, H. Gao, Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies, Solid State Sci.,2009,11:1088-1093.
    [21]Y. C. Tsai, P. C. Hsu, Y. W. Lin, T. M. Wu, Electrochemical deposition of silver nanoparticles in multiwalled carbon nanotube-alumina-coated silica for surface-enhanced Raman scattering-active substrates, Electrochem. Commun., 2009,11:542-545.
    [22]P. Hildebrandt, M. Stockburger, Surface-enhanced resonance Raman- spectroscopy of rhodamine-6G adsorbed on colloidal silver,J. Phys. Chem., 1984,88:5935-5944.
    [23]L. Chen, L. Luo, Z. Chen, M. Zhang, J. A. Zapien, C. S. Lee, S. T. Lee, ZnO/Au composite nanoarrays as substrates for surface-enbanced Raman scattering detection,J. Phys. Chem. C,2010,114:93-100.
    [24]S. Chan, S. Kwon, T.W. Koo, L.P. Lee, A.A. Berlin, Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores, Adv. Mater., 2003,15:1595.
    [25]A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, P. Yang, Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy, Nano Lett,2003,3:1229-1233.
    [26]J. Zhang, X. Li, X. Sun, Y. Li, Surface enhanced Raman scattering effects of silver colloids with different shapes,J. Phys. Chem. B,2005,109:12544-12548.
    [27]M. Futamata, Y. Maruyama, M. Ishikawa, Microscopic morphology and SERS activity of Ag colloidal particles, Vib. Spectrosc,2002,30:17-23.
    [28]J. Jiang, K. Bosnick, M. Maillard, L. Brus, Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals,J. Phys. Chem. B,2003,107: 9964-9972.
    [29]A. Campion, J. E. IVanecky Ⅲ, C. M. Child, M. Forster, On the mechanism of chemical enhancement in surface-enhanced Raman-scattering,J. Am. Chem. Soc.,1995,117:11807-11808.
    [30]W. E. Doering, S. Nie, Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,J. Phys. Chem.B,2002,106:311-317.
    [31]J. Zhang, X. Li, X. Sun, Y. Li,J. Phys. Chem. B,2005,109:12544.
    [32]C. Jing, Y. Fang,J. Colloid Interf. Sci.,2007,314:46.
    [33]N. H. Kim, K. Kim,J. Raman Spectrosc.,2005,36:623.
    [34]J. Jiang, K. Bosnick, M. Maillard, L. Brus,J. Phys. Chem. B,2003,107:9964.
    [35]Y. He, G. Shi, Surface plasmon resonances of silver triangle nanoplates:Graphic assignments of resonance modes and linear fittings of resonance peaks, J. Phys. Chem. B,2005,109:17503-17511.
    [36]J. Zeng, H. Jia, J. An, X. Han, W. Xu, B. Zhao, Y. Ozaki, Preparation and SERS study of triangular silver nanoparticle self-assembled films, J. Raman Spectrosc, 2008,39:1673-1678.
    [37]A. B. D.Cassie, S.Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 1944,40:546-550.
    [38]Y. Li, X. J. Huang, S. H. Heo, C. C. Li, Y. K. Choi, W. P. Cai, S. O. Cho, Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays, Langmuir,2007,23:2169-2174.
    [39]L. Wang, S. Guo, X. Hu, S. Dong, Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures:Electrodeposited superhydrophobic surface, Electrochem. Commun.,2008,10:95-99.
    [40]H. Ren, X. Huang, O. Yarimaga, Y. K. Choi, N. Gu, A cauliflower-like gold structure for superhydrophobicity,J. Colloid Interf. Sci,2009,334:103-107.
    [1]Dryfe R. A. W., Simm A.O., Kralj B., Electroless Deposition of Palladium at Bare and Templated Liquid/Liquid Interfaces, J. Am. Chem. Soc.,2003,125: 13014-13015.
    [2]Abdelkader Hilmi, John H. T. Luong, Electrochemical Detectors Prepared by Electroless Deposition for Microfabricated Electrophoresis Chips, Anal. Chem., 2000,72:4677-4682.
    [3]Shacham-Diamand Y., Sverdlov Y., Microelectron Eng.,2000,50:525
    [4]Sharma S.B., Agarwala R.C., Agarwala V, Ray S., Surf. Eng.,2002,18:344.
    [5]Natividad E., Lataste E., Lahaye M., Heintz J.M., Silvain J. F., Surf. Sci.,2004, 557:129.
    [6]S. Bhansali, D. K. Sood, A novel technique for fabrication of metallic structures on polyimide by selective electroless copper plating using ion implantation, Thin Solid Films,1995,270:489-492.
    [7]Zhang J.Y., Boyd I.W., J. Mater Sci. Lett.,1997,16:996.
    [8]S. Karmalkar, J. Banerjee, A Study of Immersion Processes of Activating Polished Crystalline Silicon for Autocatalytic Electroless Deposition of Palladium and Other Metals, J. Electrochem. Soc.,1999,146:580.
    [9]Marnix V. ten Kortenaar, Jeroen J. M. de Goeij, Zvonimir I. Kolar, Gert Frens, Pieter J. Lusse, Marc. R. Zuiddam, Emile van der Drift, Electroless Silver Deposition in 100 nm Silicon Structures, J. Electrochem. Soc.,2001,148:C28.
    [10]Tong H., Zhu L., Li M., Wang C., Electroless silver deposition on Si(100) substrate based on the seed layer of silver itself, Electrochimica Acta,2003,48: 2473-2477.
    [11]Jing F., Tong H., Kong L., Wang C., Applied Phys. A.,2003,80:597.
    [12]Chen H., Chu C., Huang T., Characterization of PdAg/Al2O3 composite membrane by electroless co-deposition, Thin Solid Films,2004,460:62-71.
    [13]Ye W., Tong H., Wang C., Study on Microcontamination of silver onto p-type Crystalline silicon (111) from an Aqueous Solution Using cyclic Voltammetry, Microchim. Acta.,2005,152:85-88.
    [14]Sang Woo Lim, Renee T. Mo, Piero A. Pianetta, Christopher E. D. Chidsey, Effect of Silicon Surface Termination on Copper Deposition in Deionized Water, J. Electrochem. Soc.,2001,148:C16.
    [15]Wu Y., Chen W.C., Fong H.P., Wan C.C., Wang Y.Y., Displacement Reactions Between Metal Ions and Nitride Barrier Layer/Silicon Substrate, J. Electrochem. Soc.,2002,149:G309.
    [16]Aspnes D.E., Heller A., Photoelectrochemical hydrogen evolution and water photolyzing semiconductor suspensions:properties of platinum group metal catalyst-semiconductor contacts in air and in hydrogen, J. Phys. Chem.,1983,87: 4919-4929.
    [17]Hikaru Kobayashi, Fumiaki Mizuno, Yoshihiro Nakato, Hiroshi Tsubomura, Hydrogen evolution at a platinum-modified indium phosphide photoelectrode: improvement of current-voltage characteristics by hydrogen chloride etching, J. Phys. Chem.,1991,95:819-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700