用户名: 密码: 验证码:
汽车胎压监测系统无源SAW温度压力传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对轮胎压力监测系统对传感器的具体需求,对轮胎压力监测系统中核心器件传感器的设计、分析、优化和检测方法进行了系统而深入的研究,提出一种新型无源SAW温度压力传感器的设计方法。研究内容主要包括以下几个方面:
     首先,本文对基于SAW延迟线理论的温度压力传感器结构设计方法进行了系统的研究。以SAW延迟线理论为基础,针对传感器需要同时测量温度和压力两个物理量的要求,给出了一种有别于传统SAW延迟线传感器结构的设计方法。用双向反射器配置方案对传感器进行设计,即将反射器放置在IDT产生的SAW传输路径两侧,这样的结构可以使得SAW能量充分运用,传感器RF脉冲回波信号强度有所提升和信噪比高的优点。这种结构设计为延迟线型SAW传感器提供一种新的设计思路,可扩展用于两个以上物理量检测的SAW传感器设计中。根据无源SAW传感器的设计结构,用基于SAW延迟线型传感器的传感原理进行理论分析,在传感器温度压力参数计算中引入权重因子的概念,实现用权重因子的方法对压力的量测数据进行温度补偿,推导出温度压力和SAW传感器RF脉冲回波信号相位之间的函数关系,从而在理论上证明,可以通过本研究设计的无源SAW传感器对温度压力两个物理量同时实现精确测量。
     然后,对无源SAW传感器的压电基底材料和MEMS加工工艺做深入细致研究,通过对用于SAW的压电基底材料各项性能参数的分析比较,结合本文设计无源SAW传感器需要测量温度和压力的具体需求,最终选定温度系数好、机电耦合系数高、并且具有大批量生产能力和材料稳定性能的YZ切铌酸锂作为传感器的压电基底材料。通过对SAW传感器工作的理论分析给出传感器加工需要的详细参数,经MEMS的表面微加工工艺加工出传感器基片。
     最后,对传感器的RF脉冲信号分析方法做详细研究,分析了RF脉冲信号特性,讨论不同RF脉冲访问信号宽度对传感器RF脉冲回波信号的影响,讨论不同RF脉冲访问信号频率对传感器测试数据的影响,分析了产生这些影响的原因。通过详细分析,给出获得传感器最佳RF脉冲回波信号的理论分析方法,并用在传感器的测试中。通过对所设计传感器原型进行测试分析,传感器的实际测试结果和理论分析数据相吻合,验证了理论分析的正确性,并且这种传感器结构可以提升同类型传感器返回信号的强度,有利于对信号的后续处理分析。
     本文研究采用从理论建模入手,进行计算仿真,构建TPMS系统传感器测试平台,并对所设计传感器进行实物加工测试,修正和完善理论模型。通过反复理论建模、计算仿真和实验分析的研究方法,优化无源SAW温度压力传感器的性能指标,实现无源SAW传感器对温度压力信号的准确采集、分析与处理。
     和现有用于TPMS系统中的有源传感器相比,所设计的无源SAW温度压力传感器在进一步完善优化后具有结构简单、体积小、重量轻不易损坏等显著优点,可以用在TPMS中作为传感装置检测轮胎内的温度压力数据,随着人们对TPMS系统的日益关注,TPMS的市场需求量亦会不断扩大。本文基于SAW延迟线理论的分析研究,不仅可以用在温度压力传感器的设计中,还可以用在SAW传感器对其它物理量的检测中,用来补偿温度对器件造成的影响,这种理论分析方法具有一定的通用性。
In this dissertation, according to the need in TPMS sensor, a deep and systematic study on the design, analysis, optimization and test of TPMS sensor is made, which is based on a novel passive SAW temperature and pressure sensor. The main contents of this dissertation are consisted of the following parts.
     Firstly, the design methodology of the temperature and pressure sensor based on the SAW delay line theory is studied. With this new design methodology, which is in a non-traditional way, the sensor is able to measure temperature and pressure simultaneously. The sensor is designed in two direction reflectors method, i.e. the reflectors are placed in the two directions of the SAW caused by IDT, which is more energy efficient and obtains higher signal/noise ratio compared with traditional methods. By using of a weighted factor in the temperature and pressure calculation of SAW sensor, the effect of the temperature on the phase shift can be eliminated, so the phase shift induced by the pressure can be detected independently by the sensor. The function between the temperature pressure and RF pulse echo signal of SAW sensor are derivate, therefore, with this novel design, the SAW sensor is capable of measuring both the temperature and the pressure simultaneously and accurately.
     Secondly, the piezoelectric material character and MEMS fabrication method are studied deeply. Through the comparison among the different piezoelectric materials, and the temperature and pressure measurement requirement of the SAW sensor, Y-Z cut LiNbO3 was used as the substrate material of the sensor which has the good temperature coefficient, high electromechanical coupling coefficient, high-volume production capacity and material stability. The SAW sensor is made by this substrate through the MEMS processing technology, according to the detail parameters which can be achieved from the theory analysis.
     Finally, analysis method of RF pulse signal and the test result for the SAW sensor are studied deeply too. The character of the RF pulse signal is analyzed. RF pulse echo signal affected by the different RF pulse access signal widths are discussed. And RF pulse echo signal affected by the different RF pulse access signal frequency is argued too. The most suitable RF pulse signal is achieved by theoretical analysis and used in the sensor test. According to the comparison of the actual test results and theoretical analysis of data, the data coincide with each other. The actual test results showing the echo signal energy are better than traditional sensors. It is more suitable for the data processing of the signal.
     This dissertation starts from the theoretical model, then does the simulation calculation, building the TPMS sensors test platform, fabricating the SAW sensor and according the test data to amend and improve the theoretical model. Through the above procedures, the performance of passive SAW temperature and pressure sensor is optimized. The sensor can measure, analyze and process the temperature and pressure information.
     In the area of TPMS, the reliability and durability are really demanding. The reported sensor has its practicability and potential market with its advantages of simple structure, light, and wireless and passive working mode. The analysis and research of this dissertation based on the SAW delay line theory not only is used in the temperature and pressure sensor, but also is used in the other sensing fields to compensate the impact of the temperature on the device, so the analysis of this theory has a certain universal.
引文
1 M. David. Safety check: Wireless Sensors Eye Tyre Pressure. EDN Europe, 2004, (9):43~38
    2 U.S. Department of Transportation. Tire Pressure Special Study. http://www-nrd.nhtsa.dot.gov/Pubs/TPSDOC.PDF
    3 BCC Research. Automotive Sensor Technologies: Global Markets. http://www. bccresearch.com/report/IAS018B.html
    4王飞跃,王知学,单国玲,等.智能轮胎的研究进展和应用前景.轮胎工业, 2003, 23(1):10~15
    5 National Highway Traffic Safety Admin., DOT.§571.138. http://edocket. access.gpo.gov/cfr_2002/octqtr/pdf/49cfr571.138.pdf
    6魏彦军.浅析汽车轮胎压力监视系统TPMS.汽车电器, 2006, (2):50~52
    7郭源生,朱作云,董华.力敏传感器市场预测分析研究.传感器世界, 2001, (3):1~4
    8 J. Edgar. Intelligent Tyres - Part 2. http://autospeed.drive.com.au/cms/ article.html?&A=1267&P=4001
    9胡云发,陈毅豪,林俏伽. TPMS系统技术提高汽车安全性.汽车与配件, 2007, 16(8):30~32
    10 Freescale Semiconductor. The Freescale Direct System-in-Package TPMS. http://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02Wcbf123 F2D5D
    11 Bendix Commercial Vehicle Systems LLC. SmartWave Tire Pressure Monitoring System Owner's Manual (710.0078). http://www.smartire.com
    12 Schrader Electronics Ltd. Tyre Pressure Monitoring System (TPMS). http://www.schraderelectronics.com
    13颜重光.汽车轮胎压力实时监视系统及其发展.汽车与配件, 2007, 14(7):39~41
    14 Infineon Technologies AG. Tire Pressure Sensors. http://www.infineon.com/ cms/en/product/channel.html?channel=ff80808112ab681d0112ab69078700d8&tab=2
    15 Nokian Tyres. Roadsnoop Safety System. http://www.tirefactory.net/ Road-Snoop.htm
    16高先进,王国林,周孔亢.轮胎压力监测系统的发展趋势. http://ae.nstl. gov.cn/commchannel2/content.asp?contentid=122651
    17颜重光.为TPMS系统选择合适的半导体器件和方案.http://www.Esmchi-na.com/ART_8800079006_1100_2603_0_0_afe4682e.HTM
    18 B. Jeff. Tire Pressure Monitoring: An Industry Under Pressure. Sensors, 2003, 20(7):29~33
    19 B. D. Geeter, O. Nys, M. Chevroulet, et al. A Wireless Tyre Pressure and Temperature Monitoring System. Proceedings of Sensor Expo Conference, 1996:61~63
    20 R. Matsuzaki, A. Todoroki. Wireless Monitoring of Automobile Tires for Intelligent Tires. Sensors, 2008, 8(12):8123~8138
    21 L. Reindl, G. Scholl, T. Ostertag, et al. Theory and Application of Passive SAW Radio Transponders as Sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5):1281~1292
    22 Y. H. Kim, D. H. Chang, Y. S. Yoon. Study on the Optimization of A Temperature Sensor Based on SAW Delay Line. Journal of the Korean Physical Society, 2004, 45(5):1366~1371
    23 X. Q. Bao, W. Burkhard, V. V. Varadan, et al. SAW Temperature Sensor and Remote Reading Rystem. Proceedings of IEEE Ultrasonics Symposium, Denver, USA, 1987:583~585
    24 G. Schimetta, F. Dollinger, R. Weigel. A Wireless Pressure Measurement System Using a SAW Hybrid Sensor. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(12):2730~2735
    25 J. G. Oh, B. Choi, S. Y. Lee. SAW Based Passive Sensor with Passive Signal Conditioning Using MEMS A/D Converter. Sensors and Actuators A, 2008, 141:631~639
    26 V. K. Varadna, H. Subramanian, V. V. Varadan. Wireless Remote Micro Accelerometer. Proceedings of SPIE the International Society for Optical Engineering, 1998, 3316(1):497~503
    27 A. Kawalec, M. Pasternak. A New High-Frequency Surface Acoustic Wave Sensor for Humidity Measurement. IEEE Transactions on Instrumentation and Measurement, 2008, 57(9):2019~2023
    28 G. O. Allgood, W. W. Manges, S. F. Smith. It's Time for Sensors to Go Wireless. Sensors (Peterborough, NH), 1999, 16(5):10
    29 A. Pohl, G. Ostermayer, F. Seifert. Wireless Sensing Using Oscillator Circuits Locked to Remote High-Q SAW Resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5):1161~1168
    30 A. Pohl, F. Seifert. Wirelessly Interrogable Surface Acoustic Wave Sensors for Vehicular Applications. IEEE Transactions on Instrumentation and Measurement, 1997, 46(4):1031~1037
    31 F. Seifert, W. E. Bulst, C. Ruppel. Mechanical Sensors Based on Surface Acoustic Waves. Sensors and Actuators, A: Physical, 1994, 44(3):231~239
    32 G. Scholl, T. Ostertag, L. Reindl, et al. Wireless SAW Sensors for Remote Measurement of Physical Parameters. Proceedings of IEEE the International Workshop on Commercial Radio Sensors and Communication Techniques, 1997:51~58
    33 V. K. Varadan, P. T. Teo, K. A. Jose, et al. Design and Development of a Smart Wireless System for Passive Temperature Sensors. Smart Materials & Structures, 2000, 9(4):379~388
    34 F. Seifert, R. Weigel. Saw-Based Radio Sensor and Communication Techniques (Invited). Conference Proceedings European Microwave Conference, 1997:1323~1346
    35 B. Jakoby. Microacoustic Sensors for Automotive Applications. IEEE Ultrasonics Symposium, 2000, 1:453~460
    36 U. Wolff, F. L. Dickert, G. K. Fischerauer, et al. SAW Sensors for Harsh Environments. IEEE Sensors Journal, 2001, 1(1):4~13
    37袁小平.国外声表面波传感器开发近况.压电与声光, 1995, 17(4):6~10
    38文玉梅,周志坤,李平,等.声表面波无源无线传感器研究.传感器世界,a2004, 10(4):6~10
    39 S. Ballandras, R. Lardat, L. Penavaire, et al. Micro-Machined, All Quartz Package, Passive Wireless SAW Pressure and Temperature Sensor. IEEE Ultrasonics Symposium, Vancouver, Canada, 2006:1441~1444
    40 W. Buff, S. Klett, M. Rusko, et al. Passive Remote Sensing for Temperature and Pressure Using SAW Resonator Devices. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(5):1388~1392
    41 W. E. Bulst, G. Fischerauer, L. Reindl. State of the Art in Wireless Sensing with Surface Acoustic Waves. IEEE Transactions on Industrial Electronics, 2001, 48(2):265~271
    42 R. M. White, F. W. Voltmer. Direct Piezoelectric Coupling to Surface Elastic Waves. Applied Physics Letters, 1965, 7(12):314~316
    43 B. Drafts. Acoustic Wave Technology Sensors. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(4):795~802
    44 D. Morgan. History of SAW Devices. 1998 IEEE International Frequency Control Symposium, 1998:439~460
    45白涛,兰敏.一些声表面波器件的市场应用及发展.压电与声光, 2006, 28(5):502~505
    46苟永明.声表面波技术在电视领域中的应用.电视技术, 1997, 8:59~64
    47许四科,刘刚,高益,等.通讯用高基频带通声表面波滤波器的设计.压电与声光, 2006, 28(2):127~129
    48徐道连,游颖敏,刘泽奎,等.一种新型嵌入式汽车胎压监测系统.重庆工学院学报(自然科学版), 2008, 22(11):1~3
    49王云霞,陈鸣,姚春艳,等.漏声表面波生物传感器不同检测方法的实验研究.中华医院感染学杂志, 2008, 18(3):349~352
    50陈玲.生物传感器的研究进展综述.传感器与微系统, 2006, 25(9):4~7
    51施云芬,施云波,孙墨杰,等.酞菁钯-聚苯胺修饰声表面波传感器及含磷毒气的检测.半导体学报, 2008, 29(5):998~1002
    52王华,应智花,杜晓松,等.高频有机聚合物SAW湿度传感器的研究.压电与声光, 2007, 29(6):626~628
    53杨莺,朱大中. Y型带反射器的声表面波质量传感器.浙江大学学报(工学版), 2006, 40(2):801~804
    54董永贵.传感技术与系统.清华大学出版社, 2006:258~276
    55张淑仪,周凤梅,范理.表面声波传感器及其应用.应用声学, 2008, 27(6):413~418
    56 J. W. Gardner, V. K. Varadan. Microsensors, MEMS, and Smart Devices. John Wiley & Sons Ltd, 2001:319~334
    57张永刚,袁续良.声表面波器件及其应用.科技情报开发与经济, 2007, 17(13):288~289
    58王锐,杨成韬,张树人,等.薄膜声表面波器件的制备研究进展.电子元件与材料, 2008, 27(2):8~9
    59栾桂冬,张金铎,王仁乾.压电换能器和换能器件.北京大学出版社, 2005:185~192
    60朱长纯,卢文科.声表面波式小波变换器件与应用.国防工业出版社, 2004:1~21
    61 K. Hashimoto.声表面波器件模拟与仿真.王景山,刘天飞,孙伟.国防工业出版社, 2002:50~85
    62冯冠平.谐振传感理论及其器件.清华大学出版社, 2008:308~314
    63陈明,范东远,李岁劳.声表面波传感器.西北工业大学出版社, 1997:6~17
    64 F. Schmidt, O. Sczesny, L. Reindl, et al. Remote Sensing of Physical Parameters by Means of Passive Surface Acoustic Wave Devices (“ID-TAG”). IEEE Ultrasonics Symposium, 1994:589~592
    65江城,倪世宏,徐明. SAW RFID标签在军用测试系统中的应用.压电与声光, 2008, 30(3):262~265
    66潘勇,伍智仲,曹丙庆,等.声表面波β-CD巯基衍生物传感器检测DMMP的研究.化学传感器, 2008, 28(1):58~62
    67章安良,朱大中.声表面波质量传感器.传感器技术, 2005, 24(1):60~63
    68王云霞,府伟灵,陈鸣,等.新型漏声表面波生物传感器液相检测条件的实验研究,第三军医大学学报, 2006, 28(9):19~21
    69肖庭富,文玉梅,李平,等. Terfenol-D/SAW谐振器/Terfenol-D复合磁传感器.传感技术学报, 2008, 21(6):924~928
    70郑敏,文玉梅,李平,等. GMM和SAW谐振器复合磁传感器设计与分析.微纳电子技术, 2007, (7/8):263~265
    71 V. Hinrichsen, G. Scholl, M. Schubert, et al. Online Monitoring of High-Voltage Metal-Oxide Surge Arresters by Wireless Passive Surface Acoustic Wave (SAW) Temperature Sensors. High Voltage Engineering, 1999, 2:238~241
    72 P. A. Nysen, H. Skeie, D. Armstrong. Interrogator for Passive Transponder Carrying Phase-Encoded Data - Includes Signal Processor Responsive to Signal Produced by Mixer for Determining Informational Code Associated with Transformer. U.S. Patent 4725841, 4625207, 4625208, 1983
    73 W. Buff. SAW sensors. Sensors and Actuators A: Physical, 1992, 30(1-2):117~121
    74 L. Reindl, C. C.W. Ruppel, K. Riek, et al. A Wireless AQP Pressure Sensor Using Chirped SAW Delay Line Structures. IEEE Ultrasonics Symposium, 1998:355~358
    75 H. Scherr, G. Scholl, F. Seifert, et al. Quartz Pressure Sensor Based on SAW Reflective Delay Line. IEEE Ultrasonics Symposium, 1996:347–350
    76 W. Buff, F. Plath, O. Schmeckebier, et al. Remote Sensor System Using Passive SAW Sensors. Ultrasonics Symposium, 1994:585~588
    77 G. Schimetta, F. Dollinger, A. Springer, et al. A Wireless Pressure-Measurement System Based on SAW Transponder Technique. Microwaves, Radar and Wireless Communications, 2000, 1:367~370
    78 G. Brucknerl, R. Hauser, A. Stelzer, et al. High Temperature Stable SAW Based Tgaging System for Identifying A Pressure Sensor. 2003 IEEE International Frequency Control Symposium and PDA Exhibition Jointly with the 17 European Frequency and Time Forum, 2003:942~947
    79 G. Schimetta, F. Dollinger, R. Weigel. A Wireless Pressure Measuerment System Using A SAW Hybrid Sensor. IEEE MTT-S Digest, 2000:1407~1410.
    80 G. Schimetta, F. Dollinger, A. Springer, et al. A Wireless Pressure-Measurement System Based on SAW Transponder Technique. 13th International Conference on Microwaves, Radar and Wireless Communications (IMEKO 2000), 2000, 1&2:367~370
    81 G. Ostermayer, A. Pohl, L. Reindl, et al. Multiple Access to SAW Sensors Using Matched Filter Properties. Proceedings of the IEEE Ultrasonics Symposium, 1997, 1:339~342
    82 A. Pohl, G. Ostermayer, L. Reindl, et al. Monitoring the Tire Pressure at Cars Using Passive SAW Sensors. IEEE Ultrasonics Symposium, l997:471~474
    83 A. Pohl, L. Reindl. Measurement of Physical Parameters of Car Tires Using Passive SAW Sensors. The 2nd Conference on Advanced Microsystems for Automotive Applications, Berlin, 1998:250~262
    84 G. Scholl, F. Schmidt, T. Ostertag, et al. Wireless Passive SAW Sensor System for Industrial and Domestic Applications. l998 IEEE International Frequency Control Symposium, 1998:595~601
    85 A. Pohl, L. Reindl. The‘Intelligent Tire’Utilizing Passive SAW Sensors Measurement of Tire Friction. IEEE Transactions on Instrumentation and Measurement, 1999, 48(6):1041~1046
    86 W. Buff, M. Rusko, T. Vandahl, et al. A Differential Measurement SAW Device for Passive Remote Sensoring. IEEE Ultrasonics Symposium, 1996, 1:343~346
    87 X. Q. Bao, V. V. Varadan, V. K. Varadan. Wireless Surface Acoustic Wave Temperature Sensor. Wave Material Interact., 1994, 9:19~27
    88 W. Wang, K. Lee, I. Woo, et al. Optimal design on SAW sensor for wireless pressure measurement based on reflective delay line. Sensors and Actuators A-Physical, 2007, 139(1-2):2~6
    89 W. Buff, M. Rusko, M. Goroll, et al. Universal Pressure and Temperature SAW Sensor for Wireless Applications. IEEE Ultrasonics Symposium, 1997, 1:359~362
    90 R. Steidl, A. Pohl, L. Reindl, et al. SAW Delay Lines for Wirelessly Requestable Conventional Sensors. IEEE Ultrasonics Symposium, 1998, l:351~354
    91 G. Schimetta, F. Dollinger, G. Scholl, et al. Wireless Pressure and Temperature Measurement Using a SAW Hybrid Sensor. IEEE Ultrasonics Symposium, 2000:445~448
    92 G. Schimetta, F. Dollinger, G. Scholl, et al. Optimized Design and Fabrication of a Wireless Pressure and Temperature Sensor Unit Based on SAW Transponder Technology. 2001 IEEE MTT-S Digest, 2001, 1:355~358
    93 Transense Technologies plc. Transense Technologies. http://www.transense. co.uk/technologies
    94 V. V. Varadan, V. K. Varadan, X. Bao, et al. Wireless Passive IDT Strain Microsensor. Smart Materials Structure, 1997, 6:745~751
    95 T. Fukuda, H. Takeda, P. Shimamura, et al. Growth of New Langasite Single Crystals for Piezoelectric Applications. Proceedings of the Eleventh IEEE International Symposium, 1998:315~319
    96郝俊杰,徐廷献.声表面波用基片材料.硅酸盐通报, 2000, (6):32~36
    97 R. M. Taziev, E. A. Kolosqvsky, A. S. Kozlov. Deformation Sensitive Cuts for Surface Acoustic Waves inα-Quartz. IEEE Intemational FrequencyControl Symposium, 1993:660~664
    98 Y. N. Vlassov, A. S. Kozlov, N. S. Pashchin, et al. Precision SAW Pressure Sensors. IEEE Intemational Frequency Control Symposium, 1993:665~669
    99何鹏举,戴冠中,陈明,等.谐振式SAW压力传感器敏感元件研究与设计.传感技术学报, 2006, 19(2):572~576
    100 Y. Dake, M. Tokai. Developement of a SAW Pressure Sensor Using Stainless Steel Diaphragm. Transducers '91., 1991:1009
    101 S. Roy, S. Basu. Improved Zinc Oxide Film for Gas Sensor Application. Bull. Mater. Sci., 2002, 25(6):513~515
    102 K. K. Zadeh, Y. Y. Chen, B. N. Fry, et al. A Novel Love Mode SAW Sensor with ZnO Layer Operating in Gas and Liquid Media. IEEE Ultrasonics Symposium, 2001:353~356
    103 A. Talbi, F. Sarry, L. Brizoual, et al. Sezawa Mode SAW Pressure Sensors Based on ZnO/Si Structure. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2004, 51(11):1421~1426
    104文常保,朱长纯,巨永锋,等. MWCNT-WO3薄膜双声路SAW NO2气体.传感器传感技术学报, 2008, 21(10):97~100
    105马晋毅,江洪敏,李燕,等.声表面波化学战剂气体传感器的研究.压电与声光, 2008, 30(5):525~527
    106 R. M. White. Surface Elastic Waves. Proc. IEEE. 1970, 58(8):1238~1276
    107马伟方,施文康.声表面波器件体波效应抑制理论研究.压电与声光, 2000, 22(1):8~9
    108 H. Tanaka. Suppression of Bulk-Wave Response in SAW Devices Using the Difference of Power Flow Angles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995, 42(4):938~942
    109毕无敌,宋其华,隋醇.用δ函数模型分析叉指换能器的频率响应.山东工业大学学报, 1996, 26(Z):351~353
    110 R. H. Tancrell, M. G. Holland. Acoustic Surface Wave Filters. Proceeding of IEEE, 1971, 59(3):393~409
    111 W. R. Smith, H. M. Gerard, J. H. Collins, et al. Analysis of Interdigital Surface Wave Transducers by Use of An Equivalent Circuit Model. IEEE Transactions on Microwave Theory and Techniques, 1969, 17(11):856~864
    112 W. R. Smith. Experimental Distinction Between Crossed-Field and In-LineThree-Port Circuit Models for Interdigital Transducers. IEEE Transactions on Microwave Theory and Techniques, 1974, 22(11):960~964
    113 G. Tobolka. Mixed Matrix Representation of SAW Transdecers. IEEE Transactions on Sonics and Ultrasonics, 1979, 26(6):426~428
    114 G. Kovacs. A Generalised P-matrix Model for SAW Filters. Proceedings of the IEEE Ultrasonics Symposium, 2003, 1:707~710
    115 G. Scholl, W. Ruile, P. H. Russer. P-Matrix Modeling of Transverse-Mode Coupled Resonator Filters. Priceedings of the IEEE Ultrasonic Symposium. 1993, 1:41~46
    116 G. Martin. Fast Calculation of the Gradient and the Difference Vector of IDT's P Matrix. Proceedings of IEEE Ultrasonics Symposium, 2004, 1:98~101
    117 F. Kubat, W. Ruile, L. Reindl. P-Matrix Based Calculations of the Potential and Kinetic Power in Resonating SAW Structures. Proceedings of the IEEE Ultrasonics Symposium, 2002, 1:329~331
    118 C. Campbell, J. C. Burgess. Surface Acoustic Wave Devices and Their Signal Processing Applications. The Journal of the Acoustical Society of America, 1991, 89(3):1479~1480
    119邹小红,郭成海,史瑞雪.声表面波气体传感器的设计.化学传感器, 2000, 20(3):6~11
    120董永贵,程卫东,王生江,等.时间延迟型声表面波无源传感器的无线访问.声学学报, 2001, 26(2):109~112
    121程卫东,董永贵,冯冠平.延迟线型无线SAW传感器的访问信号.清华大学学报(自然科学版), 2001, 41(11):45~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700