用户名: 密码: 验证码:
基于声表面波及微纳技术的高性能湿敏传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿度在工业控制、医疗卫生、环境监控等多个领域都必须得到严格地监控。湿度检测在仓储、粮食及食品防霉、温室种植、环境监测、仪表电器、交通运输、气象、军事等方面都起着越来越重要的作用,甚至处于不可或缺的地位。但在常规的环境参数中,湿度却是最难准确测量的一个参数。因而对具有高灵敏度、快速响应速度等高性能的新型湿敏传感器的研究具有重要意义。
     声表面波器件由于其对表面扰动的特殊敏感性,被广泛应用于传感器领域。其灵敏度高、稳定性好、体积小、成本低、易于集成的优点使之得到越来越多的关注和研究。声表面波传感器对表面扰动的响应是多种因素、多种机理共同作用的结果,这也是声表面波传感器能够具有极高灵敏度的根本原因。对声表面波传感器扰动理论模型及其质量负载效应、声电耦合效应等响应机理进行了深入剖析,从根本上为声表面波传感器的结构设计、湿敏材料选择提供理论依据和参考。使用精密光刻工艺制备高频声表面波单端谐振器作为湿敏传感器的基本换能元件。
     湿敏材料的选择及制备是决定声表面波湿敏传感器性能的重要因素。只有湿敏材料的特性与声表面波换能元件的多重响应机理相匹配,才能使传感器达到最佳性能。包括水分子吸附效率、吸湿后电导率变化、粘弹性在内的多项材料特性都必须进行综合考虑与设计。新型纳米材料、复合材料是目前湿敏材料的主要发展方向和研究热点。深入讨论了声表面波湿敏传感器中湿敏材料的选择与设计思路,给出Nafion/MWCNTs复合材料、氧化石墨烯等几种新型纳米功能材料的合成及制备方法。
     湿敏材料的成膜方法是关系到湿敏传感器最终性能的又一关键技术。高频声表面波元件可成膜面积小,并且对表面敏感膜的厚度、均匀性都有很高要求。纳米纤维薄膜由于具有更大的比表面积,可以极大地改善传感器的灵敏度及动态性能。静电纺丝技术是一种新兴的纳米纤维薄膜制备方法,其制备的纳米纤维薄膜具有比表面积大、孔隙率高、纤维径细、质轻、形貌均匀等突出优点,并且较之其他微纳成膜方法,该方法更为简便易行。将静电纺丝成膜技术引入到声表面波湿敏传感器制备过程中,制备具有微纳结构特性的Nafion/MWCNTs复合纳米纤维感湿薄膜。
     声表面波传感器工作在射频频段,很容易受到环境或自身所产生的电磁辐射的干扰,因而对检测电路的设计有更严格的要求,这也是声表面波传感器的设计难点之一。设计了高性能的声表面波高频振荡电路及整套的检测系统,具有良好的稳定性和抗干扰性能。通过射频无线唤醒技术实现无线半无源声表面湿敏传感器标签设计。提出新型的叉指电极串联式声表面波传感器结构,为高频声表面波传感器的设计提供了一个新的思路。
     实验主要对灵敏度、稳定性、重复性、响应时间、温度系数等几个湿敏传感器的重要指标进行测试。实验结果表明设计的几种湿敏材料在声表面波湿敏传感器的应用中均取得了理想的效果,其性能较之前的研究及目前的商品化元件都有较大地提升。同时,也验证了静电纺丝成膜技术对传感器性能的影响,证实了其在提升传感器灵敏度及动态性能上的有效性。串联结构的新型声表面波传感器在湿度检测中的有效性也得到检验,确认了这一新方法的可行性。
     低湿度(<10%RH)及露点检测一直是湿度检测的难点,常规的电阻或电容型传感器都难以对10%RH或更小的湿度进行精确检测。开发低成本、小体积、使用灵活的低湿或露点传感器具有重要的研究价值和现实意义。将本文设计的传感器用于低湿和露点的检测中,实验结果表明其在低湿及露点检测中也具有良好的应用前景。
Humidity must be strictly monitored and controlled in many fields, such as industry, medical treatment and environment monitor. Humidity detection is playing quite an important role in storage management, cereal stocking, greenhouse conditioning, electronic devices, transportation, meteorology and military affairs. However, among all the environmental parameters, humidity is still hard to be accurately measured until now. So there's great meaning to research and develop new humidity sensors with more excellent performance, such as high sensitivity and quick response time.
     Surface acoustic wave (SAW) device was extremely sensitive to the perturbation on its surface, so it has been widely used as sensor components. Its great advantages such as high sensitivity, excellent stability, small size, low cost and ease-to manufacturer made it getting more and more attention. For SAW sensors, their response to the perturbation was caused by multiple factors and mechanisms, which is the basic reason that SAW sensors have so large a sensitivity. The Perturbation Model for the SAW sensors and its mechanisms such as mass loading effect and acoustoelectric effect were deeply analyzed, based on which SAW sensing component and humidity sensitivity material were designed. MEMS photoetching technique was used to fabricate a single port SAW resonator (SAWR) as the final transducer.
     Humidity sensitive material is a key factor that could determine the humidity sensors'performance. Only when the characteristic of the material was coordinated with the sensing mechanism of the SAW sensors, the humidity sensor could achieve the best performance. The characteristic including adsorption efficiency, conductivity variance and viscoelasticity must be taken into consideration. Polyelectrolyte material, nano material and composite material is the main developing direction and research focus. Designing method of the humidity sensitive material used in SAW humidity sensor was carefully discussed. Nafion/MWCNTs composite material and novel graphene oxide were designed as the alternative material.
     Coating method of the humidity sensitive film is another critical technique for humidity sensor design. For the SAW device with high frequency, there's only a little area could be coated with the sensing film. Furthermore, there are many restrict requirements for the film, such as reasonable thickness and well-proportioned topography. In another aspect, the sensing film with nano-structure could greatly improve the sensor's performance. Electrospinning is an emerging technique for nano material design. The sensing film made by this method has the advantages of high specific surface, large poriness and uniform morphology. The coating methods based on electrospinning technique were introduced into the design process of the SAW humidity sensor. Nafion/MWCNTs composite nano-fiber films were prepared by the new techniques.
     SAW sensors are usually working in the RF band. Thus its signal was prone to be interfered with the electromagnetic radiation and other environmental factors. So there are great difficulties for designing SAW sensor detection system. A high frequency resonator circuit and assorted detection system with stable performance were designed. At the same time, a novel RF-triggered semi-passive SAW humidity sensor tag was researched. Furthermore, a new serial topology was studied to propose a new idea for SAW sensor design, but not limited to humidity sensors.
     Experiment was set up to examine the key indicators for humidity sensors, including sensitivity, stability, repeatability, response-time and temperature coefficient. The results showed that the two types of humidity sensitivity material designed in this paper are all effective in humidity detection. Performance of the SAW humidity sensor has made a great breakthrough compared the commercial devices. The positive effect of electrospinning coating method was also tested. It was really helpful to improve the sensor's sensitivity and dynamic characteristic. The SAW humidity sensor with novel serial topology was also tested in the experiment. The result proved that it was a promising method for high frequency SAW sensor design.
     Low humidity (<10%RH) or dewpoint detection is always a difficult point in humidity detection. Common resistor type or capacity type humidity sensors are both difficult to meet the accuracy requirements. So there's great meaning to develop a low humidity sensor or dewpoint sensor with low cost, small size and ease-to-use. The present SAW humidity sensor was tried to be used for low humidity and dewpoint detection. The excellent result provided a good prospect for its future.
引文
1.Traversa, E., Ceramic sensors for humidity detection:the state-of-the-art and future developments. Sensors and Actuators B:Chemical,1995.23(2-3):p.135-156.
    2. Motchenbacher, C.D. and M.E. Nicholas, Humidity sensor.1982, US Patent 4,337,658.
    3. She, Y.E., B.Y. Jiang and J.Z. Liu, Si---Mg---Al---O system ceramic-film humidity sensor. Sensors and Actuators A:Physical,1994.40(2):p.151-153.
    4. Golonka, L.J., et al., Thick-film humidity sensors. Measurement Science and Technology,1997.8: p.92.
    5. Serin, N., T. Serin and B. Unal, The effect of humidity on electronic conductivity of an Au/CuO/Cu2O/Cu sandwich structure. Semiconductor science and technology,2000.15:p.112.
    6. Chakraborty, S., et al., Humidity sensor using a mixture of ammonium paratungstate pentahydrate and aluminium sulphate. Smart materials and structures,1998.7:p.569.
    7. Chakraborty, S., The humidity dependent conductance of A12 (SO4) 3.16 H2O. Smart Materials and Structures,1995.4:p.368.
    8. Gaponov, A.V., et al., Varistor and humidity-sensitive properties of SnO2-Co3O4-Nb2O5-Cr2O3 ceramics with V2O5 addition. Materials Science and Engineering:B,2007.145(1-3):p.76-84.
    9. Qu, W. and J.U. Meyer, Thick-film humidity sensor based on porous material. Measurement Science and Technology,1997.8:p.593.
    10. Huang, J., et al., Preparation and characteristic of the thermistor materials in the thick-film integrated temperature-humidity sensor. Materials Science and Engineering B,2003.99(1-3):p. 523-526.
    11. Hijikagawa, M., et al., A thin-film resistance humidity sensor. Sensors and Actuators,1983.4:p. 307-315.
    12. Yang, M.R. and K.S. Chen, Humidity sensors using polyvinyl alcohol mixed with electrolytes. Sensors and Actuators B:Chemical,1998.49(3):p.240-247.
    13. Feng, C.D., et al., Humidity sensing properties of Nation and sol-gel derived Si02/Nafion composite thin films. Sensors and Actuators-B:Chemical,1997.40(2-3):p.217-222.
    14. Korvink, J.G., et al., Accurate 3D capacitance evaluation in integrated capacitive humidity sensors. Sensors and Materials,1993.4:p.323-323.
    15. Khanna, V.K. and R.K. Nahar, Surface conduction mechanisms and the electrical properties of A12O3 humidity sensor. Applied surface science,1987.28(3):p.247-264.
    16. Nahar, R.K. and V.K. Khanna, Ionic doping and inversion of the characteristic of thin film porous A12O3 humidity sensor. Sensors and Actuators B:Chemical,1998.46(1):p.35-41.
    17. Khanna, V.K. and R.K. Nahar, Effect of moisture on the dielectric properties of porous alumina films. Sensors and Actuators,1984.5(3):p.187-198.
    18. Nahar, R.K., Study of the performance degradation of thin film aluminum oxide sensor at high humidity. Sensors and Actuators B:Chemical,2000.63(1-2):p.49-54.
    19. Sberveglieri, G., R. Murri and N. Pinto, Characterization of porous A12O3---SiO2/Si sensor for low and medium humidity ranges. Sensors and Actuators B:Chemical,1995.23(2-3):p.177-180.
    20. Kang, U. and K.D. Wise. A robust high-speed capacitive humidity sensor integrated on a polysilicon heater.1999.
    21. Qu, W. and J.U. Meyer, A novel thick-film ceramic humidity sensor. Sensors and Actuators B: Chemical,1997.40(2-3):p.175-182.
    22. Mitschke, F., Fiber-optic sensor for humidity. Optics letters,1989.14(17):p.967-969.
    23. McMurtry, S., J.D. Wright and D.A. Jackson, A multiplexed low coherence interferometric system for humidity sensing. Sensors and Actuators B:Chemical,2000.67(1-2):p.52-56.
    24. Kharaz, A. and B.E. Jones, A distributed optical-fibre sensing system for multi-point humidity measurement. Sensors and Actuators A:Physical,1995.47(1-3):p.491-493.
    25. Posch, H.E. and O.S. Wolfbeis, Optical sensors,13:fibre-optic humidity sensor based on fluorescence quenching. Sensors and Actuators,1988.15(1):p.77-83.
    26. Bariain, C., et al., Optical fiber humidity sensor based on a tapered fiber coated with agarose gel. Sensors and Actuators B:Chemical,2000.69(1-2):p.127-131.
    27. Sadaoka, Y., M. Matsuguchi and Y. Sakai, Optical-fibre and quartz oscillator type gas sensors: Humidity detection by Nafion(R) film with crystal violet and related compounds. Sensors and Actuators A:Physical,1991.26(1-3):p.489-492.
    28. Steiner, P., F. Kozlowski and W. Lang, Electroluminescence from porous silicon after metal deposition into the pores. Thin solid films,1995.255(1-2):p.49-51.
    29. Rittersma, Z.M., Microsensor applications of porous silicon:from humidity-sensitive sheet to sacrificial layer.1999:Shaker Pub.
    30.Prokes, S.M., Surface and optical properties of porous silicon. Journal of materials research,1996. 11:p.305-320.
    31. Kooij, E.S., Silicon:electrochemistry and luminescence.1997.
    32. Radeva, E., et al., Humidity adsorptive properties of thin fullerene layers studied by means of quartz micro-balance. Sensors & Actuators:B. Chemical,1997.42(1):p.11-13.
    33. Sun, H.T., et al., Humidity sensor using sol--gel-derived silica coating on quartz crystal. Sensors and Actuators B:Chemical,1993.13(1-3):p.107-110.
    34. Pascal-Delannoy, F., B. Sorli and A. Boyer, Quartz crystal microbalance (QCM) used as humidity sensor. Sensors and Actuators A:Physical,2000.84(3):p.285-291.
    35. Gluck, A., et al., PVDF-excited resonance sensors for gas flow and humidity measurements. Sensors and Actuators B:Chemical,1994.19(1-3):p.554-557.
    36. Tancrell, R.H. and M.G. Holland, Acoustic surface wave filters. Proceedings of the IEEE,1971. 59(3):p.393-409.
    37. Sinha, B.K. and M. Gouilloud, Surface acoustic wave sensors.1985, US Patent 4,512,198.
    38. Shiokawa, S. and J. Kondoh, Surface acoustic wave sensors. Japanese journal of applied physics, 2004.43(no.5 b):p.2799-2802.
    39.KALANTAR-ZADEH, K. and W. WLODARSKI, SURFACE ACOUSTIC WAVE SENSOR.2002, WO Patent WO/2002/095,940.
    40. Rayleigh, L., On waves propagated along the plane surface of an elastic solid. Proceedings of the London Mathematical Society,1885.1(1):p.4.
    41. Benes, E., et al., Comparison between BAW and SAW sensor principles. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1998.45(5):p.1314-1330.
    42. Avramov, I.D., A. Voigt and M. Rapp, Rayleigh SAW resonators using gold electrode structure for gas sensor applications in chemically reactive environments. Electronics Letters,2005.41(7): p.450-452.
    43. Wohltjen, H., Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors and Actuators,1984.5(4):p.307-325.
    44. Bao, X.Q., et al. SAW temperature sensor and remote reading system.1987:IEEE.
    45. Talbi, A., et al., Surface acoustic wave pressure sensor. Ferroelectrics,2002.273(1):p.53-58.
    46. Tiersten, H.F., D.S. Stevens and P.K. Das. Acoustic surface wave accelerometer and rotation rate sensor.1980:IEEE.
    47. Lee, Y.J., et al., Development of a SAW gas sensor for monitoring SO2 gas. Sensors and Actuators A:Physical,1998.64(2):p.173-178.
    48. Galipeau, J.D., et al., Theory, design and operation of a surface acoustic wave hydrogen sulfide microsensor. Sensors and Actuators B:Chemical,1995.24(1-3):p.49-53.
    49. Nieuwenhuizen, M.S., et al., Preliminary results with a silicon-based surface acoustic wave chemical sensor for NO2. Sensors and Actuators,1989.19(4):p.385-392.
    50. D'Amico, A., A. Palma and E. Verona, Surface acoustic wave hydrogen sensor. Sensors and Actuators,1983.3:p.31-39.
    51. Ding, B., et al., Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sensors and Actuators B:Chemical,2004.101(3):p.373-380.
    52. Rittersma, Z.M., Recent achievements in miniaturised humidity sensors--a review of transduction techniques. Sensors and Actuators A:Physical,2002.96(2-3):p.196-210.
    53. Kondoh, J., et al., Enzyme biosensor based on surface acoustic wave device. Electronics and Communications in Japan (Part Ⅱ:Electronics),1996.79(7):p.69-75.
    54. Hoshi, T., J. Anzai and T. Osa, Electrochemical deposition of avidin on the surface of a platinum electrode for enzyme sensor applications. Analytica chimica acta,1994.289(3):p.321-327.
    55. Drafts, B., Acoustic wave technology sensors. Microwave Theory and Techniques, IEEE Transactions on,2001.49(4):p.795-802.
    56. Maines, J.D. and E.G.S. Paige. Surface-acoustic-wave devices for signal processing applications. 1976.
    57. Maines, J.D. and E. Paige, Surface-acoustic-wave components, devices and applications. IEE Reviews,1973.120:p.1078-1110.
    58. Campbell, C., Surface acoustic wave devices for mobile and wireless communications.1998: Academic Pr.
    59. Hashimeto,K., Surface acoustic wave devices in telecommunications:modelling and simulation. 2000:Springer.
    60. Hays, R.M. and C.S. Hartmann, Surface-acoustic-wave devices for communications. Proceedings of the IEEE,1976.64(5):p.652-671.
    61. Mariani, E.A., R.C. Mcgowan and J.T. Stewart, Remote sensing of structural integrity using a surface acoustic wave sensor.1998, US Patent 5,821,425.
    62. Wohltjen, H., Mechanism of operation and design considerations for surface acoustic wave device vapour sensors. Sensors and Actuators,1984.5(4):p.307-325.
    63. Drafts, B., Acoustic wave technology sensors. Microwave Theory and Techniques, IEEE Transactions on,2001.49(4):p.795-802.
    64. Watson, G. and E. Staples. SAW resonators as vapor sensors:IEEE.
    65. Pohl, A., G. Ostermayer and F. Seifert, Wireless sensing using oscillator circuits locked to remote high-Q SA W resonators. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 1998.45(5):p.1161-1168.
    66. Grate, J.W. and M. Klusty, Surface acoustic wave vapor sensors based on resonator devices. Analytical Chemistry,1991.63(17):p.1719-1727.
    67. Joshi, G. and J.G. Brace. Investigation of a surface acoustic wave sensor for simultaneous detection of relative humidity and temperature.1985.
    68. Nomura, T., et al., Measurement of humidity using surface acoustic wave device. Jpn. J. Appi. Phys. Vol,1992.31:p.3070-3072.
    69. Nomura, T., T. Yasuda and S. Furukawa. Humidity Sensor Using Surface Acoustic Waves Propagating Along Polymer/LiNbO~ 3 Structures.1993:INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS INC.
    70. Nomura, T., et al., Humidity sensor using surface acoustic wave delay line with hygroscopic dielectric film. Jpn. J. Appi. Phys. Vol,1993.32:p.4205-4208.
    71. Caliendo, C., et al., Surface acoustic wave humidity sensor. Sensors and Actuators B:Chemical, 1993.16(1-3):p.288-292.
    72. Caliendo, C., E. Verona and V.I. Anisimkin, Surface acoustic wave humidity sensors:a comparison between different types of sensitive membrane. Smart Materials and Structures,1997. 6:p.707.
    73. Penza, M. and V.I. Anisimkin, Surface acoustic wave humidity sensor using polyvinyl-alcohol film. Sensors and Actuators A:Physical,1999.76(1-3):p.162-166.
    74. Cheeke, J., N. Tashtoush and N. Eddy. Surface acoustic wave humidity sensor based on the changes in the viscoelastic properties of a polymer film.2002:IEEE.
    75. Nomura, T., T. Yasuda and S. Furukawa. Humidity sensor using surface acoustic waves propagating along layered structures.2002:IEEE.
    76. Braga, E.R., A.Y. Nakano and M.P. Da Cunha. A SAW resonator sensor system employed in humidity measurements.2002:IEEE.
    77. Penza, M. and G. Cassano, Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sensors and Actuators B:Chemical,2000.68(1-3):p.300-306.
    78. Chen, Y.T. and H.L. Kao, Humidity sensors made on polyvinyl-alcohol film coated saw devices. Electronics Letters,2006.42:p.948.
    79. Kawalec, A. and M. Pasternak. Microwave Saw Humidity Sensor.2007:IEEE.
    80. Ciplys, D., et al., Effect of substrate piezoelectricity on surface acoustic wave propagation in humidity-sensitive structures with porphyrin layers. Applied Physics Letters,2009.95(17):p. 171903.
    81.Rimeika, R., et al., Fast-response surface acoustic wave humidity sensor based on hematoporphyrin film. Sensors and Actuators B:Chemical,2009.137(2):p.592-596.
    82. Itagaki, Y., S. Nakashima and Y. Sadaoka, Optical humidity sensor using porphyrin immobilized Nafion composite films. Sensors and Actuators B:Chemical,2009.142(1):p.44-48.
    83.Rimeika, R., et al. Humidity sensor using leaky surface acoustic waves in YX-LiTaO< inf> 3 with nanostructured porphyrin film.2010:IEEE.
    84. Li, Y., et al., Surface acoustic wave humidity sensors based on poly (p-diethynylbenzene) and sodium polysulfonesulfonate. Sensors and Actuators B:Chemical,2007.122(2):p.560-563.
    85. Wu, T.T., Y.Y. Chen and T.H. Chou, A high sensitivity nanomaterial based SAW humidity sensor. Journal of Physics D:Applied Physics,2008.41:p.085101.
    86. Caliendo, C., Acoustic method of investigating the material properties and humidity sensing behavior of polymer coated piezoelectric substrates. Journal of Applied Physics,2006.100:p. 054508.
    87. Kawalec, A. and M. Pasternak, A new high-frequency surface acoustic wave sensor for humidity measurement. Instrumentation and Measurement, IEEE Transactions on,2008.57(9):p. 2019-2023.
    88. Rimeika, R., et al. Humidity-sensitive SAW device based on TPPS4 nanostrip structure.2007: IEEE.
    89. Hong, H.S. and G.S. Chung, Surface acoustic wave humidity sensor based on polycrystalline AIN thin film coated with sol-gel derived nanocrystalline zinc oxide film. Sensors and Actuators B: Chemical,2010.
    90.张奕,et al.,一种谐振器型单端SAW湿敏传感器测试系统传感器世界,2007.13(005):p.13-16.
    91.王华,et al.,高频有机聚合物SAW湿敏传感器的研究压电与声光,2007.29(006):p.625-627.
    92. Zhang, H. and E.S. Kim, Micromachined acoustic resonant mass sensor. Microelectromechanical Systems, Journal of,2005.14(4):p.699-706.
    93. Martin, S.J. and A.J. Ricco. Effective utilization of acoustic wave sensor responses:simultaneous measurement of velocity and attenuation.1989:IEEE.
    94. Martin, S.J., G.C. Frye and S.D. Senturia, Dynamics and response of polymer-coated surface acoustic wave devices:effect of viscoelastic properties and film resonance. Analytical Chemistry, 1994.66(14):p.2201-2219.
    95. Grate, J.W., et al., Determination of partition coefficients from surface acoustic wave vapor sensor responses and correlation with gas-liquid chromatographic partition coefficients. Analytical Chemistry,1988.60(9):p.869-875.
    96. White, R.M., Surface elastic waves. Proceedings of the IEEE,1970.58(8):p.1238-1276.
    97. Pierce, J.R., Coupling of modes of propagation. Journal of Applied Physics,1954.25(2):p. 179-183.
    98. Cross, P.S. and R.V. Schmidt, Coupled surface-acoustic-wave resonators. AT T Technical Journal,1977.56:p.1447-1482.
    99. Joo, B.S., J.S. Huh and D.D. Lee, Fabrication of polymer SAW sensor array to classify chemical warfare agents. Sensors and Actuators B:Chemical,2007.121(1):p.47-53.
    100. Zellers, E.T. and M. Han, Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays. Analytical chemistry,1996.68(14):p. 2409-2418.
    101. Wagner, J. and M. Von Schickfus, Inductively coupled, polymer coated surface acoustic wave sensor for organic vapors. Sensors and Actuators B:Chemical,2001.76(1-3):p.58-63.
    102. Nomura, T., R. Takebayashi and A. Saitoh, Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1998.45(5):p.1261-1265.
    103. De Grotthuss, C., Memoire sur la decomposition de I'eau:et des corps qu'elle tient en dissolution a l'aide de l'electricite galvanique.1805.
    104. Su, P.G. and L.N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and Actuators B:Chemical,2007.123(1):p.501-507.
    105. Biju, K.P. and M.K.. Jain, Effect of crystallization on humidity sensing properties of sol-gel derived nanocrystalline TiO2 thin films. Thin Solid Films,2008.516(8):p.2175-2180.
    106. Pires, M.C., et al., MICROSTRUCTURE AND HUMIDITY AIR SENSITIVITY CHARACTERIZATION OF ZrO2 AND TiO2 FOR APPLICATIONSAS HUMIDITY SENSOR..
    107. Nahar, R.K., et al., A Cu-Al2O3-Al moisture sensor for high humidities. Microelectronics Reliability,1987.27(3):p.451-456.
    108. Sberveglieri, G., et al., An A12O3 sensor for low humidity content:characterization by impedance spectroscopy* 1. Sensors and Actuators B:Chemical,1996.32(1):p.1-5.
    109. Sberveglieri, G., R. Murri and N. Pinto, Characterization of porous A12O3---SiO2/Si sensor for low and medium humidity ranges. Sensors and Actuators B:Chemical,1995.23(2-3):p.177-180.
    110. Ansari, S.G., et al., The effect of humidity on an SnO2 thick-film planar resistor. Sensors and Actuators B:Chemical,1994.21(3):p.159-163.
    111. Kuang, Q., et al., High-sensitivity humidity sensor based on a single SnO2 nanowire. Journal of the American Chemical Society,2007.129(19):p.6070-6071
    112. Zhang, Y., et al., Zinc oxide nanorod and nanowire for humidity sensor. Applied surface science, 2005.242(1-2):p.212-217.
    113. Zhou, X., et al., Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film. Sensors and Actuators B:Chemical,2007.123(1):p. 299-305.
    114. Shimizu, Y.,H. Arai and T. Seiyama, Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sensors and Actuators,1985.7(1):p.11-22.
    115. Sakai, Y., Y. Sadaoka and M. Matsuguchi, Humidity sensors based on polymer thin films. Sensors and Actuators B:Chemical,1996.35(1-3):p.85-90.
    116. Lee, C.W., H.W. Rhee and M.S. Gong, Humidity sensor using epoxy resin containing quaternary ammonium salts. Sensors and Actuators B:Chemical,2001.73(2-3):p.124-129.
    117. Gong, M.S., S.W. Joo and B.K. Choi, Humidity sensor using mutually reactive copolymers containing quaternary ammonium salt and reactive function. Sensors and Actuators B:Chemical, 2002.86(1):p.81-87.
    118. Sakai, Y., et al., Humidity sensor composed of a microporous film of polyethylene-graft-poly-(2-acrylamido-2-methylpropane sulfonate). Polymer Bulletin,1987.18(6): p.501-506.
    119. Su, P.G. and C.L. Uen, A resistive-type humidity sensor using composite films prepared from poly (2-acrylamido-2-methylpropane sulfonate) and dispersed organic silicon sol. Talanta,2005.66(5): p.1247-1253.
    120. Su, P., Use of poly (2-acrylamido-2-methylpropane sulfonate) modified with tetraethyl orthosilicate as sensing material for measurement of humidity. Analytica chimica acta,2001. 449(1-2):p.103-109.
    121. Sadaoka, Y. and Y. Sakai, Humidity sensor using sintered zircon with alkali-phosphate. Journal of materials science,1985.20(8):p.3027-3033.
    122. Sadaoka, Y., Y. Sakai and S. Mitsui, Humidity sensor using zirconium phosphates and silicates. Improvements of humidity sensitivity. Sensors and actuators,1988.13(2):p.147-157.
    123. Sakai, Y., Y. Sadaoka and H. Fukumoto, Humidity-sensitive and water-resistive polymeric materials. Sensors and actuators,1988.13(3):p.243-250.
    124. Su, P.G., Y.L. Sun and C.C. Lin, A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sensors and Actuators B:Chemical,2006.115(1):p.338-343.
    125. Su, P.G. and C.S. Wang, In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor. Sensors and Actuators B:Chemical,2007.124(2):p. 303-308.
    126. Su, P.G. and S.C. Huang, Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly (2-acrylamido-2-methylpropane sulfonate) composite material. Sensors and Actuators B:Chemical,2006.113(1):p.142-149.
    127. Li, Y. and M.J. Yang, A novel highly reversible humidity sensor based on poly (2-propyn-2-furoate). Sensors and Actuators B:Chemical,2002.86(2-3):p.155-159.
    128. Zhang, T., et al., Study on humidity sensing properties based on composite materials of Li-doped mesoporous silica A-SBA-15. Sensors and Actuators B:Chemical,2008.128(2):p.482-487.
    129. Su, P.G., Y.L. Sun and C.C. Lin, Humidity sensor based on PMMA simultaneously doped with two different salts. Sensors and Actuators B:Chemical,2006.113(2):p.883-886.
    130. Feng, C.D., et al., Humidity sensing properties of Nation and sol-gel derived SiO2/Nafion composite thin films. Sensors and Actuators B:Chemical,1997.40(2-3):p.217-222.
    131. Sun, A., L. Huang and Y. Li, Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium. Sensors and Actuators B:Chemical,2009.139(2):p.543-547.
    132. Li, Y., M.J. Yang and Y. She, Humidity sensors using in situ synthesized sodium polystyrenesulfonate/ZnO nanocomposites* 1. Talanta,2004.62(4):p.707-712.
    133. Su, P.G. and L.N. Huang, Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films. Sensors and Actuators B:Chemical,2007.123(1):p.501-507.
    134. Bogue, R., Nanosensors:a review of recent progress. Sensor Review,2008.28(1):p.12-17.
    135. Jianrong, C., et al., Nanotechnology and biosensors. Biotechnology advances,2004.22(7):p. 505-518.
    136. Taurino, A.M., et al., Nanostructured TiO2 thin films prepared by supersonic beams and their application in a sensor array for the discrimination of VOC. Sensors and Actuators B:Chemical, 2003.92(3):p.292-302.
    137. Cun, W., et al., Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts. Applied Catalysis B:Environmental,2002.39(3):p.269-279.
    138. Fu, X.Q., et al., Fast humidity sensors based on CeO2 nanowires. Nanotechnology,2007.18:p. 145503.
    139. Dan, Y., et al., Intrinsic response of-graphene vapor sensors. Nano letters,2009.9(4):p-1472-1475.
    140. Huang, B., et al., Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. The Journal of Physical Chemistry C,2008.112(35):p.13442-13446.
    141. Dua, V., et al., All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angewandte Chemie,2010.122(12):p.2200-2203.
    142. Lu, G., L.E. Ocola and J. Chen, Gas detection using low-temperature reduced graphene oxide sheets. Applied Physics Letters,2009.94(8):p.083111-083111-3.
    143. Koo, B.W., C.K. Song and C. Kim, CO gas sensor based on a conducting dendrimer. Sensors and Actuators B:Chemical,2001.77(1-2):p.432-436.
    144. Kim, C., et al., Ferrocene end-capped dendrimer:synthesis and application to CO gas sensor. Synthetic metals,2001.123(3):p.493-496.
    145. Dabhade, R.V., D.S. Bodas and S.A. Gangal, Plasma-treated polymer as humidity sensing material--a feasibility study. Sensors and Actuators B:Chemical,2004.98(1):p.37-40.
    146. Lee, C.W., et al., Humidity sensors fabricated with polyelectrolyte membrane using an ink-jet printing technique and their electrical properties. Sensors and Actuators B:Chemical,2005. 109(2):p.334-340.
    147. Church, S., Del. firm installs fuel cell. The News Journal. p. B.7.
    148. Schmidt-Rohr, K. and Q. Chen, Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature materials,2007.7(1):p.75-83.
    149. Wu, R.J., et al., Composite of TiO2 nanowires and nafion as humidity sensor material. Sensors and Actuators B:Chemical,2006.115(1):p.198-204.
    150. Kong, J., et al., Nanotube molecular wires as chemical sensors. Science,2000.287(5453):p.622.
    151. Varghese, O.K., et al., Gas sensing characteristics of multi-wall carbon nanotubes. Sensors and Actuators B:Chemical,2001.81(1):p.32-41.
    152. Chen, W.P., et al., A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs). Sensors,2009.9(9):p.7431-7444.
    153. Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nature Materials, 2007.6(9):p.652-655.
    154. Ghosh, A., et al., NO 2 and humidity sensing characteristics of few-layer graphenes. Journal of Experimental Nanoscience,2009.4(4):p.313-322.
    155. Jung, I., et al., Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. The Journal of Physical Chemistry C,2008.112(51):p.20264-20268.
    156. Medhekar, N.V., et al., Hydrogen Bond Networks in Graphene Oxide Composite Paper:Structure and Mechanical Properties. ACS nano,2010.4(4):p.2300-2306.
    157. Lerf, A., et al., Hydration behavior and dynamics of water molecules in graphite oxide. Journal of Physics and Chemistry of Solids,2006.67(5-6):p.1106-1110.
    158. Brodie, B.C., On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London,1859.149:p.249-259.
    159. Staudenmaier, L., Verfahren zur darstellung der graphits ure. Berichte der deutschen chemischen Gesellschaft,1898.31(2):p.1481-1487.
    160. Hummers Jr, W.S. and R.E. Offeman, Preparation of graphitic oxide. Journal of the American Chemical Society,1958.80(6):p.1339-1339.
    161. West, J.L. and N.J. Halas, Engineered nanomaterials for biophotonics applications:improving sensing, imaging, and therapeutics. Annual Review of Biomedical Engineering,2003.5(1):p. 285-292.
    162. Subbiah, T., et al., Electrospinning of nanofibers. Journal of Applied Polymer Science,2005. 96(2):p.557-569.
    163. Huang, Z.M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology,2003.63(15):p.2223-2253.
    164. Li, D. and Y. Xia, Electrospinning of nanofibers:Reinventing the wheel? Advanced Materials, 2004.16(14):p.1151-1170.
    165. Madhugiri, S., et al., Electrospun mesoporous titanium dioxide fibers. Microporous and mesoporous materials,2004.69(1-2):p.77-83.
    166. Shao, C., et al., Electrospun nanofibers of NiO/ZnO composite. Inorganic Chemistry Communications,2004.7(5):p.625-627.
    167. Li, D. and Y. Xia, Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters,2004.4(5):p.933-938.
    168. Loscertales, I.G., et al., Electrically forced coaxial nanojets for one-step hollow nanofiber design. Journal of the American Chemical Society,2004.126(17):p.5376-5377.
    169. Fang, X. and D.H. Reneker, DNA fibers by electrospinning. Journal of Macromolecular Science, Part B,1997.36(2):p.169-173.
    170. Sarkar, S., N. Levit and G. Tepper, Deposition of polymer coatings onto SAW resonators using AC electrospray. Sensors and Actuators B:Chemical,2006.114(2):p.756-761.
    171. Ding, B., et al., Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer,2004.45(6):p.1895-1902.
    172. Zhang, Y., et al., Preparation of core-shell structured PCL-r-gelatin bi-component nanofibers by coaxial electrospinning. Chemistry of materials,2004.16(18):p.3406-3409.
    173. Li, D. and Y. Xia, Fabrication of titania nanofibers by electrospinning. Nano Letters,2003.3(4): p.555-560.
    174. Katta, P., et al., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano letters,2004.4(11):p.2215-2218.
    175. Matthews, J.A., et al., Electrospinning of collagen nanofibers. Biomacromolecules,2002.3(2):p. 232-238.
    176. Dersch, R., et al., Electrospun nanofibers:Internal structure and intrinsic orientation. Journal of Polymer Science Part A:Polymer Chemistry,2003.41(4):p.545-553.
    177. Deitzel, J.M., et al., Controlled deposition of electrospun poly (ethylene oxide) fibers. Polymer, 2001.42(19):p.8163-8170.
    178. Ding, B., et al., Gas sensors based on electrospun nanofibers. Sensors,2009.9(3):p.1609-1624.
    179. Liu, H., et al., Polymeric nanowire chemical sensor. Nano Letters,2004.4(4):p.671-675.
    180. Kwoun, S.J., et al. A novel polymer nanofiber interface for chemical sensor applications.2000: IEEE.
    181. Aussawasathien, D., J.H. Dong and L. Dai, Electrospun polymer nanofiber sensors. Synthetic metals,2005.154(1-3):p.37-40.
    182. Wang, X., et al., Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sensors and Actuators B:Chemical,2010. 144(1):p.11-17.
    183. Jaruwongrungsee, K., et al. Quartz Crystal Microbalance humidity sensor using electrospun PANI micro/nano dots.2007:IEEE.
    184. He, Y., et al., Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sensors and Actuators B:Chemical,2010.146(1):p.98-102.
    185. Li, Z., et al., Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. Journal of the American Chemical Society,2008.130(15):p.5036-5037.
    186. Qi, Q., T. Zhang and L. Wang, Improved and excellent humidity sensitivities based on KCl-doped TiO electrospun nanofibers. Applied Physics Letters,2008.93:p.023105.
    187. Qi, Q., et al., Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sensors and Actuators B:Chemical,2009.137(2):p.649-655.
    188. Li, P., et al., Electrospun nanofibers of polymer composite as a promising humidity sensitive material. Sensors and Actuators B:Chemical,2009.141(2):p.390-395.
    189. Kameoka, J., et al., A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology,2003.14:p.1124.
    190. Zong, X., et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer,2002.43(16):p.4403-4412.
    191. Shenoy, S.L., et al., Role of chain entanglements on fiber formation during electrospinning of polymer solutions:good solvent, non-specific polymer-polymer interaction limit. Polymer,2005. 46(10):p.3372-3384.
    192. Fong, H., I. Chun and D.H. Reneker, Beaded nanofibers formed during electrospinning. POLYMER-LONDON-,1999.40:p.4585-4592.
    193. Zeng, J., et al., Biodegradable electrospun fibers for drug delivery. Journal of controlled release, 2003.92(3):p.227-231.
    194. Lee, J.S., et al., Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of applied polymer science, 2004.93(4):p.1638-1646.
    195. Buchko, C.J., et al., Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer,1999.40(26):p.7397-7407.
    196. Megelski, S., et al., Micro-and nanostructured surface morphology on electrospun polymer fibers. Macromolecules,2002.35(22):p.8456-8466.
    197. Zhao, S., et al., Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions. Journal of applied polymer science,2004.91(1):p.242-246.
    198. Mo, X.M., et al., Electrospun P (LLA-CL) nanofiber:a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials,2004.25(10):p.1883-1890.
    199. Kessick, R. and G. Tepper, Microscale polymeric helical structures produced by electrospinning. Applied physics letters,2004.84:p.4807.
    200. Jarusuwannapoom, T., et al., Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European polymer journal, 2005.41(3):p.409-421.
    201. Demir, M.M., et al., Palladium nanoparticles by electrospinning from poly (acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity. Macromolecules,2004.37(5):p.1787-1792.
    202. Casper, C.L., et al., Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process. Macromolecules,2004.37(2):p. 573-578.
    203. Nimal, A.T., et al., A comparative analysis of one-port Colpitt and two-port Pierce SAW oscillators for DMMP vapor sensing. Sensors and Actuators B:Chemical,2006.114(1):p. 316-325.
    204.张奕,et al.,一种谐振器型单端SAW湿敏传感器测试系统.统传感器世界,2007.13(005):p.13-16.
    205. Li, Y., et al., A surface acoustic wave humidity sensor based on electrosprayed silicon-containing polyelectrolyte. Sensors and Actuators B:Chemical,2010.145(1):p.516-520.
    206. Wu, T.T., Y.Y. Chen and T.H. Chou, A high sensitivity nanomaterial based SAW humidity sensor. Journal of Physics D:Applied Physics,2008.41:p.085101.
    207. Tashtoush, N.M., J. Cheeke and N. Eddy, Surface acoustic wave humidity sensor based on a thin PolyXIO film. Sensors and Actuators B:Chemical,1998.49(3):p.218-225.
    208.程卫东,et al.,无线无源声表面波扭矩传感器的研究PIEZOELECTRICS & ACOUSTOOPTICS,2000.22(1).
    209.王生江 and 董永贵,基于声表面波谐振器的无线测量系统测控技术,1999.18(010):p.9-12.
    210.文玉梅,et al.,声表面波无源无线传感器研究.传感器世界,2004.10(4):p.6-10.
    211.李平and文玉梅,声表面波无源无线温度传感器系统研究.电子测量与仪器学报,2002.16(004):p.44-49.
    212.刘文辉,李平and文玉梅,一种无源无线SAW压力传感器结构设计.传感技术学报,2007.20(004):p.770-773.
    213. Duff, W.G., et al., Method and apparatus for protecting personnel from RF-triggered explosive devices (RTED) using ultra-wideband (UWB) transmission.2005, Google Patents.
    214. Gu, L. and J.A. Stankovic. Radio-triggered wake-up capability for sensor networks.2004: Citeseer.
    215. Ansari, J., D. Pankin and P. M H Nen, Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. International Journal of Wireless Information Networks,2009.16(3):p.118-130.
    216. Le-Huy, P. and S. Roy, Low-Power Wake-Up Radio for Wireless Sensor Networks. Mobile Networks and Applications,2010.15(2):p.226-236.
    217. Friis, H.T., A note on a simple transmission formula. proc. IRE,1946.34(5):p.254-256.
    218. Kulwicki, B.M., Humidity sensors. Journal of the American Ceramic Society,1991.74(4):p. 697-708.
    219.刘建,et al.,高纯气体中微量水测定方法的对比与探讨.低温与特气,2003.21(5):p.30-33.
    220.封海兵,关于温度测量技术的探讨.计量与测试技术,2007.34(7):p.57-61.
    221. Arnold, J.H., The Theory of the Psychrometer. Ⅰ. The Mechanism of Evaporation. Physics,1933. 4(7):p.255-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700