用户名: 密码: 验证码:
无模板法合成无机空心微球及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心微纳米结构由于具有低密度、高比表面积和良好的单分散性、及空心部分能容纳其它材料等优点,使其在微尺度反应器、药物传输载体、光子晶体、催化剂和能量存储等诸多领域都有着重要的应用,已成为当前纳米材料科学的前沿和热点。目前空心微纳米结构的关键科学问题主要包括以下三个方面:一是如何发展无模板法可控合成出多元成分及难以合成材料的空心微纳米结构;二是探索空心微纳米结构的空心化形成机制,为无模板法可控合成技术提供理论依据;三是实现空心微纳米结构的功能化,为其实际应用奠定基础。本论文围绕上述三个方面的科学问题展开研究。论文的主要研究成果概括如下。
     首先是采用无模板法水热合成了CaWO4和CaMoO4空心微球。通过对合成工艺的系统研究,实现了对目标产物的形貌、尺寸、几何均匀性等的精确控制。提出了“十二烷基磺酸钠(SDS)诱导Ostwald熟化”及“溶解-形核-长大-Ostwald熟化”分别是形成CaWO4和CaMoO4空心微球的主要机制;反应起始阶段形成中间产物的结构不稳定是诱发随后Ostwald熟化的关键。该研究结果证明Ostwald熟化机制可以用来合成多元化合物空心微纳米结构,为无模板法合成多元化合物空心微纳米结构提供了一条切实可行的途径。
     利用“热注入法”,在较低温度下(100○C)水相合成了具有不同厚度和直径的“面包圈状”CaMoO4微米结构,该微米结构由纳米片沿厚度方向堆积而成。通过改变反应体系的酸碱度、钼源及混合溶剂,制备出了不同直径的微球状、纺锤体状、面包圈状及复杂超结构状CaMoO4微米结构,实现了CaMoO4微米结构的可控合成。通过酸性溶液腐蚀,获得了空心“面包圈状”CaMoO4微米结构。
     在室温液相条件下合成了CdMoO4空心微球,其球壳由沿微球径向排列的纳米棒组成。该法仅使用CdCl2和Na2MoO4水溶液在室温常压下反应,不需要加热或使用表面活性剂,为直接研究空心化过程提供了良好的条件。中间产物的研究结果表明,“NaCl诱导Ostwald熟化”是形成CdMoO4空心微球的主要机制。在空心微球的形成过程中,NaCl对早期形成的CdMoO4实心微球起到稳定作用并包覆在微球表面,使得后续反应生成物CdMoO4沉积在“NaCl-稳定CdMoO4实心微球”表面上,从而形成核-壳结构;随后发生Ostwald熟化过程形成空心微球。在此基础上,通过向反应体系添加一定量的SDS,可以制备出同质CdMoO4核-壳型微球。反应过程中间产物研究表明核-壳微球的形成受“三步生长过程”控制,SDS和CdMoO4间的相互作用是形成核-壳型微球的主要原因。
     CdMoO4空心微球的UV-Vis结果表明,微球在200到370nm波段内有吸收,其带隙为3.48eV。CdMoO4空心微球的发射光谱在320-600nm波段内出现一个发射峰,峰值位于354nm,其发射光谱主要来源于[MoO42-]的电荷-迁移转变。以CdMoO4为基质,采用Eu离子掺杂,获得了一种新型红色发光体。发光光谱表明发光体在535、590及613nm处出现发射峰,且613nm处的发射峰显著强于590和535nm。
     研究还发现,CdMoO4空心微球在紫外光作用下具有光催化降解污染物的能力。经500oC热处理2h能显著提高CdMoO4空心微球的光催化效果。CdMoO4催化剂是通过O2p轨道的电荷向Mo4d轨道转移来实现光催化降解污染物。在相同条件下,CdMoO4空心微球的光催化效果优于CdMoO4实心微球,其原因源于空心微球具有更大的比表面以及壳层存在大量孔隙。提出了“化学转变诱导Ostwald熟化”机制,用来合成直接反应难以制备物质的空心微纳米结构。分别采用CaWO4和CdMoO4实心微球作为前驱体,合成了CaF2及Cd(OH)2空心微球。空心微球的形成主要通过三个过程:首先在室温水溶液条件下获得CaWO4和CdMoO4实心微球;实心微球经过化学转变,生成CaF2及Cd(OH)2实心微球;刚形成的CaF2及Cd(OH)2实心微球结构不稳定,导致Ostwald熟化发生,实心微球逐渐转变成空心微球。“化学转变诱导Ostwald熟化”机制可以用来合成一系列新型空心微纳米结构,为制备直接反应难以合成化合物的空心微纳米结构提供了新思路和途径。进一步的研究结果表明,Eu离子掺杂CaWO4实心微球可通过该机制转变成Eu离子掺杂CaF2空心微球。Eu离子掺杂CaF2空心微球表现出优异的发光性能。“化学转变诱导Ostwald熟化”机制为无机空心微纳米结构的形成机制、性能及应用研究提供了更为广阔的空间。
Inorganic hollow micro/nanostructures have been one of the research frontiers and focuses for nanomaterials field due to their low density, high specific surface area, monodispersity, stability, and novel multifunctional properties arising from combining different materials into the hollow interiors and potential applications in micro/nanoscale chemical reactors, drug-delivery carriers, photonic building blocks, efficient catalysts, energy-storage media and so forth. The key scientific questions in hollow micro/nanostructures include i) controlled synthesis of hollow micro/nanostructures with multicompositions and materials which are difficult to prepare by template-free methods; ii) investigating the formation mechanism of hollowing process, which providing theoretic evidence for the controlled synthesis; iii) realizing the functionality of hollow micro/nanostructures for the applications. In this work, we have studied the above three questions and obtained the following conclusions.
     We have developed a template-free hydrothermal process for CaWO4 and CaMoO4 hollow microspheres. Experimental results show that the morphology, size and homogenization are fine controlled by changing the reaction conditions.“Sodium dodecyl sulfate (SDS) induced Ostwald ripening”and“dissolution-nucleation-growth-Ostwald ripening”mechanisms are the main reason for the formation of CaWO4 and CaMoO4 hollow microspheres, respectively. Structural instability of intermediates formed at initial reaction process is the key step for the subsequently hollowing process. The results demonstrate that Ostwald ripening can be used for preparing ternary metal oxides with hollow interiors, which provide an efficient pathway for the synthesis of multicompositional hollow structures.
     A solution-phase hot-injection-based route has been developed for the synthesis of CaMoO4 microstructures with well-defined shapes and sizes at 100○C. The CaMoO4 doughnuts are composed of numerous nanosheets along thickness direction. Shapes such as microspheres, spindles, and complex three-dimensional structures can be produced by controlling the reaction conditions including the concentration of reactants, molar ratio between reactants, molybdenum source, pH, and the volume ratio of the mixed solvents. CaMoO4 doughnuts with hollow interiors can be obtained by etching in acetic condition.
     CdMoO4 hollow microspheres have been prepared via a template-free aqueous solution method at room temperature. The shell is composed of nanorods along diameter direction. Using CdCl2 and Na2MoO4 as the starting reaction reagents without surfactants and heating, this method provides a suitable way to investigate the formation mechanism of the hollowing process. The results of intermediates obtained at different reaction times show that“NaCl induced Ostwald ripening”is account for the hollow structures. It is believed that core-shell CdMoO4 microspheres are formed first by a two-step precipitation process: precipitation of solid cores and subsequent precipitation of the outer shell onto ionic species (Na+ and Cl-)-stabilized cores. The core has a strong tendency to dissolve because of high surface energies compared to those in the outer shells, providing the driving force for Ostwald ripening. By adding a suitable amount of SDS, homogenous CdMoO4 core-shell microspheres are prepared. A possible three-step growth mechanism is presented for the formation of homogenous core-shell CdMoO4 microspheres. The mutual effect between SDS and CdMoO4 is the main reason for core-shell microspheres.
     UV-Vis spectrum of CdMoO4 hollow microspheres shows that there is a strong absorption peak in the wavelength of 200-370 nm. The Eg is 3.48eV. PL spectrum shows a strong and broad emission band centered at 354 nm, originating from the charge-transfer transitions within the [MoO42-] complex. A new Eu-doped CdMoO4 red phosphor was prepared by a similar aqueous solution process at room temperature. The phosphor exhibits three emissions at 535, 590 and 613 nm, while a dominant red emission at 613 nm at room temperature.
     We report for the first time the photocatalytic activity of the hollow CdMoO4 microspheres in the degradation of Rhodamine B (RhB) under UV light irradiation. Calcination the CdMoO4 microspheres at 500 oC for 2 h significantly enhance the photocatalytic activity. The photooxidation of the pollutant over CdMoO4 photocatalyst occurs from the charge transfer from the O 2p orbitals to empty Mo 4d orbitals. The CdMoO4 hollow microspheres after calcinating at 500 oC for 2 h exhibit higher photocatalytic efficiency than that of corresponding solid microspheres under the same conditions. The effective photocatalytic activity of hollow microspheres is related to their hollow structures, which possess plenty of meso- and macro-pores in the shells.
     “Chemical conversion induced Ostwald ripening”is developed for the synthesis of hollow microstructures which are difficult to prepare by general methods. CaF2 and Cd(OH)2 hollow microspheres are prepared by using CaWO4 and CdMoO4 solid microspheres as precursor, respectively. It has been shown that the formation process includes three important steps: the first formation of CaWO4 or CdMoO4 solid microspheres by direct precipitation process; the chemical conversion of CaWO4 or CdMoO4 solid microspheres to CaF2 or Cd(OH)2 solid microspheres; and finally hollowing process via Ostwald ripening in the CaWO4 or Cd(OH)2 solid microspheres to form corresponding hollow spheres.“Chemical conversion induced Ostwald ripening”is a universal method, providing a new strategy and pathway for the synthesis of hollow micro/nanostructures which are difficult to prepare by general methods. Further study shows that Eu-doped CaWO4 solid microspheres can be tranferred to Eu-doped CaF2 hollow microspheres, which exhibit excellent optical properties. These results indicate that the“chemical conversion induced Ostwald ripening”method opens new insights for the formation mechanism, properties and applications of hollow micro/nanostructures.
引文
1.张立德.纳米材料学.辽宁科学技术出版社. 1994.
    2.张立德.纳米材料研究进展及在21世纪的战略地位.中国粉体技术. 2002, 6: 1-6.
    3.解思深,邹小平.纳米材料与物理学.大学物理. 2000, 19:1-4.
    4 V. Balzani. Nanoscience and Nanotechnology: A Personal View of a Chemist. Small. 2005, 1: 278-283.
    5. G. M. Whitesides. Nanoscience, Nanotechnology, and Chemistry. Small. 2005, 1: 172-279.
    6.张立德,解思深.纳米材料和纳米结构-国家重大基础研究项目新进展.化工工业出版社. 2005.
    7. S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354: 56.
    8. Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan. Advanced Materials. 2003, 15: 353-389.
    9. Y. J. Xiong, B. T. Mayers, Y. N. Xia. Some Recent Developments in the Chemical Synthesis of Inorganic Nanotubes. Chemical Communications. 2005, 5013-5022.
    10. R. Tennu. Inorganic Nanotubes and Fullerene-Like Materials. Chemistry-A European Journal. 2002, 8: 5296-5304.
    11. C. N. R. Rao, F. L. Deepak, G. Gundiah, A. Govindaraj. Inorganic Nanowires. Progress in Solid State Chemistry. 2003, 31: 5-147.
    12. G. R. Patzke, F. Krumeich, R. Nesper. Oxide Nanotubes and Nanorods- Anisotropic Modules for a Future Nanotechnology. Angewandte Chemie International Edition. 2002, 41: 2446-2461.
    13. M. Steinhart, R. B. Wehrpohn, U. Gesele, J. H. Wendorff. Nanotubes by Template Wetting: A Modular Assembly System. Angewandte Chemie International Edition. 2004, 43: 1334-1344.
    14. S. Kumar, T. Nann. Shape-Controlled of II-VI Semiconductor Nanomaterials. Small. 2006, 2: 316-329.
    15. J. Goldberger, R. Fan, P. D. Yang. Inorganic Nanotubes: A Novel Plateform for Nanofluidics. Accounts of Chemical Research. 2006, 39: 239-248.
    16. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker. Logical Circuits with Carbon Nanotube Transistors. Science. 2001, 294: 1317-1320.
    17. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Q. Yan, A. V. Maslov, K. Knutsen, C. Z. Ning, R. J. Saykally, P. D. Yang. Optical Routing and Sensing with Nanowire Assemblies. Proceedings of the National Academy of Sciences. 2005, 102: 7800-7805.
    18. F. Patolsky, B. P. Timko, G. H. Yu, Y. Fang, A. B. Greytak, G. F. Zheng, C. M. Lieber. Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays. Science. 2006, 313: 1100-1104.
    19. Z. L. Wang. The New Field of Nanopiezotronics. Materials Today. 2007, 10: 20-28.
    20 M. Lee, J. Im, B. Y. Lee1, S. Myumg, J. Kang, L. Huang, Y.-K. Kwon, S. Hong. Linker-Free Directed Assembly of High-Performance Integrated Devices Based on Nanotubes and Nanowires. Nature Nanotechnology. 2006, 1: 66-71.
    21. F. Patolsky, C. M. Lieber. Nanowire Nanosensors. Materials Today. 2006, 9: 20-28.
    22. R. S. Friedman, M. C. McAlpine, D. S. Ricketts, D. Ham, C. M. Lieber. High-Speed Integrated Nanowire Circuits. Nature. 2005, 434: 1085-1085.
    23. A. J. Mieszawska, R. Jalilian, G. U. Sumanasekera, F. P. Zamborini. The Synthesis and Fabrication of One-Dimensional Nanoscale Heterojunctions. Small. 2007, 3: 722-756.
    24. C. Burda, X. B. Chen, R. Narayanan, M. A. El-Sayed. Chemistry and Properties of Nanocrystals of Different Shapes. Chemical Review. 2005, 105: 1025-1102.
    25. K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg, L. Samuelson. Synthesis of Branched Nanotrees by Controlled Seeding of Multiple Branching Events. Nature Materials. 2006, 3: 380-383.
    26. L. J. Lauhon, M. S. Gudlksen, D. Wang, C. M. Liber. Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures. Science. 2002, 420: 57-61.
    27. X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang. Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts. Science. 2004, 303: 1348-1351.
    28. P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang. Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices. Science. 2005, 309: 1700-1704.
    29. J. Q. Hu, Y. Bando, J. H. Zhan, X. L. Yuan, T. Sekiguchi, D. Golberg. Self-Assembly of SiO2 Nanowires and Si Microwires into Hierarchical Heterostructures on a Large Scale. Advanced Materials. 2005, 17: 971-975.
    30. H. J. Fan, P. Werner, M. Zacharias. Semiconductor Nanowires: From Self-Organizatin to Patterned Growth. Small. 2006, 2: 700-717.
    31. R.He, P. D. Yang. Giant Piezoresistance Effect in Silicon Nanowires. Nature Nanotechnology. 2006, 1: 42-46.
    32. Z. L. Wang, J. H. Song. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science. 2006, 312: 1954-1958.
    33. X. D. Wang, J. H. Song, J. Liu, Z. L. Wang. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science. 2007, 316: 102-105.
    34. Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. B. Chen, X. Q. Pan, W. Lu. High-Performance Transparent Conducting Oxide Nanowires. Nano Letters. 2006, 6: 2909-2915.
    35. A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel, S. Jin. Synthesis and Properties of Single-Crystal FeSi Nanowires. Nano Letters. 2006, 6: 1617-1621.
    36. H. C. Zeng. Synthesis Architecture of Interior Space for Inoganic Nanostructures. Journal of Materials Chemistry. 2006, 16: 649-662.
    37. U. Jeong, Y. L. Wang, M. Ibisate, Y. N. Xia. Some New Developments in the Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres. Advanced Functional Materials. 2005, 15: 1907-1921.
    38. Y. N. Xia, B. Gates, Y. D. Yin, Y. Lu. Monodispersive Colloidal Spheres: Old Materials with New Applications. Advanced Functional Materials. 2001, 12: 693-713.
    39. P. Jiang, J. F. Bertone, V. L. Colvin. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. Science. 2001, 291: 453-457.
    40 F. Caruso, R. A. Caruso, H. Mohwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282: 1111-1114.
    41. R. A. Caruso, A. Susha, F. Caruso. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres. Chemistry of Materials. 2001, 13: 400-409.
    42. K. P. Velikov, A. V. Blaaderen. Synthesis and Characterization of Monodispersive Core-Shell Colloidal Spheres of Zinc Sulfide and Silica. Langmuir. 2001, 17: 4779-4786.
    43. M. L. Breen, A. D. Dinsmore, R. H. Pink, S. B. Qadri. B. R. Ratna. Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals. Langmuir. 2001, 17: 903-907.
    44. V. S. Maceira, F. Caruso, L. M. LizMarzan. Coated Colloids with Tailored Optical Properties. Journal of Physical Chemistry B. 2003, 107: 10990-10994.
    45. F. Caruso, M. Spasova, A. Susha. Magnetic Nanocomposite Particles and Hollow Spheres Constructed by a Sequential Layering Approach. Chemistry of Materials. 2001, 13: 109-116.
    46. Z. Y. Zhong, Y. D. Yin, B. Gates, Y. N. Xia. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials. 2000, 12: 206-209.
    47. X. M. Sun, Y. D. Li. Ga2O3 and GaN Semiconductor Hollow Spheres. Angewandte Chemie International Edition. 2004, 43: 3827-3831.
    48. X. M. Sun, J. F. Liu, and Y. D. Li. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres. Chemistry-A European Journal. 2006, 12: 2039-2047.
    49. U. Jeong, J.-U. Kim, Y. N. Xia, Z. Y. Li. Monodispersed Spherical Colloids of Se@CdSe: Synthesis and Use as Building Blocks in Fabricating Photonic Crystals. Nano Letters. 2005, 5: 937-942.
    50. W. Zhu, W. Z. Wang, J. L. Shi. A Reverse Cation-Exchange Route to Hollow PbSe Nanospheres Evolving from Se/Ag2Se Core/Shell Colloids. Journal of Physical Chemistry B. 2006, 110: 9785-9790.
    51. W. Li, X. Sha, W. Dong. Synthesis if Stable Hollow Silica Microspheres with Mesoporous Shell in Nonionic W/O Emulsion. Chemical Communications. 2002, 2434-2435.
    52. K. B. Thurmond, T. Kowalewski, K. L. Wooley. Shell Cross-Linked Knedels:A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres. Journal of the American Chemical Society. 1997, 119: 6656-6665.
    53. J. C. Bao, Y. Y. Liang, Z. Xu, L. Shi. Facile Synthesis of Hollow Nickel Submicrometer Spheres. Advanced Materials. 2003, 15: 1832-1835.
    54. Q. Liu, H. J. Liu, M. Han, J. M. Zhu, Y. Y. Liang, Z. Xu, Y. Song. Nanometer-Sized Nickel Hollow Spheres. Advanced Materials. 2005, 17: 1995-1999.
    55. M. S. Mo, J. C. Yu, L. Z. Zhang, S.-K. A. Li. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres. Advanced Materials. 2005, 17: 756-760.
    56. Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions. Langmuir. 2003, 19: 4040-4042.
    57. Y. R. Ma, L. M. Qi, J. M. Ma, H. M. Cheng, W. Shen. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir. 2003, 19: 9079-9085.
    58. T. He, D. R. Chen, X. L. Jiao, Y. L. Wang. Co3O4 Nanoboxes: Surfactant- Templated Fabrication and Microstructure Characterization. Advanced Materials. 2006, 18: 1078-1082.
    59. D. B. Zhang, L. M. Qi, J. M. Ma, H. M. Cheng. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions. Advanced Materials. 2002, 14: 1499-1502.
    60. S. F. Wang, F. Gu, M. K. Lu. Sonochemical Synthesis of Hollow PbS Nanospheres. Langmuir 2006, 22: 398-401
    61. S. Y. Gao, H. J. Zhang, X. M. Wang, R. P. Deng, D. H. Sun, G. L. Zheng. ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods. Journal of Physical Chemistry B. 2006, 110: 15847-15852.
    62. L. M. Qi, L. Li, J. M. Ma. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Advanced Materials. 2002, 14: 300-303.
    63. H. L. Xu, W. Z. Wang. Template Synthesis of Multishelled Cu2O Hollow Spheres with a Single-Crystalline Shell Wall. Angewandte ChemieInternational Edition. 2007, 46: 1489-1492.
    64. C. Z. Wu, Y. Xie, L. Y. Lei, S. Q. Hu, C. Z. Ouyang. Synthesis of New-Phased VOOH Hollow“Dandelions”and Their Application in Lithium-Ion Batteries. Advanced Materals. 2006, 18: 1727-1732.
    65. Q. Peng, Y. J. Dong, Y. D. Li. ZnSe Semiconductor Hollow Microspheres. Angewandte Chemie International Edition. 2003, 42: 3027-3030.
    66. L. Guo, F. Liang, X. G. Wen, S. H. Yang, L. He, W. Z. Zheng, C. P. Chen, Q. P. Zhong. Uniform Magnetic Chains of Hollow Cobalt Mesospheres from One-Pot Synthesis and Their Assembly in Solution. Advanced Functional Materials. 2007, 17: 425-430.
    67. B. Liu, H. C. Zeng. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core–Shell Semiconductors. Small. 2005, 1: 566-571.
    68. H. G. Yang, H. C. Zeng. Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. Journal of Physical Chemistry B. 2004, 108: 3492-3495.
    69. Y. Chang, J. J. Teo, H. C. Zeng. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir. 2005, 21: 1074-1079.
    70. Y. H. Zheng, Y. Cheng, Y. S. Wang, L. H. Zhou, F. Bao, C. Jia. Metastableγ-MnS Hierarchical Architectures: Synthesis, Characterization, and Growth Mechanism. Journal of Physical Chemistry B. 2006, 110: 8284-8288.
    71. X. B. Cao, L. Gu, L. J. Zhuge, W. J. Gao, W. C. Wang, S. F. Wu. Template-Free Preparation of Hollow Sb2S3 Microspheres as Supports for Ag Nanoparticles and Photocatalytic Properties of the Constructed Metal-Semiconductor Nanostructures. Advanced Functional Materials. 2006, 16: 896-902.
    72. B. X. Li, G. X. Rong, Y. Xie, L. F. Huang, C. Q. Feng. Low-Temperature Synthesis of r-MnO2 Hollow Urchins and Their Application in Rechargeable Li+ Batteries. Inorganic Chemistry. 2006, 45: 6404-6410.
    73. X. W. Lou, C. L. Yuan, E. Rhoades, Q. Zhang, L. A. Archer. Encapsulation and Ostwald Ripening of Au and Au–Cl Complex Nanostructures in Silica Shells. Advanced Functional Materials. 2006, 16: 1679-1684.
    74. E. O. Kirkendall. Diffusion of Zinc in Alpha Brass. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers. 1942, 147: 104-110.
    75. A. D. Smigelskas, E. O. Kirkendall. Zinc Diffusion in Alpha Brass. Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers. 1947, 171: 130-142.
    76. Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Formation of Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Science. 2004, 304: 711-714.
    77. Y. D. Yin, C. K. Erdonmez, A. Cabot, S. Hughes, A. P. Alivisatos. Colloidal Synthesis of Hollow Cobalt Sulfide Nanocrystals. Advanced Functional Materials. 2006, 16: 1389-1399.
    78. Y. L. Wang, L. Cai, Y. N. Xia. Monadisperse Spherical Colloids of Pb and Their Use as Chemical Templates to Produce Hollow Particles. Advanced Materials. 2005, 17: 473-477.
    79. M. H. Chen, L. Gao. Synthesis and Characterization of Ag Nanoshells by a Facile Sacrificial Template Route through in situ Replacement Reaction. Inorganic Chemistry. 2006, 45: 5145-5149.
    80. R.-K. Chiang, R.-T. Chiang. Formation of Hollow Ni2P nanoparticles Based on the Nanoscale Kirkendall Effect. Inorganic Chemistry. 2007, 46: 369-371.
    81. B. Liu, H. C. Zeng. Fabrication of ZnO Dandelions via a Modified Kirkendall Process. Journal of the American Chemical Society. 2004, 126: 16744-16746.
    82. J. H. Gao, B. Zhang, X. X.Zhang, B. Xu. Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalts Selenide. Angewandte Chemie International Edition. 2006, 45: 1220-1223.
    83. S. Peng, S. H. Sun. Synthesis and Characterization of Monodispersive Hollow Fe3O4 Nanoparticles. Angewandte Chemie International Edition. 2007, 46: 4155-4158.
    84. H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gosele. Monocrystalline Spinel Nanotube Fabrication Based on the Kirkendall Effect. Nature Materials. 2006, 5: 627-631.
    85. C. H. B. Nd, H. Tan, W. Y. Fan. Formation of Ag2Se nanotubes and Dendrite-Like Structures from UV Irradiation of a CdSe/Ag Colloidal Solution. Langmuir. 2006, 22: 9712-9717.
    86. S. H. Jiao, L. F. Xu, K. Jiang, D. S. Xu. Well-Defined Non-Spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating. Advanced Materials. 2006, 18: 1774-1777.
    87. H. L. Cao, X. F. Qian, C. Wang, X. D. Ma, J. Yin, Z. K. Zhu. High Symmetric 18-Facet Polyhedron Nanocrystals of Cu7S4 with a Hollow Nanocages. Journal of the American Chemical Society. 2005, 127: 16024-16025.
    88. H. L. Cao, X. F. Qian, J. T. Zai, J. Yin, Z. K. Zhu. Conversion of Cu2O Nanocrystals into Holloe Cu2-xSe Nanocages with the Preservation of Morphologies. Chemical Communications. 2006, 4548-4550.
    89. H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gosele. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept. Nano Letters. 2007, 4: 993-997.
    90. R. L. Penn, J. F. Banfield. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science. 1998, 281: 969-971.
    91. J. F. Banfield, S. A. Welech, H. Zhang, T. T. Ebert, R. L. Penn. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science. 2000, 289: 751-754.
    92. M. Niederberger, H. Colfen. Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanism Based on Nanoparticle Assembly. Physical Chemistry Chemical Physics. 2006, 8: 3271-3287.
    93. A. W. Xu, Y. R. Ma, H. Colfen. Biomimetic Mineralization. Journal of Materials Chemistry. 2007, 17: 415-449.
    94. P. Shen, Y. Y. Fahn, A. C. Su. Imperfect Oriented Attachment: Accretion and Defect Generation of Hexagonal Inorganic-Surfactant Nanoparticles. Nano Letters. 2001, 1: 299-303.
    95. C. Pacholski, A. Kornowski, H. Weller. Self-Assembly of ZnO: From Nanodots to Nanorods. Angewandte Chemie International Edition. 2002, 41: 1188-1191.
    96. Y. W. Jun, J. S. Choi, J. Cheon. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Route. AngewandteChemie International Edition. 2006, 45: 3414-3439.
    97. C. Pacholski, A. Kornowski, H. Weller. Self-Assembly of ZnO: From Nanodots to Nanorods. Angewandte Chemie International Edition. 2002, 41: 1188-1191.
    98. K. S. Cho, D. V. Talapin, W. Gaschler, C. B. Murray. Designing PbSe Nanowires and Nanorings through Oriented Attachemnet of Nanoparticles. Journal of the American Chemical Society. 2005, 127: 7140-7147.
    99. J. H. Yu, J. Joo, H. M. Park, S.-II Baik, Y. W. Kim, S. C. Kim, T. Hyeon. Synthesis of Quantum-Sized Cubic ZnS Nanorods by the Oriented Attachment Mechanism. Journal of the American Chemical Society. 2005, 127: 5662-5670
    100. C. Ribeiro, E. J. H. Lee, E. Longo, E. R. Leite. A Kinetic Model to Describe Nanocrystal Growth by the Oriented Attachment Mechanism. ChemPhysChem. 2005, 6: 690-696.
    101. B. Liu, H. C. Zeng. Mesoscale Organization of CuO Nanoribbons: Formation of Dandelions. Journal of the American Chemical Society. 2004, 126: 8124-8125.
    102. D. B. Yu, X. Q. Sun, J. W. Zou, Z. R. Wang, F. Wang, K. Tang. Oriented Assembly of Fe3O4 Nanoparticles into Monodisperse Hollow Single-Crystalline Microspheres. Journal of Physical Chemistry B. 2006, 110: 21667-21671.
    103. J. J. Miao, R. L. Fu, J. M. Zhu, K. Xu, J. J. Zhu, H. Y. Chen. Fabrication of Cd(OH)2 Nanorings by Ultrasonic Chiselling on Cd(OH)2 Nanoplates. Chemical Communications. 2006, 3013-3015.
    104 T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. Journal of the American Chemical Society. 2003, 125: 6386-6387.
    105. Y. G. Sun, B. Wiley, Z. Y. Li, Y. N. Xia. Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys. Journal of the American Chemical Society. 2004, 126: 9399-9406.
    106. Y. G. Sun, Y. N. Xia. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. Journal of the American Chemical Society. 2004, 126: 3892-3901.
    107. Y. J. Xiong, B. Wiley, J. Y. Chen, Z. Y Li, Y. D. Yin, Y. N. Xia. Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie International Edition. 2005, 44: 7913-7917.
    108. J. G.. Yu, H. T. Guo, S. A. Davis, S. Mann. Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-Transformation. Advanced Functional Materials. 2006, 16: 2035-2041.
    109. X. W. Lou, C. L. Yuan, Q. Zhang, L. A. Archer. Platinum-Functionalized Octahedral Silica Nanocages: Synthesis and Characterization. Angewandte Chemie International Edition. 2006, 45: 3825-3829.
    110. G. Z. Shen, D. Chen. Self-Coiling of Ag2V4O11 Nanobelts into Perfect Nanorings and Microloops. Journal of the American Chemical Society. 2006, 128: 11762-11767.
    111. H. B. Lu, L. Liao, D. F. Wang, H. He, Q. Fu, L. Xu, Y. Tian. High Surface-to-Volume Ratio ZnO Microberets: Low Temperature Synthesis, Characterization, and Photoluminescence. Journal of Physical Chemistry B. 2006, 110: 23211-23214.
    112. Y. W. Ma, K. F. Huo, Q. Wu, Y. N. Lu, Y. M. Hu, Z. Hu, Y Chen. Self-Templated Synthesis of Polycrystalline Hollow Aluminium Nitride Nanospheres. Journal of Materials Chemistry. 2006, 16: 2834-2838.
    113. F. B. Su, X. S. Zhao, Y. Wang, L. K. Wang, J. Y. Lee. Hollow Carbon Spheres with a Controllable Shell Structure. Journal of Materials Chemistry. 2006, 16: 4413-4419.
    114. Y. Wang, F. B. Su, J. Y. Lee, d X. S. Zhao. Crystalline Carbon Hollow Spheres, Crystalline Carbon-SnO2 Hollow Spheres, and Crystalline SnO2 Hollow Spheres: Synthesis and Performance in Reversible Li-Ion Storage. Chemistry of Materials. 2006, 18: 1347-1353.
    115. Y. Liu, Y. Chu, Y.J. Zhuo, L. H. Dong, L. L. Li, M. Y. Li. Controlled Synthesis of Various Hollow Cu Nano/MicroStructures via a Novel Reduction Route. Advanced Functional Materials. 2007, 17: 933-938.
    116. C.-C. Huang, J. R. Hwu, W.-C. Su, D.-B. Shieh, Y. H.Tzeng, C.-S. Yeh. Surfactant-Assisted Hollowing of Cu Nanoparticles Involving Halide-Induced Corrosion–Oxidation Processes. Chemistry-A European Journal.2006, 12: 3805- 3810.
    117. B. Mayers, X. C. Jiang, D. Sunderland, B. Cattle, Y. N. Xia. Hollow Nanostructures of Platinum with Controllable Dimensions Can be Synthesized by Templating Against Selenium Nanowires and Colloids. Journal of the American Chemical Society. 2003, 125: 13364-13365.
    118. R. Z. Yang, H. Li, X. P. Qiu, L. Q. Chen. A Spontaneous Combustion Reaction for Synthesizing Pt Hollow Capsules Using Colloidal Carbon Spheres as Templates. Chemistry-A European Journal. 2006, 12: 4083-4090.
    119. X. M. Lu, H.-Y. Tuan, J. Y. Chen, B. A. Korgel, Y. N. Xia. Mechanistic Studies on the Galvanic Replacement Reaction between Multiply Twinned Particles of Ag and HAuCl4 in an Organic Medium. Journal of the American Chemical Society. 2007, 129: 1733-1742.
    120. F. Q. Sun, J, C. Yu, Photochemical Preparation of Two-Dimensional Gold Spherical Pore and Hollow Sphere Arrays on a Solution Surface. Angewandte Chemie International Edition. 2007, 46: 773-777
    121. X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer. Tempalte-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Advanced Materials. 2006, 18: 2325-2329.
    122. Y. Lu, J. McLellan, Y. N. Xia. Synthesis and Crysallization of Hybrid Spherical Colloids Composed of Polystyrene Cores and Silica Shells. Langmuir. 2004, 20: 3464-3470.
    123. M. Chen, L. M. Wu, S. X. Zhou, B. You. A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Advanced Materials. 2006, 18: 801-806.
    124. P. Wang, D. Chen, F. Q. Tang. Prparation of Titania-Coated Polystyrene Particles in Mixed Solvents by Ammonia Catalysis. Langmuir. 2006, 22: 4832-4835.
    125. X. J. Cheng, M. Chen, L. M. Wu, G. X. Gu. Novel and Facile Method for the Preparation of Monodispersed Titania Hollow Spheres. Langmuir. 2006, 22: 3858-3863.
    126. L. Shi, Y. M. Xu, Q. Li. One-Step Preparation of MgO Hollow Spheres and Hexagonal Cylinders via Zn Templates. Journal of Nanoscience andNanotechnology. 2006, 6: 185-189.
    127. L. L. Li, Y. Chu, Y. Liu, L. H. Dong. Template-Free Synthesis and Photocatalytic Properties of Novel Fe2O3 Hollow Spheres. Journal of Physical Chemistry C. 2007, 111: 2123-2127.
    128. J. H. Bang, K. S. Suslick. Sonochemical Synthesis of Nanosized Hollow Hematite. Journal of the American Chemical Society. 2007, 129: 2242-2243.
    129. B. X. Li, Y. Xie, M. Jing, G. X. Rong, Y. C. Tang, G. Z. Zhang. In2O3 Hollow Microspheres: Synthesis from Designed In(OH)3 Precursors and Applications in Gas Sensors and Photocatalysis. Langmuir. 2006, 22: 9380-9385.
    130. Z. H. Dai, J. Zhang, J. C. Bao, X. H. Huang, X. Y. Mo. Facile Synthesis of High-Quality Nano-Sized CdS Hollow Spheres and Their Application in Electrogenerated Chemiluminescence Sensing. Journal of Materials Chemistry. 2007, 17: 1087-1093.
    131. N. A. Dhas, K. S. Suslick. Sonochemical Preparation of Hollow anospheres and Hollow Nanocrystals. Journal of the American Chemical Society. 2005, 127: 2368-2369.
    132. Y. Zhang, E.W. Shi, Z. Z. Chen, X. B. Li, B. Xiao. Large-Scale Fabrication of Silicon Carbide Hollow Spheres. Journal of Materials Chemistry. 2006, 16: 4141-4145.
    133. F. Y. Cheng, H. Ma, Y. M. Li, J. Chen. Ni1-xPtx (x = 0-0.12) Hollow Spheres as Catalysts for Hydrogen Generation from Ammonia Borane. Inorganic Chemistry. 2007, 46: 788-794.
    134. Y. Vasquez, A. K. Sra, R. E. Schaak. One-Pot Synthesis of Hollow Superparamagnetic CoPt Nanospheres. Journal of the American Chemical Society. 2005, 127: 12504-12505.
    135. X. J. Zhang, D. Li. Metal-Compound-Induced Vesicles as Efficient Directors for Rapid Synthesis of Hollow Alloy Spheres. Angewandte Chemie International Edition. 2006, 45: 5971-5974.
    136. Y. B. Mao, T.-J. Park, S. S. Wong. Synthesis of Classes of Ternary Metal Oxide Nanostructures. Chemical Communications. 2005, 5721-5735.
    137. J. J. Urban, W. S. Yun, Q. Gu, H. K. Park. Synthesis of Single-CrystallinePerovskite Nanorods Composed of Barium Titanate and Strontium Titanate. Journal of the American Chemical Society. 2002, 124: 1186-1187.
    138. B. A. Hernandez-Sanchez, K. S. Chang, M. T. Scancella, J. L. Burris, S. Kohli, E. R. Fisher, P. K. Dorhout. Examination of Size-Induced Ferroelectric Phase Transitions in Template Synthesized PbTiO3 Nanotubes and Nanofibers. Chemistry of Materials. 2005, 17: 5909-5919.
    139. Y. B. Mao, S. Banerjee, S. S. Wong. Large-Scale Synthesis of Single-Crystalline Peroskite Nanostructures. Journal of the American Chemical Society. 2003, 125: 15718-15719.
    140. X. M. Sun, X. Chen, Y. D. Li. Large-Scale Synthesis of Sodium and Potassium Titanate Nanobelts. Inorganic Chemistry. 2002, 41: 4996-4998.
    141. C. Y. Xu, Q. Zhang, H. Zhang, L. Zhen, J. Tang, L. C. Qin. Synthesis and Caracterization of Single-Crystalline Alkali Titanate Nanowires. Journal of the American Chemical Society. 2005, 127: 11584-11585.
    142. J. G. Yu, J. C. Yu, W. K. Ho, L. Wu, X. C. Wang. A Simple and General Method for the Synthesis of Multicomponent Na2V6O16·3H2O Single-Crystalline Nanobelts. Journal of the American Chemical Society. 2004, 126: 3422-3433.
    143. L. M. Qi, J. M. Ma, H. M. Cheng, Z. G. Zhao. Reverse Micelle Based Fomation of BaCO3 Nanowires. Journal of Physical Chemistry B. 1997, 101: 3460-3463.
    144. M. H. Cao, X. L. Wu, X. Y. He, C. W. Hu. Microemulsion-Mediated Solvothermal Synthesis of SrCO3 Nanostructures. Langmuir. 2005, 21: 6093-6090.
    145. T. X. Wang, A. W. Xu, H. Colfen. Formation of Self-Organized Dynamic Structure Patterns of Barium Carbonate Crystals in Polymer-Controlled Crystallization. Angewandte Chemie International Edition. 2006, 45: 4745-4750. 4451-4455.
    146. Y. B. Mao, S. S. Wong. General, Room Temperature Method for the Synthesis of Isolated as Well as Arrays of Single-Crystalline ABO4-Type Nanorods. Journal of the American Chemical Society. 2004, 126: 15245-15252.
    147. J. H. Liang, O. Peng, X. Wang, X. Zheng, R. J. Wang, X. P. Qiu, C. W. Nan,Y. D. Li. Chromate Nanorods/Nanobelts: General Synthesis, Characterization, and Properties. Inorganic Chemistry. 2005, 44: 9405-9415.
    148. B. Liu, S. H. Yu, L. J. Li, Q. Zhang, F. Zhang, K. Jiang. Morphology Control of Stolzite Microcrystals with High Hierarchy in Solution. Angewandte Chemie International Edition. 2002, 41: 4745-4750.
    149. S. H.Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian. General Synthesis of Single-Crystalline Tungstate Nanorods/Nanowires: A Facile, Low-Temperature Solution Approach. Advanced Functional Materials. 2003, 13: 639-647.
    150. X. L. Lu, T. Zhang, J. F. Qu, C. G. Jin, X. G. Li. Microstructure and Superconductivity of La1.85Sr0.15CuO4 Nanowire Arrays. Advanced Functional Materials. 2006, 16: 1754-1758.
    151. L. M. Qi, J. Li, J. M. Ma. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers. Advanced Materials. 2002, 14: 300-303.
    152. Y. X. Gao, S. H. Yu, H. P. Cong, J. Jiang, A. W. Xu, W. F. Dong, H. Co1lfen. Block-Copolymer-Controlled Growth of CaCO3 Microrings. Journal of Physical Chemistry B. 2006, 110: 6432-6436.
    153. X. F. Zhao, T. K. Li, Y. Y. Xi, D. H. L. Ng, Jiaguo Yu. Synthesis of BaWO4 Hollow Structures. Crystal Growth & Design. 2006, 6: 2210-2213.
    154. J. Geng, J. J. Zhu, D. J. Lu, H. Y. Chen. Hollow PbWO4 Nanospindles via a Facile Sonochemical Route. Inorganic Chemistry. 2006, 45: 8403-8407.
    155. J. H. Yang, L. M. Qi, C. H. Lu, J. M. Ma, H. M. Cheng. Cages by Self-Assembly Coupled with Precursor Crystal Templating. Angewandte Chemie International Edition. 2005, 44: 598-603.
    156. C. Luo, D. F. Xue. Mild, Quasireverse Emulsion Route to Submicrometer Lithium Niobate Hollow Spheres. Langmuir. 2006, 22: 9914-9918.
    157. D. B. Wang, C. X. Song, Z. S. Hu, X. Fu. Fabrication of Hollow Spheres and Thin Films of Nickel Hydroxide and Nickel Oxide with Hierarchical Structures. Journal of Physical Chemistry B. 2005, 109: 1125-1129.
    158. H. L. Zhu, K. H. Yao, H. Zhang, D. R. Yang. InOOH Hollow Spheres Synthesized by a Simple Hydrothermal Reaction. Journal of PhysicalChemistry B. 2005, 109: 20676-20679.
    159. E. Yablonovitch. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters. 1987, 58: 2486
    160. P. V. Braun, S. A. Rinne, F. Garcia-Santamaria. Introducing Defects in 3D Photonic Crystals: State of the Art. Advanced Materials. 2006, 18: 2665-2678.
    161. M. H. Klühr, A. Sauermann, C. A. Elsner, K. H. Thein, S. K. Dertinger. Partially Oxidized Macroporous Silicon: A Three-Dimensional Photonic Matrix for Microarray Applications. Advanced Materials. 2006, 18: 3135-3139.
    162. J. H. Lee, Y. S. Kim, K. Constant, K. M. Ho. Woodpile Metallic Photonic Crystals Fabricated by Using Soft Lithography for Tailored Thermal Emission. Advanced Materials. 2007, 19: 791-794.
    163. U. Jeong, Y. N. Xia, Synthesis and Crystallization of Monodispersive Spherical Colloids of Amorphous Selenium. Advanced Materials. 2005, 15: 102-106.
    164. K. P. Velikov, A. Moroz, A. V. Blaaderen. Photonic Crystals of Core-Shell Colloidal Particles. Applied Physics Letters. 2002, 80: 49-50.
    165. S. Takeda, P. Wiltzius. Growth of Highly Ordered Colloidal Crystals Using Self-Assembly at Liquid-Liquid Interfaces. Chemistry of Materials. 2006, 18: 5643-5645.
    166. H. L. Li, F, Marlow. Solvent Effects in Colloidal Crystal Deposition. Chemistry of Materials. 2006, 18: 1803-1810.
    167. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, C. Y. Mou. Photonic Crystals from Monodisperse Lanthanide-Hydroxide-at-Silica Core/Shell Colloidal Spheres. Advanced Materials. 2007, 19: 577-580.
    168. U. Jeong, Y. N. Xia. Photonic Crystals with Thermally Switchable Stop Bands Fabricated from Se@Ag2Se Spherical Colloids. Angewandte Chemie International Edition. 2005, 44: 3099-3103.
    169. P. H. C. Camargo, Y. H. Lee, U. Jeong, Z. Q. Zou, Y. N. Xia. Cation Exchange: A Simple and Versatile Route to Inorganic Colloidal Spheres with the Same Size but Different Compositions and Properties. Langmiur. 2007, 23: 2985-2992.
    170. H. G. Yu, J. G. Yu, B. Cheng, S. W. Liu. Novel Preparation and Photocatalytic Activity of One-Dimensional TiO2 Hollow Structures. Nanotechnology. 2007, 18: 1-8.
    171. W. T. Yao, S. H. Yu, S. J. Liu, J. P. Chen, X. M. Liu, F. Q. Li. Architectural Control Synthesis of CdS and CdSe Nanoflowers, Branched Nanowires, and Nanotrees viaa Solvothermal Approach in a Mixed Solution and Their Photocatalytic. Journal of Physical Chemistry B. 2006, 110: 11704-11710.
    172. C. L. Kuo, T. J. Kuo, M. J. Huang. Hydrithermal Synthesis of ZnO Microspheres and Hexagonal Microrods with Sheetlike and Platelike Nanostructures. Journal of Physical Chemistry B. 2005, 109: 20155-20121.
    173. X. X. Li, Y. J. Xiong, Z. Q. Li, Y. Xie. Large-Scale Fabrication of TiO2 Hierarchical Hollow Spheres. Inorganic Chemistry. 2006, 45: 3493-3495.
    174. Z. Y. Liu, D. D. Sun, P. Guo, J. O. Leckie. One-Step Fabrication and High Photocatalytic Activity of Porous TiO2 Hollow Aggregates by Using a Low-Temperature Hydrothermal Method Without Templates. Chemistry-A European Journal. 2007, 13: 1581-1585.
    175. B. Chi, L. Zhao, T. Jin. One-Step Template-Free Route for Synthesis of Mesoporous N-Doped Titania Spheres. Journal of Physical Chemistry C. 2007, 111: 6189-6193.
    176. Y. S. Yang, Y. L. Chueh, J. R. Morber, R. Snyder, L. J. Chou, Z. L. Wang. Single-Crystalline Branched Zinc Phosphide Nanostructures: Synthesis, Properties, and Optoelectronic Devices. Nano Letters. 2007, 7: 269-275.
    177. T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, H. L1uth. Photoluminescence and Intrinsic Properties of MBE-Grown InN Nanowires. Nano Letters. 2006, 6: 1541-1546.
    178. Y. Kim, H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, M. Paladugu, J. Zou, A. A. Suvorova. Influence of Nanowire Density on the Shape and Optical Properties of Ternary InGaAs Nanowires. Nano Letters. 2006, 6: 599-604.
    179. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, J. Z. Zhang. Synthesis, Characterization, and Tunable Optical Properties of Hollow Gold Nanospheres. Journal of Physical Chemistry B. 2006, 110: 19935-19944.
    180. F. H. Zhao, W. J. Lin, M. M. Wu, N. S. Xu, X. F. Yang, Z. R. Tian, Q. Su. Hexagonal and Prismatic Nanowalled ZnO Microboxes. InorganicChemistry. 2006, 45: 3256-3260.
    181. Y. Wang, Q. S. Zhu, H. G. Zhang. Fabrication and Magnetic Properties of Hierarchical Porous Hollow Nickel Microspheres. Journal of Materials Chemistry. 2006, 16: 1212-1216.
    182. X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, T. H. Wang. Synthesis and Ethanol Sensing Properties of Indium-Doped Tin Oxide Nanowires. Applied Physics Letters. 2006, 88: 201907.
    183. J. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li. Nearly Monodisperse Cu2O and CuO Nanospheres: Prpearation and Applications for Sensitive Gas Sensors. Chemistry of Materials. 2006, 18: 867-871.
    184. X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia. Ethylene Glycol-Mediated Synthesis of Metal Oxide Nanowires. Journal of Materials Chemistry. 2004, 14: 695-703.
    185. M. Law, H. Kind, B. Messer, F. Kim, P. D. Yang. Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature. Angewandte Chemie International Edition. 2002, 41: 2405-2408.
    186. J. F. Liu, X. Wang, Q. Peng, Y. D. Li. Vanadium Pentoxide Nanobelts: Highly Selective and Stable Ethanol Sensor Materials. Advanced Materials. 2005, 17: 764-767.
    187. Q. R. Zhao, Y. Gao, X. Bai, C. Z. Wu, Yi Xie. Facile Synthesis of SnO2 Hollow Nanospheres and Applications in Gas Sensors and Electrocatalysts. European Journal of Inorganic Chemistry. 2006: 1643-1648.
    188. X. L. Li, T. J. Lou, X. M. Sun, Y. D. Li. Highly Sensitive WO3 Hollow-Sphere Gas Sensors. Inorganic Chemistry. 2004, 43: 5442-5449.
    189. X. Gao, J. Zhang, L. Zhang, Hollow Sphere Selenium Nanoparticles: Their in-vitro Anti Hydroxyl Radical Effect. Advanced Materials. 2002, 14: 290-293.
    190. D. S. Koktysh, X. R. Liang, B. G. Yun, I. Pastoriza-Santos, R. L. Matts, M. Giersig, C. Serra-Rodriguez, L. M. Liz-Marzan, N. A. Kotov. Biomaterials by Design: Layer-by-Layer Assembled Ion-Selective and Biocompatible Films of TiO2 Nanoshells for Neurochemical Monitoring. Advanced Functional Materials. 2002, 12: 255-265.
    191. V. Salgueirino-Maceira, M. Spasova, M. Farle. Water-Stable, MagneticSilica-Cobalt/Cobalt Oxide-Silica Multishell Submicrometer Spheres. Advanced Functional Materials. 2005, 15: 1036-1040.
    192. H. Xu, L. L. Cui, N. H. Tong, H. C. Gu. Development of High Magnetization Fe3O4/Polystyrene/Silica Nanospheres via Combined Miniemulsion Polymerization. Journal of the American Chemical Society. 2006, 128: 15582-15583.
    193. H. Jain, M. G. Bawendi. Incorporation of Luminescent Nanocrystals into Monodisperse Core-Shell Silica Microspheres. Advanced Materials. 2004, 16: 2092-2097.
    194. K. Kamata, Y. Lu, Y. N. Xia. Synthesis and Characterization of Monodispersed Core-Shell Spherical Colloids with Movable Cores. Journal of the American Chemical Society. 2003, 125: 2384-2385.
    195. J. Kim, J. E. Lee, J. Lee, Y. J. Jang, S. W. Kim, K. An, J. H. Yu, T. Hyeon. Generalized Fabrication of Multifunctional Nanoparticle Assemblies on Silica Spheres. Angewandte Chemie International Edition. 2006, 45: 4789-4793.
    196. H. Colfen, M. Antonietti. Mesocrystals: Inorganic Superstructures Made by Highly Harallel Crystallization and Controlled Alignment. Angewandte Chemie International Edition. 2005, 44:5576.
    197. C. Luo, D. F. Xue. Mild, Quasireverse Emulsion Route to Submicrometer Lithium Niobate Hollow Spheres. Langmuir. 2006, 22: 9914.
    198. E. Hosono, S. Fujihara, H. Lmai, I. Honma, I. Masaki, H. S. Zhou. One-step synthesis of nano-micro chestnut TiO2 with rutile nanopins on the microanatase octahedron. ACS Nano. 2007, 1: 273-278.
    199. M. J. Treasaway, R. C. Powell. Luminescence of Calcium Tungstate Crystals. Journal of Chemical Physics. 1974, 61: 4003-4011.
    200. C. X. Li, C. K. Lin, X. M. Liu, J. Lin. Nanostructured CaWO4, CaWO4: Eu3+ and CaWO4:Tb3+ Particles: Sonochemical Synthesis and Luminescent Properties. Journal of Nanoscience and Nanotechnology. 2008, 8: 1183-1190.
    201. R. Graser, E. Pitt, A. Scharmann, G. Zimmerer. Optical Properties of CaWO4 and CaMoO4 Crystals in the 4 to 25 eV Region. Physica Status Solidi (b). 1975, 69: 359-368.
    202. W.-S. Cho, M. Yashima, M. Kakihana, A. Kudo, T. Sakata, M. Yoshimura.Active Electrochemical Dissolution of Molybdenum and Application for Room-Temperature Synthesis of Crystallized Luminescent Calcium Molybdate Film. Journal of the American Ceramic Society. 1997, 80: 765-69.
    203. Y. Zhang, N.A.W. Holzwarth, R.T. Williams, Electronic Band Structures of the Scheelite Materials CaMoO4, CaWO4, PbMoO4, and PbWO4. Physical Review B. 1998, 57: 12738.
    204. S. Yamabi, H. Imai. Growth Conditions for Wurtzite Zinc Oxide Films in Aqueous Solutions. Journal of Materials Chemistry. 2002, 12: 3773-3778.
    205. H. B. Fu, L. W. Zhang, W. Q. Yao, Y. F. Zhu, Photocatalytic Properties of Nanosized Bi2WO6 Catalysts Synthesized via a Hydrothermal Process. Applied Catalysis B: Environmental. 2006, 66: 100-110.
    206. X. Jiang, J. Ma, B. Lin, Y. Ren, J. Liu, X. Zhu, J. Tao, Y. Wang, L. Xie. Hydrothermal Synthesis of CdMoO4 Nano-particles. Journal of the American Ceramic Society. 2007, 90: 977-979.
    207. Z. W. Quan, D. M. Yang, P. P. Yang, X. M. Zhang, H. Z. Lian, X. M. Liu, J. Lin. Uniform Colloidal Alkaline Earth Metal Fluoride Nanocrystals: Nonhydrolytic Synthesis and Luminescence Properties. Inorganic Chemistry. 2008, 47: 9509-9517.
    208. W. Shi, C. Wang, H. Wang, H. Zhang. Hexagonal Nanodisks of Cadmium Hydroxide and Oxide with Nanoporous Structure. Crystal Growth & Design. 2006, 6: 915-918.
    209. C. Feldmann, M. Roming, K. Trampert. Polyol-mediated Synthesis of Nanoscale CaF2 and CaF2:Ce,Tb. Small. 2006, 2: 1248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700