用户名: 密码: 验证码:
炭及氧化物空心球材料的RF模板法制备及其结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以间苯二酚(R)-甲醛(F)为炭前驱体及模板,采用反相悬浮法和水热法制备了炭空心微球,氧化物空心微球,及氧化物/炭复合微球。进一步利用RF凝胶特性,结合模板技术制备了Sn-In_2O_3/炭(ITO/C)一维复合纳米材料,验证了以RF为前驱体制备空心微纳米材料的结构可控性。采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM、HRTEM)、傅立叶变换红外光谱(FT-IR)、氮气吸附等分析手段,系统研究了材料微观组织结构,分析了结构形成机理。探索了RF炭微球及ZnO/C复合微球在锂离子电池和超级电容器材料方面的应用,研究了RF炭微球结构、形态对电性能的影响。讨论了ITO/C一维复合纳米材料在气敏元件中的应用。
     首次以RF为炭前驱体,通过反相悬浮法,制备了形态可控的RF炭微球。实验结果表明,RF前驱体溶液的初始pH值、催化剂和表面活性剂类型是获得RF炭空心球结构,“碗状”结构和胶囊等结构的重要反应参数。分析了不同形态的RF炭微球的形成机制,研究了RF炭微球的电学性能。电化学分析结果表明,以Na_2CO_3为催化剂所制备的RF炭微球电极材料具有理想的电容行为,循环伏安性能稳定、可逆,适用于大电流下充放电。以K_2CO_3为催化剂制备的RF炭胶囊作为锂离子电池阴极材料,充放电、循环特性测试结果表明,其初始放电电容量可达1059mAh/g,且电性能稳定,循环效率可达99%,是理想的锂离子电池阴极材料。
     以表面功能化修饰的RF凝胶微球为模板,制备了结构完整、粒径分布均匀的氧化物空心微球。研究了不同表面修饰剂对RF凝胶微球表面改性的作用机理,分析了RF表面改性对氧化物空心微球结构的影响。通过炭化Zn~(2+)负载的RF凝胶微球,制备了ZnO/C复合微球。其稳定的循环伏安特性和法拉第氧化-还原反应效应表明,ZnO/C复合微球可作为理想的超级电容器材料。
     首次将ITO溶液和RF溶液组成复合前驱体,并结合多孔氧化铝(AAO)模板技术,制备了ITO/C一维复合纳米材料。讨论了ITO/RF复合前驱体中ITO浓度对ITO/C一维复合纳米结构的影响。结果表明,通过ITO与RF前驱体溶液的同步溶胶-凝胶化过程,有效地将ITO纳米颗粒复合到RF凝胶网络中形成一维纳米复合材料。气敏性测试表明,所制备的ITO/C一维复合纳米材料具有较高氢气灵敏度和较短的响应时间,可作为氢气气敏材料。
     以葡萄糖溶液为前驱体,利用水热法制备了结构完整、粒径分布均匀的炭微球。通过加入不同添加剂可对炭微球结构进行有效控制。以所制备的炭微球为模板,制备了多种氧化物空心微球。利用ZnCl_2/RF/葡萄糖复合体系的水热反应过程制备了结构完整的Zn/炭复合前驱体微球,通过热处理除去炭模板,并调控热处理条件,控制得到了多种形态的ZnO空心微球,为RF凝胶微球的水热制备及其在生物单糖方面的应用奠定了基础。
Resorcinol-formaldehyde (RF) was used as carbon precursor and templates to fabricate carbon hollow spheres, oxide hollow spheres and oxide/carbon composite microspheres. Further, the ITO/C one-dimensional composite nanotubes (nanowires) were synthesized by using RF as carbon precursor, indicating the controllability of RF in fabricating various structures of nanomaterials. The morphologies, microstructures and formation mechanism of the obtained samples were analysed by XRD, SEM, TEM, HRTEM, FT-IR and nitrogen absorption, etc. The influences of morphologies and microstructures of the carbon microspheres on the electrochemical properties were studied. The possibility and advantage of the carbon microspheres applied in supercapacitor and Li-ion battery were discussed. The application of ITO/C one-dimensional composite nanomaterials in gas sensor was discussed.
     It is the first time to synthesize the morphology-controlled RF carbon microspheres by inverse phase suspension method. The results indicated that the pH values, catalysts and surfactants are crucial in preparing the various RF carbon microspheres such as hollow spheres, bowl-like structures and microcapsules. The formation mechanism of RF carbon microspheres was proposed and the electrochemical properties were studied. The results showed that the RF carbon microspheres prepared with Na_2CO_3 as catalyst exhibited excellent capacity characters. The cyclic voltammetry revealed that the electrochemical properties of prepared carbon microspheres were stable, reversible and were available for charge/discharge under high current. The charge/discharge capacity and cyclic properties of RF carbon microcapsules prepared with K_2CO_3 as catalyst, as anode materials in Lithium-ion batteries, showed that the electrochemical property was stable with the efficiency of 99% and had a maximum value of 1059mAh/g.
     The intact metal oxide hollow microspheres with even particle size were synthesized by using surface-modified RF gel microspheres as templates. The mechansim of surface modification on RF gel microspheres by different surfactants were studied. The influences of surface modification on structure of metal oxide hollow microspheres were investigated. The ZnO/C composite microspheres were obtained by carbonization of Zn~(2+) loading RF composite microspheres. ZnO/C composite microspheres had stable cyclic voltammetry characters and faradic redox reaction effection, indicating that ZnO/C composite microspheres could be used as ideal supercapacitor materials.
     It is the first time to prepare ITO/C one-dimensional composite nanomaterials by using ITO and RF mixed solutions as composite precursors. The influence of ITO concentration on the structure of ITO/C one-dimensional nanocomposites was discussed. The results showed that ITO nanoparticles could be well dispersed in RF carbon gel networks by using ITO and RF composite sol-gel precursors. The H2 gas sensitivity indicated that the prepared ITO/C one-dimensional nanocomposites exhibited high sensibility and low response time.
     The intact carbohydrate microspheres were prepared by hydrothermal reaction of glucose solution. The morphologies and microstructures of carbohydrate microspheres could be tailored with addition of different additives. The various oxide hollow microspheres were prepared by using the obtained carbohydrate microspheres as templates. The zinc/carbon composite precursor microspheres were obtained by hydrothermal process of ZnCl2/RF/glucose system. ZnO hollow microspheres with various morphologies were formed by controlling the thermal treatment conditions during removal of carbon templates. The study provides background for application of RF in the fields of hydrothermal strategy and glucose.
引文
1 T. Sugama , B. Lipford. Hydrothermal Light-weight Calcium Phosphate Cements: Use of Polyacrylnitrile-shelled Hollow Microspheres. Journal of Materials Science. 1997, 32(13): 3523-3534
    2 K. Okada, A. Shimai, T. Takei, S. Hayashi, A.Yasumori, K. J. D. MacKenzie. Preparation of Microporous Silica From Metakaolinite by Selective Leaching Method. Microporous and Mesoporous Materials. 1998, 21(4): 289-296
    3 K. Sakanishi, H. Hasuo,M. Kishino,I. Mochida, O. Okuma, Catalytic Activity of Nimo Sulfide Supported on a Particular Carbon-Black of Hollow Microsphere in the Liquefaction of a Subbituminous Coal. Energy and Fuels. 1996, 10(1): 216-219
    4 J. L. Yin,X. F. Qian,J. Yin,M. W. Shi, G. T. Zhou. Preparation of ZnS/PS Microspheres and ZnS Hollow Shells. Materials Letters. 2003, 57(24-25): 3859-3863
    5 F. Caruso, R. Caruso, H. M?hwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282: 1111-1114
    6 P. Tartaj, T. González-Carre?o, C. Serna. Single-step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties. Advanced Materials. 2001, 13(21): 1620-1624
    7 R. Marie,T.Fukui,S. Ohara. Powder Prepared by Spray Pyrolysis as an Electrode Material for Solid Oxide Fuel Cells. Journal of Materials Science. 2000, 35(6): 1397-1404
    8 J. J. Zhu, S. Xu, H.Wang, J. M. Zhu, H. Y. Chen. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route. Advanced Materials, 2003, 15(2): 156-160
    9 Z. Q. Li, Y. Xie, Y. J. Xiong, Z. R. Hang. Synthesis of 1-Dimentional and 2-Dimensional Zinc and Cadmium Complexes with 4,4'-Bipy. New Journal of Chemistry. 2003, 27(10): 1518-1521
    10 J. Huang, Y. Xie, B. Li, Y. Liu, Y. Qian, S. Zhang. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Advanced Materials. 2000, 12(11): 808-812
    11 J. L. Yin, X. F. Qian, J. Yin, M. W. Shi, J. C. Zhang, G. T. Zhou.Preparationof Polystyrene/Zirconia Core-shell Microspheres and Zirconia Hollow shells.Inorganic Chemistry Communications. 2003, 6(7): 942-945
    12 Z. Chen, P. Zhan,Z. L. Wang,J. Zhang, W. Zhang, N. Ming, C. Ting, P. Sheng. Two- and Three-Dimensional Ordered Structures of Hollow Silver Spheres Prepared by Colloidal Crystal Templating. Advanced Materials. 2004, 16(5): 417-422
    13 D. Zhang, L. Qi, J. Ma, H. Cheng. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions. Advanced Materials. 2002, 14(20): 1499-1502
    14 G. C. Li, Z. C. Zhang. Synthesis of Submicrometer-sized Hollow Titania Spheres with Controllable Shells. Materials Letters. 2004, 58(22-23): 2768-2771
    15 X. F. Ding, K. F. Yu, Y. Q. Jiang. B. Hari, H. B. Zhang, Z. C.Wang. A Novel Approach to The Synthesis of Hollow Silica Nanoparticles. Materials Letters. 2004, 58(27-28): 3618-3621
    16 Z. Y. Zhong, Y. D. Yin, B. Gates, Y. N. Xia. Preparation of Mesoscale Hollow Spheres of TiO2 and SnO2 by Templating Against Crystalline Arrays of Polystyrene Beads. Advanced Materials. 2000, 12(3): 206-209
    17 J. Jang, H. Ha. Fabrication of hollow polystyrene nanospheres in microemulsion polymerization using triblock copolymers. Langmuir. 2002, 18(14): 5613-5618
    18 J. Jang, K. Lee. Facile Fabrication of Hollow Polystyrene Nano- capsules by Microemulsion Polymerization. Chemical Communication. 2002, 10: 1098-1099
    19 T. K. Mandal, M. S. Flemming, D. R. Walt. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates. Chemistry of Materials. 2000, 12(11): 3481-3487
    20王虹,廖学红.空心微球结构材料的制备及应用.微纳电子技术. 2006, 43(10): 470-475
    21 G. Oldfield, T. Ung, P. Mulvaney. Au-SnO2 core-Shell Nanocapacitors. Advanced Materials. 2000, 12(20): 1519-1522
    22 H. Huang, E. E.Remsen, T. Kowalewski, K. L.Wooley. Nanocages Derived From Shell Cross-linked Micelle Templates. Journal of American Chemistry Society. 1999, 121(15): 3805-3806
    23 Y. Jiang, S. Yang, X. Ding, Y. Guo, H. Bala, J. Zhao, K. Yu, Z. Wang. Synthesis and Catalytic Activity of Stable Hollow ZrO2/SiO2 Spheres with Mesopores in The Shell wall. Journal of Materials Chemistry. 2005, 15: 2041-2046
    24 W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng, L. S. Zhong, W. G. Song, L. J. Wan. Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries. Advanced Materials.. 2008, 20(6): 1160-1165
    25 Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Reiker, C. J. Brinker. Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles. Nature. 1999, 398: 223-226
    26 F. Caruso. Hollow Capsule Processing Through Colloidal Templatingand Self-Assembly. Chemistry of Europe Journal. 2000, 6(3): 413-419
    27 Y. Chang, J. J. Teo, H. C. Zeng. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir. 2005, 21(3): 1074-1079
    28 B. Liu, H. Zeng. Symmetric and Asymmetric Ostwald Ripening in Fabrication of Homogeneous Core-Shell Semiconductors. Small. 2005, 1(5): 566-571
    29 M. Yang, J. Ma, C. Zhang, Z. Yang, Y. Lu. General Synthetic Route Toward Functional Hollow Spheres with Double-Shelled Structures. Angewandte Chemie International Edition. 2005, 44(33): 6727-6729
    30 S. Ding, C. Zhang, M. Yang, X. Qu, Y. Lu, Z. Yang. Synthesis of Composite Hollow Spheres Using Sulfonated Polystyrene Hollow Spheres. Polymer. 2006, 47(25): 8360-8366
    31 Z. Yang, Z. Niu, Y. Lu, Z. Hu, C. Han, Template Synthesis of Uniform One Dimensional Mesostructured Silica Materials and Their Arrays in Anodic Alumina Membranes. Angewandte Chemie International Edition. 2003, 42(35): 1943-1945
    32 Q. Huo, J. Feng, F. Schüth, G. Stucky. Preparation of Hard Mesoporous Silica Spheres. Chemistry of Materials. 1997, 9(1): 14-17
    33 G. Wood, J. Janik, E. Pruss, D. Dreissig, W. Kroenke, T. habereder, H. N?th, R. Paine. Aerosol Synthesis of Spherical Morphology Boron Nitride Powders from Organoborate Precursors. Chemistry of Materials. 2006, 18(6): 1434-1442
    34 P. Bruinsma, S. Kim, J. Liu, S. Baskaran. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres. Chemistry of Materials. 1997, 9(11): 2507-2513
    35 P. J. Bruinsma, A. Y. Kim, J. Liu, S. Baskaran. Mesoporous Silica Synthesized by Solvent Evaporation: Spun Fibers and Spray-Dried Hollow Spheres, Chemistry of Materials. 1997, 9(11): 2507-2512
    36 P. Tartaj, T. González-Carre?o, C. Serna. Single-Step Nanoengineering of Silica Coated Maghemite Hollow Spheres with Tunable Magnetic Properties. Advanced Materials. 2001, 13(21): 1620-1624
    37 X. Li, Y. Li, C. Yang, Y. Li. Liposome Inducced Self-Assembly of Gold Nanoparticles into Hollow Spheres. Langmuir. 2004, 20(9): 3734-3739
    38 J. Wang, K. P. Loh, Y. L. Zhong, M. Lin, J. Ding, Y. L. Foo. Bifunctional FePt Core-Shell and Hollow Spheres: Sonochemical Preparation and Self-Assembly. Chemistry of Materials. 2007, 19(10): 2566-2572
    39 S. Zhang, H. C. Zeng. Self-assembled Hollow Spheres ofβ-Ni(OH)2 and Their Derived Nanomaterials. Chemistry of Materials. 2009, 21(5): 871-883
    40 J. Wang, M. Jiang, Polymeric Self-Assembly into Micelles and Hollow Spheres with Mutiscale Cavities Driven by Inclusion Complexation, Journal of American Chemistry Society. 2006, 128(11): 3703-3708
    41 J.-K. Kim, E. Lee, M. Lee, Synthesis of Aromatic Macrocyclic Amphiphiles and their Self-Assembling Behavior in Aqueous Solution. Macromolecular Rapid Communication. 2010, 31: 000-000
    42 J. Cha, H. Birkeda, L. Euliss, M. Bartl, M. Wong, T. Deming, G. Stucky. Spontaneous Formation of Nanoparticle Vesicles from Homopolymer Polyelectrolytes. Journal of American Chemistry Society. 2003, 125 (27): 8285-8289
    43 H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. G?sele. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept. Nano Letter. 2007, 7(4): 993-997
    44 B. Liu, H. Zeng. Symmetric and Asymmetric Ostwald Ripening in The Fabrication of Homogeneous Core-Shell Semiconductors. Small. 2005, 1(5): 566-571
    45 J. Li, H. C. Zeng. Hollowing Sn-Doped TiO2 Nanospheres via Ostwald Ripening. Journal of American Chemistry Society 2007, 129(51): 15839-15847
    46 Y. Wang, Q. Zhu, H. Zhang. Fabrication ofβ–Ni(OH)2 and NiO Hollow Spheres by A Facile Template-Free Process. Chemical Communication. 2005, 41: 5231-5233
    47 J. Yu, H. Guo, S. Davis, S. Mann. Fabrication of Hollow Inorganic Microspheres by Chemically Induced Self-Transformation. Advanced Functional Materials. 2005, 16(15): 2035-2041
    48 H. Hentze, S. Raghavan, C. Mckelvey, E. Kaler. Silica Hollow Spheres by Templating of Catanionic Vesicles. Langmuir. 2003, 19(15): 1069-1074
    49 J. Wang, Q. Xiao, H. Zhou, P. Sun, Z. Yuan, B. Li, D. Ding, A.-C. Shi, T. Chen. Budded, Mesooros Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly. Advanced Materials. 2006, 18(24): 3284-3288
    50 H. Xu, W. Wang. Template Synthesis of Multishelled Cu2O Hollow Sphees with A Single-Crystalline Shell Wall. Angewandte Chemie International Edition. 2007, 46(9): 1489-1492
    51 Z. Ao, Z. Yang, J. Wang, G. Zhang, T. Ngai. Emulsion-Templated Liquid Core@Polymer Shell Microcapsule Formation. Langmuir. 2009, 25(5): 2572-2574
    52 Y. Zhao, J. Zhang, W. Li, C. Zhang, B. Han, Synthesis of Uniform Hollow Silica Spheres with Ordered in A CO2 Induced Nanoemulsion. Chemical Communication. 2009, 2365-2367
    53沈钟,王果庭.胶体与表面化学.第二版.化学工业出版社. 1997: 393-395
    54 T. Chen, J. C.Patrick, A. F. B.Stefan. Organic-Inorganic Hybrid Hollow Spheres Prepared form TiO2-Stabilized Pickering Emulsion Polymerization, Advanced Materials. 2007, 19(17): 2286-2289
    55 B. Liu, W. Wei, X. Qu, Z. Yang. Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface. Angewandte Chemie International Edition. 2008, 47(21): 3973-3975
    56 T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic Liquids. Journal of the American Chemical Society. 2003, 125(21): 6386-6387
    57 C. Scott, D. Wu, C.-C. Ho, C. C. Carlos. Liquid-Core Capsules via Interfacial Polymerization: A Free-Radical Analogy of the Nylon Rope Trick. Journal of the American Chemical Society. 2005, 127(12): 4160-4161
    58 T. Nakashima, N. Kimizuka. Interfacial Synthesis of Hollow TiO2 Microspheres in Ionic liquids, Journal of the American Chemical Society. 2003, 125(21): 6386-6387
    59 H. Wang, Y. Song, C. Medforth, J. Shelnutt. Interfacial Synthesis of Dendritic Platinum Nanoshells Templated on Benzene Nanodroplets Stabilized in Water by a Photocatalytic Lipoporphyrin. Journal of the American Chemical Society. 2006, 128(29): 9284-9285
    60 J. Huang, Y. Xie, B. Li. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres. Advanced Materials. 2000, 12(11): 808-812
    61 T. Mandal, M. Fleming, D. Walt. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates. Chemistry of Materials. 2000, 12(11): 3481-3487
    62 Q. Peng, Y. Dong, Y. Li. ZnSe Semiconductor Hollow Microspheres, Angewandte Chemie International Edition 2003, 42(26): 3027-3030
    63 S. Marinakos, M. Anderson, J. Ryan. Encapsulation, Permeability, and Cellular Uptake Characteristics of Hollow Nanometer-Sized Conductive Polymer Capsules. The Journal of Physical Chemistry B. 2001, 105(37): 8872-8876
    64 T. Mandal, M. Fleming, D. Walt. Production of Hollow Polymeric Microspheres by Surface-Confined Living Radical Polymerization on Silica Templates. Chemistry of Materials. 2000, 12(11): 3481-3487
    65 S. Marinakos, M. Anderson, J. Ryan. Encapsulation, Permeability, and Cellular Uptake Characteristics of Hollow Nanometer-Sized Conductive Polymer Capsules. The Journal of Physical Chemistry B. 2001, 105(37): 8872-8876
    66 Y. Zhu, E. Kockrick, T. Ikoma, N. Hanagata, S. Kaskel. An Efficient Route to Rattle-Type FeO@SiO Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates. Chemistry of Materials. 2009, 21(12): 2547-2553
    67 C. Ge, D. Zhang, A. Wang, H. Yin, M. Ren, Y. Liu, T. Jiang, L. Yu. Synthesis of Porous Hollow Silica Spheres Using Polystyrene-Methyl Acrylic Acid Latex Template at Different Temperatures. Journal of Physics and Chemistry of Solids. 2009, 70(11): 1432-1437
    68 X. Liu, A. Basu. Core Functionalization of Hollow Polymer Nanocapsules, Journal of the American Chemical Society. 2009, 131(16): 5718-5719
    69 C. Xing, D. Peng. Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres. Langmuir. 1999, 15(17): 5535-5540
    70 R. Castillo, B. Koch, P. Ruiz, B. Delmon. Influence of Preparation Methods on The Texture and Structure of Titania Supporeted on Silica. Journal of Materials Chemistry. 1994, 4(66): 903-906
    71 J. Yin, X. Qian, J. Yin, M. Shi, J. Zhang, G. Zhou. Preparation of Polystyrene/Zirconia Core-Shell Microspheres and Zirconia Hollow Shells. Inorganic Chemistry Communication. 2003, 6(7): 942-945
    72宋彩霞,王德宝,古国华. CdS空心微珠的制备与表征.功能材料. 2004,35(z1): 3112-3114
    73 N. Kawahashi, H. Shiho. Copper and Copper Compounds as Coating On Polystyrene Particles and As Hollow Spheres. Journal of Materials Chemistry. 2000, 10(10): 2294-2297
    74 I. Pastoriza-Santos, B. Sch?ler, F. Caruso. Core-shell Colloids and Hollow Polyelectrolyte Capsules Based on Diazoresins. Advanced Functional Materials. 2001, 11(2): 122-128
    75 A. Khopade, F. Caruso. Electrostatically Assembled Polyelectrolyte/Dendrimer Multilayer Films as Ultrathin Nanoreservoirs. Nano Letter. 2002, 2(4): 415-418
    76 C. Schüler, F. Caruso. Decomposable Hollow Biopolymer-Based Capsules, Biomacromolecules. 2001, 2(3): 921-926
    77 F. Caruso, R. Caruso, H. M?hwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282(5391): 1111-1114
    78华瑞先.化学基础知识与题解3.安徽人民出版社. 1979: 519-530
    79 P. Scharff. New Carbon Materials for Research and Technology. Carbon. 1998, 36 (5-6):481-486
    80 Y. Xia, R. Mokaya. Ordered Mesoporous Carbon Hollow Spheres Nanocast using Mesoporous Silica via Chemical Vapor Deposition. Advanced Materials. 2004, 16(11): 886-891
    81 F. Su, X. S. Zhao, Y. Wang, L. Wang, J. Y. Lee. Hollow Carbon Spheres with a Controllable Shell Structure. Journal of Materials Chemistry. 2006, 16(45): 4413-4419
    82冯雪珠,巍芳弟,于俊生.纳米微粒的化学制备.化学世界. 2003,26(6): 331-334
    83 S. Ikeda, K. Tachi, Y. H. Ng, Y. Ikoma, T. Sakata, H. Mori, T. Harada, M. Matsumura. Selective Adsorption of Glucose-derived Carbon Precursor on Amino-Functionalized Porous Silica for Fabrication of Hollow Carbon Spheres with Porous Walls. Chemistry of Materials. 2007, 19(17): 4335-4340
    84 F. B. Su, X. S. Zhao, Y. Wang, L. K. Wang, J. Y. Lee. Hollow Carbon Spheres with a Controllable Shell Structure. Journal of Materials Chemistry. 2006, 16(45): 4413-4419
    85 M. Yang, J. Ma, S. Ding, Z. Meng, J. Liu, T. Zhao, L. Mao, Y. Shi, X. Jin, Y. Lu, Z. Yang. Phenolic Resin and Derived Carbon Hollow Spheres. Macromolecular Chemistry and Physics. 2006, 207(18):1633-1639
    86 S. Yang, X. Feng, L. Zhi, Q. Cao, J. Maier, L. Müllen. Nanograhene-Constructed Hollow Carbon Spheres and Their Favorable Electroactivity with Respect to Lithium Storage. Advanced Materials. 2010, 22(7): 838-842
    87 F. P. Hu, Z. Wang, Y. Li, C. Li, X. Zhang, P. K. Shen, Improved Performance of Pd Electrocatalyst Supported on Ultrahigh Surface Area Hollow Carbon Spheres for Direct Alcohol Fuel Cells. Journal of Power Sources. 2008, 177(1): 61-66
    88 J. Liu, M. Shao, Q. Tang, X. Chen, Z. Liu, Y. Qian. A Medial-Reduction Route to Hollow Carbon Spheres. Carbon. 2003, 41(8): 1682-1685
    89 L. Xu, W. Zhang, Q. Yang, Y. Ding, W. Yu, Y. Qian. A Novel Route to Hollow and Solid Carbon Spheres. Carbon. 2005, 43(5): 1090-1092
    90 L. Shi, Y. Gu, L. Chen, Z. Yang, J. Ma, Y. Qian. Synthesis of Carbon Hollow Spheres by a Reaction of Hexachlorobutadiene with Sodium Azide. Chemistry Letter. 2004, 33(5): 532-533
    91 C. Song,J. Du, J. Zhao, S. Feng, Z. Zhu. Hierarchical Porous Core@Shell Carbon Nanoparticles. Chemistry of Materials. 2009, 21(8): 1524-1530
    92 K. Niwase, T. Homae, K. G. Nakamura, K. Konda. Generation of Giant Carbon Hollow Spheres from C60 Fullerene by Shock-Compression. Chemistry and Physicas Letter. 2002, 362(1-2): 47-50
    93 B. Liu, D. Jia, Q. Meng, J. Rao. A Novel Method for Preparation of Hollow Carbon Spheres under A Gas Pressure Atmosphere. Carbon. 2007, 45(3): 668-670
    94 G. Hu, D. Ma, M. Cheng, L. Liu, X. Bao. Direct Synthesis of Uniform Hollow Carbon Spheres by A Self-Assembly Template Approach. Chemical Communication. 2002, 17: 1948-1949
    95 K. T. Lee, Y. S. Jung, S. M. Oh. Synthesis of Tin-Encapsulated Spherical Hollow Carbon for Anode Material in Lithium Secundary Batteries. Journal of the American Chemical Society. 2003, 125(19): 5652-5653
    96 X. Wen Lou, D. Deng, J. Y. Lee, L. A. Archer. Preparation of SnO2/Carbon Composite Hollow Spheres and Their Lithium Storage Properties. Chemistry of Materials. 2008, 20(20): 6562-6566
    97 Y. H. Ng, S. Ikeda, T. Harada, S. Higashida, T. Sakata, H. Mori, M. Matsumura. Fabrication of Hollow Carbon Nanospheres Encapsulating Platnum Nanoparticles Using a Photocatalytic reaction. Advanced Materials. 2007, 19(4): 597-601
    98 T. Horikwa, J. Hayashi, K. Muroyama. Size Control and Characterization of Spherical Carbon Aerogel Particles from Resorcinol-Formaldehyde Resin. Carbon. 2004, 42(1):169-175
    99 T. Horikawa, Y. Ono, H. Jun’ichi, M. Katsuhiko. Influence of Surface-Active Agents on Pore Characteristics of the Generated Spherical Resorcinol-Formaldehyde Based Carbon Aerogels. Carbon. 2004, 42(12-13): 2683-2689
    100 H. J. Lee, J. H. Song, J. H. Kim. Synthesis of Resorcinol/Formaldehyde Gel Particles by the Sol-Emulsion-Gel Technique. Materials Letters. 1998, 37(2): 197-200
    101刘宁.炭气凝胶微球的制备与性能研究.中山大学博士学位论文. 2005: 80-82
    102 N. Job, R. Pirard, J. Marien, J.-P. Pirard. Porous Carbon Xerogels with Texture Tailored by pH Control During Sol-Gel Process. Carbon. 2004, 42(3): 619-628
    103 S. A. Al-Muhtaseb, J. A. Ritter. Praparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Advanced Materials. 2003, 15(2):101-114
    104 H. A.Yu, T. Kaneko, S. Yoshimura. A Turbostratic Carbon with High Specific Surface Area from 1,4-benzenedimethanol. Carbon. 1996, 34(5): 676-678
    105 C. Lin, J. A. Ritter. Effect of Synthesis pH on the Structure of Carbon Xerogels, Carbon. 1997, 35(9): 1271-1278
    106 C. Brinker, G. Scherer. Sol-gel Science, Academic, New-York, 1989.:252-258
    107 A. Shlyakhtina, Y. Oh. Carbon nanocones: A Variety of Non-Crystalline Graphite. Journal of Non-Crystalline. Solids. 2008, 354(15-16): 1633-1642
    108 C. Lin, J. A. Ritter. Effect of Synthesis of pH on the Structure of Carbon Xerogels. Carbon. 1997, 35:1271-1278
    109 J. Pang, Q. Hu, Z. Wu, J. Hampsey, J. He, Y. Lu. Direct Synthesis of Unimodal and Bimodal Nanoporous Carbon. Microporous and Mesoporous Materials. 2004, 74(1-3): 73-78
    110 T. Yamamoto, T. Ohmori, Y. H. Kim. Preparation and Characterization of Monodisperse Carbon Cryogel Microspheres. Microporous and Mesoporous Materials. 2008, 112(1-3): 211-218
    111 P. M. Arnal, F. Schüth, F. Kleitz. Nanocasting with Binary Core-Shell Exotemplates. Chem Commun. 2006, 11: 1203-1205
    112 C. J. Cooksey, P. J. Garratt, E. J. Land, C. A. Ramsden, P. A. Riley. Tyrosinase Kinetics: Failure of the Auto-Activation Mechanism of Monohydric Phenol Oxidation by Rapid Formation of A Quinomethane Intermediate. Biochemical Journal. 1998, 333: 685-691
    113 J. Morawietz, W. Sander, M. Traubel. Intramolecular Hydrogen Transfer in (2-Aminophenyl)carbene and 2-Tolylnitrene. Matrix Isolation of 6-Methylene-2,4-cyclohexadien-1-imine, The Journal of Organic Chemistry. 1995, 60(20): 6368-6378
    114 K. Chiba, T. Hirano, Y. Kitano, M. Taba. Montmorillonite-Mediated Hetero-Diels–Alder Reaction of Alkenes and o-quinomethanes Generated in Situ by Dehydration of o-hydroxybenzyl Alcohols. Chemical Communication. 1999, 8: 691-692
    115 C. Daquino, M. C. Foti. Formation of Thomasidioic Acid from Dehydrosinapinic Acid Dilactone under Neutral Conditions, and a Remaining Inhibitory Activity Against Peroxynitrite-Mediated Protein Nitration. Tetrahedron. 2006, 62(7): 1536-1547
    116 K. P. C. Vollhard, N. E. Schore. Organic Chemistry Structure and Function, 4th ed. W. H. Freeman and Company: New York, 2003: 992
    117 a) T. Horikawa, Y. Ono, J. Hayashi, K. Muroyama. Influence of Surface-Active Agents on Pore Characteristics of the Generated Spherical Resorcinol-Formaldehyde Based Carbon Aerogels. Carbon. 2004, 42(12-13): 2683-2689; b) T. Horikawa, K. Ogawa, K. Mizuno, J.i Hayashi, K. Muroyama. Preparationand Characterization of the Carbonized Material of Phenol-Formaldehyde Resin with Addition of Various Organic Substances. Carbon. 2003, 41(3): 465-472
    118 N. Job, A. Théry, P. Pirard, J. Marien, L. Kocon, J.-N. Rouzaud, F. Béguin, J.-P. Pirard. Carbon Aerogels, Cryogels and Xerogels: Influence of The Drying Method on the Textural Properties of Porous Carbon Materials. Carbon. 2005, 43(12): 2481-2494
    119 S. H. Im, U. Jeong, Y. Xia. Polymer Hollow Particles With Controllable Holes in Their Surfaces. Nature Materials. 2005, 4: 671-675
    120 X. Andrieu, G. Grepy, L. Josset. In: Proceedings of the 3rd International Seminar on Double Layer Capacitors and Similar Energy Storage Devices. Florida Educational seminar. 1993
    121 J. Gamby, P. L. Taberna, P. Simon. Studies and Characterizations of Various Activated Carbons Used for Carbon/Carbon Supercapacitors. Journal of Power Sources. 2001, 101:109-116
    122 X Andrieu, T Osaka, M Datta (Eds.). In: Energy Storage Systems for Electronics. Gordon and Breach, London, 2002: 521
    123 Momma T, Liu X, Osaka T, Ushio Y, Sawada Y. Electrochemical Modification of Active Carbon Fiber Electrode and its Application to Double-Layer Capacitor. Journal of Power Sources. 1996, 60: 249-253
    124 N. Nishiyama, T. Zheng, Y. Yamane, Y. Egashira, K. Ueyama. Microporous Carbons Prepared from Cationic Surfactant-Resorcinol/Formaldehyde Composites. Carbon. 2005, 43(2): 269-274
    125 R. Fong, U. von Sacken, J. R. Dahn. Studies of Lithium Intercalation into Carbon Using Nonaqeous Electrochemical Cell. Journal of Electrochemicity Society. 1990,137(7): 2009-2013
    126 M. C. Suh, S. C. Shim. Preparation and Characterization of Nitrogen and Oxygen Containing Graphite-like Pyropolymers from 5-(2-pyridyl)-2,4-pentadiyn-1ol. Chemical of Materials. 1997, 9(12): 192-200
    127 H. P. Boehm. Some aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon. 1994, 32: 759-769
    128 F. Caruso. Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chemistry-An Europen Journal. 2000, 6(3): 413-419
    129 D. L. Wilcox, M. Berg, T. Bernat. Hollow and Solid Spheres and Microspheres:In Science and Technology Associated with Their Fabrication and Application, Pittsburgh: Materials Research Society Proceedings. 1995, 372: 1-13
    130甘治平,官建国.软模法制备无机中空微球.材料导报. 2007, 21(5A): 136-141
    131 S. Han, B. Jang, T. Kim, S. M. Oh, T. Hyeon. Simaple Synthesis of Hollow Tin Dioxide Microspheres and Their Applicaton to Lithium-Ion Battery Anodes, Advanced Functional Materials. 2005, 15(11): 1845-1850
    132 X. W. Lou, C. Yuan, E. Rhoades, Q. Zhang, L. A. Archer. Encapsulation and Ostawald Ripening of Au and Au-Cl complex Nanostructures in Silica Shells. Advanced Functional Materials. 2006,16(13): 1679-1684
    133 H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. G?sele. Influence of Surface Diffusion on The Formation of Hollow Nanostructures Induced by the Kirkendall Effect: the Basic Concept. Nano Letters. 2007, 7 (4): 993-997
    134 U. Jeong, Y. Wang, M. Ibisate, Y. Xia, Some New Developments in the Synthesis, Functionalization , and Utilization of Monodisperse Colloidal Spheres. Advanced Functional Materials. 2005,15(12): 1907-1921
    135 H. Strohm, P. L?bmann. Liguid-phase Deposition of TiO2 on PolystyreneLatex Particles Functionalized by the Adsorption of Polyelectrolytes. Chemistry of Materials. 2005, 17(26): 6772-6780
    136 F. Caruso, R. A. Caruso, H. M?hwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282(6): 1111-1114
    137 B. E. Conway. Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications, New York: Kluwer Aademic/Plenum, 1999
    138 B. E. Conway Transition from‘Supercapacitor’to‘Battery’Behavior in Electrochemical Energy Storage. Journal of Electrochemical Society. 1991, 138(6): 1539-1548
    139 J. M. Miller, B. Dunn. Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructures. Langmuir. 1999, 15(3): 799-806
    140 J. W. Long, K. E. Swider, C. I. Merzbacher, D. R. Rolison. Voltammetric Characterization of Ruthenium Oxide-Based Aerogels and Other RuO2 Solids: The Nature of Capacitance in Nanostructured Materials. Langmuir. 1999, 15(3): 780-785
    141 J. M. Miller, B. Dunn, T. D. Tran, R. W. Pekala. Deposition of Ruthenium Nanoparticles on Carobn Aerogels for High Energy Density Supercapacitor Electrodes. Journal of Electrochemical Society. 1997, 144(12): 2053-2059
    142 E. Frackowiak, F. Béguin. Carbon Materials for the Electrochemical Storage of Energy in Capacitors. Carbon. 2001, 39(6): 937-950
    143 S. D. Robertson. Carbon Formation from Methane Pyrolysis over Some Transition Metal Surface.Carbon. 1970, 8: 365-374
    144 R. S. Wagner, W. C. Ellis.Vapor-Liquid-Solid Mechanism of Single crystal growth. Applied Physics Letter. 1964, 4(5): 89-90
    145 Y. H. Tang, N. Wang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee. Syntheisis and Characterization of Amorphous Carbon Nanowires. Applied Physics Letter. 1999, 75(19):2921-2923
    146 N. Ndiege, T. Wilhoite, V. Subramanian. Sol-Gel Synthesis of Thick Ta2O5 Films, Chemistry of Materials. 2007, 19(13): 3155-3161
    147 G. Tang, A. L. Ding, Y. Ye. Preparation and Characterization of Lead Zirconate Thin Films by Chemical Solution Deposition. Chemistry of Materials. 2002, 14(5): 2129-2133.
    148 W. Sakamoto, T. Yogo, K. Kikuta. Synthesis of Lead Barium Niobate Powders and Thin Films by The Sol-Gel Method. Journal of American Ceramic Society. 1996, 79(4): 889-894
    149 R. L. Brinkley, R. B. Gupta. Intra- and Intermolecular Hydrogen Bonding of 2-Methoxyethanol and 2-Butoxyethanol in n-Hexane. Industrial and Engngineering Chemristry Research. 1998, 37(12): 4823-4827
    150 W. Sakamoto, T. Yogo, K.-ic. Kikuta, T. Arimoto, S.-ic. Hirano. Synthesis of Lead Barium Niobate Powders and Thin Films by the Sol-Gel Method, Journal of American Ceramic Society. 1996, 79(4): 889-894
    151 Y. Murakami, T. Sasamoto, K. Yahikozawa, Y. Takasu. A Sub-Nanometer Structural Study of Pt-Rh Catalysts Supported on Ce Doped SiC. Catalysis Today. 1995, 23(3): 283-298
    152 J. W. Diggle, T. C. Downie, C. W. Goulding. Anodic Oxide Films on Aluminum. Chemical Review. 1969, 69(3): 365-405
    153 S. W. Chae, K. C. Kim, D. H. Kim. Highly Transparent and Low-Resistant ZnNi/Indium Tin Oxide Ohmic Contact on p-type GaN. Applied Physics Letters. 2007, 90(18): 1811011-1811013
    154 A. Kolmakov, Y. X. Zhang, G. S. Cheng, M. Moskovits. Detection of CO and O2 Using Tin Oxide Nanowire Sensors. Advanced Materials. 2003, 15(12): 997-1000
    155 T. Omata, H. Fujiwara, S. Otsuka-Yao-Matsuo. Electron Trapping Center and SnO2-Doping Mechanism of Indium Tin Oxide. Applied Physicas A. 2000, 71(6): 609-614
    156 G. Sakai, N. S. Baik, N. Yamazoe. Gas Sensing Properties of Tin Oxide Thin Films Fabricated from Hydrothermally Treated Nanoparticles: Dependence of CO and H2 Response on Film Thickness. Sensors and Acuators B. 2001, 77(1-2): 116-121
    157 K. S. Yoo, S. H. Park, J. H. Kang, Nano-Grained Thin-Film Indium Tin Oxide Gas sensors for H2 Detection. Sensors and Actuators B. 2005, 108(1-2): 159-
    164
    158 J. Gong, Q. Chen, W. Fei, S. Seal. Micromachined Nanocrystalline SnO2 Chemical Gas Sensors for Electronic Nose. Sensors and Actuators B. 2004, 102(1): 117-125
    159 S. Shukla, P. Zhang, H. J. Cho, S. Seal, L. Ludwig. Micromachined Nanocrystalline Silver Doped SnO2 H2S Sensor. Sensors and Actuators B. 2007, 120(2): 573-583
    160 C. Sehuler, F. Caruso. Hollow BioPolymer-BasedCapsules. Macromolecules. 2001, 2: 921-926
    161 F. Caruso, D. Trau, H. M?hwald. Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsulates. Langmuir. 2000, 16(4):1485-1488
    162 W. Meler, Polymer Nanocapsules. Chemical Society Review. 2000, 29:295-304
    163 T. Sanji, Y. Nakatsuka, S. Ohnishi.Hollow Spheres from Shell Cross-Linked Noneovalently Connected Micelles of Carboxyl-Terminated Polybutadiene and Poly(vinyl alcohol) in Water. Macromolecules. 2000, 33(14): 8524-8527
    164 G. H. Qiao, G. K. Lenghaus, D. H. Solomon, A. Reisinger, I. Bytheway, C. Wentrup. 4,6-Dimethyl-o-quinone Methide and 4,6-Dimethylbenzoxete. The Journal of Organic Chemistry. 1998, 63(26): 9806-9811
    165 M. Okubo, H. Minami, F. Morikawa. Influence of Shell Strength on Shape Transformation of Micron-sized,Monodisperse,Hollow Polymer Particles. Collold and Polymer Science. 2003, 281(3): 214-217.
    166 M. Nagamori, T. Funazukuri. Glucose Production by Hydrolysis of Starchunder Hydrothermal Conditions. Journal of Chemistry Technology and Biotechnology. 2004, 79(3): 229-233.
    167孙晓明.低维功能纳米材料的液相合成、表征与性能研究.清华大学博士学位论文. 2005:98-110
    168 H. Wang, X. D. Li, J. S Yu. Fabrication and Characterization of Ordered Macroporous PMS-derived SiC from a Sacrificial Template Method. Journal of Material Chemistry. 2004, 14: 1383-1386
    169 D.Walsh, B. Lebeau, S. Mann. Core-Shell Particles Have Also been Synthesized Using Water-in-oil. Advanced Materials. 1999, 11: 324-328
    170路长春,陆现彩,刘显东.基于探针气体吸附等温线的矿物岩石表征技术Ⅳ:比表面积的测定和应用.矿物岩石地球化学通报. 2008, 27(1): 32-33
    171 X. M. Sun, Y. D. Li. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles. Angewandte Chemie-International Edition. 2004, 116(5): 607-611
    172邓文雅.基于葡萄糖的微/纳球形材料的合成与表征.大连理工大学硕士学位论文. 2007:70-78
    173 X. M. Sun, Y. D. Li. Ga2O3 and GaN Semiconductor Hollow Spheres. Angewandte Chemie-International Edition. 2004, 43(5): 597~601
    174 H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, Y. L. Cao. Multilayered Nanocrystaline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. Journal of Physical Chemistry C. 2007, 111(38): 14067-14071
    175 M. M. Mohamed, W. A. Bayoumy, M. Khairy, M. A. Mousa. Synthesis of Micro-Mesoporous TiO2 Materials Assembled via Cationic Surfactants: Morphology, Thermal Stability and Surface Acidity Characteristics. Microporous and Mesoporous Materials. 2007, 103(1-3): 174-183
    176 T. Andelman, Y. Gong, M. Polking, M. Yin, I. Kushovsky, G. Neumark, S. O. Brien. Morphological Control and Photoluminescence of Zinc Oxide Nanocrystals. Journal of Physical Chemistry B. 2005, 109(30): 14314-14318
    177 W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin. Growth Mechanism and Growth Habit of Oxide Crystals. Journal of Crystal Growth. 1999, 203(1): 186-196
    178 Z. W. Deng, M. Chen, G. X.Gu, L. M. Wu. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property. Journal of Physical Chemistry B. 2008, 112(1): 16-22
    179 X. -D. Fan, Y. -L. Hsien, M. J. Kurth, J. M. Krochta. Synthesis and Characterization of Lactose based Resorcinol Resin. Journal of Applied Polymer Science. 2002, 86 (10): 2581-2582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700