用户名: 密码: 验证码:
河西绿洲农田生态系统土壤碳汇时空演变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球温室效应的加剧,为探索降低大气温室气体浓度的对策,陆地生态系统碳循环及碳收支研究成为当前全球变化研究的热点问题。农田生态系统是重要的温室气体源和汇,一方面通过作物光合作用和人为途径吸收大量的碳;另一方面通过作物和土壤的呼吸作用以及各种途径的人工投入过程间接释放碳。另外,原始土地转化为耕地的过程也使土壤丧失了大量的有机碳。随着耕作强度的增加,农业领域面临着越来越多的碳释放。因此,如何采取措施实现农田土壤固碳增汇成为目前亟待解决的问题之一。
     本文结合碳源/汇模型,通过1949~2005年的统计资料,对河西4市县绿洲农田生态系统土壤固碳现状潜力、主要农作物的碳吸收、不同土地利用方式下的土壤碳汇以及农田生态系统碳汇功能的经济效益等方面进行分析,初步了解了大尺度上河西绿洲农田生态系统碳汇的特征及河西绿洲农田生态系统在减缓全球变暖中的贡献,提出了河西绿洲农田生态系统碳增汇/减排的战略措施。通过研究,得出以下几点结论:
     (1)河西绿洲农田生态系统土壤固碳潜力估算研究的结论是:通过对河西4市县绿洲农田生态系统土壤碳现状和固碳潜力的分析表明,①河西4市县绿洲农田土壤固碳现状和单位面积的平均固碳速率在不同耕作水平下是不同的。在施用化肥、有机肥、秸秆还田和少免耕等不同耕作条件下,土壤固碳现状和单位面积的平均固碳速率分别为6.65Tg·a-1和240.51kg·hm-2·a-1、5.97Tg·a-1和215.91kg·hm-2·a-1、3.27Tg·a-1和118.26kg·hm-2·a-1以及7.86Tg·a-1和284.27 kg·hm-2·a-1。相对而言,少免耕的耕作措施更适用于河西4市县。②在土地利用方式、耕作措施、施肥水平和气候条件不变的情况下,经过多年的农田管理措施后,土壤有机碳密度都将达到一个新的稳定状态。根据模拟计算,河西全区的土壤有机碳密度由1989年的10.33kg·m-2达到新稳定状态后的12.31kg·m-2。③河西土壤碳储量由1989年的620Tg达到新稳定状态时的740Tg,固碳潜力为120Tg。④从土壤有机碳密度及其储量上看,随着时间的推移,地区间碳密度和储量发生的变化不是很大。第二次土壤普查期间,河西土壤高碳密度区主要分布在张掖市,其次为永昌县、武威市和酒泉市;在2005年时,仍然是张掖市的碳密度最高,其次为永昌县、酒泉市和武威市。
     (2)河西绿洲农田生态系统土壤碳汇估算研究结论是:通过对河西4市县绿洲农田生态系统主要农作物的碳吸收的估算、不同农作物生态系统碳源汇变化以及农田管理土壤碳汇估算分析表明,①河西绿洲农田生态系统主要农作物碳吸收的贡献者是粮食作物和蔬菜,但是在具体的碳吸收上存在较大差异,这与农作物本身的特性和种植面积有关。②在作物——土壤系统CO2源汇关系的日变化中,CO2源汇关系存在不确定性,小麦生态系统是一个中等水平的碳汇;棉花生态系统是一个弱碳汇;玉米生态系统是一个强碳汇;在年变化中,小麦生态系统除8~9月份是弱碳源外,其余月份均属于碳汇,棉花生态系统在6~9月份为碳汇,其余月份为碳源,玉米生态系统6~9月份为碳汇,其余月份为碳源。③1949~2005年河西绿洲农田生态系统碳吸收呈阶段性增长趋势,碳吸收总量从1949年的24.39万t增加到2005年的298.37万t,净增273.98万t,增长了12.23倍。碳吸收的发展趋势基本呈现出三个发展阶段即:波动式增长阶段(1960年以前)、恢复性增长阶段(1960~2000年)和快速增长阶段(2000年以后)。④河西4市县绿洲农田生态系统的碳汇效应中,有机无机配施的作用较为明显,可使SOC增长0.81tCha~(-1)·a~(-1),其次为免耕,SOC增长0.62tCha~(-1)·a~(-1)。秸秆还田和施有机肥的效果相当, SOC的年增加量分别为0.57和0.38 tCha~(-1)·a~(-1)。施单一氮、磷、钾肥几乎不能使SOC增加,甚至起负作用。配合施用氮、磷、钾肥也只能弥补土壤有机质的矿化损失,不能明显提高其含量。
     (3)不同土地利用方式对土壤碳汇的影响研究结论是:从土地利用及其变化的角度出发,对河西农田、草地和林地的土壤有机碳储量、生态系统碳汇功能等方面的影响进行分析表明,①灌木林、山杨林和青海云杉×祁连圆柏变成农田或草地后,土壤表层(0~50cm)的土壤有机碳含量下降;而在农田或草地中营造落叶松人工林后,土壤表层(0~40cm)的土壤有机碳含量将增加,在土壤剖面底层的有机碳含量受土地利用变化的影响较小。②灌木林、山杨林和青海云杉×祁连圆柏变成农田或草地后,土壤有机碳密度下降(35%和14%);农田中营造落叶松人工林后,土壤有机碳密度将增加;在草地中营造落叶松人工林后,土壤有机碳密度未显著变化。另外,土地利用变化后,土壤有机碳密度的变化幅度比土壤有机碳含量的变化幅度小。③不同土地利用方式下土壤有机碳的积累不同。在0~45cm土层,草地的土壤有机碳均显著高于农田;在翻耕、少耕和免耕3种耕作方式下,土壤碳积累贡献的次序是:少耕>免耕>翻耕。④天然次生林生态系统通过土地利用变化变成农田或草地后,土壤碳贮量汇功能强度降低,稳定性和非稳定性汇减弱,保护和非保护性、活性碳汇的强度也都将减弱。而农田或草地生态系统通过造林变成人工林生态系统后,土壤碳贮量这些汇功能强度都将增加。⑤在植被生产力碳积累方面,天然次生林和人工林生态系统都具有较强的汇,而农田和草地生态系统则相对较弱。在土壤有机碳贮量变化方面,天然次生林生态系统是强汇,而农田和草地生态系统为源,人工林生态系统为弱汇。
     (4)河西绿洲农田生态系统土壤碳汇功能评价结论是:通过数学模型,对河西绿洲农田生态系统土壤碳汇功能的经济效益进行分析表明,①1949~2005年间,河西绿洲农田生态系统碳汇功能的经济效益变化趋势呈阶段性增长趋势,碳汇功能的经济效益从1949年的0.63亿元增加到2005年的7.76亿元,净增7.13亿元,增长了11.32倍。②河西绿洲农田生态系统碳汇功能的经济效益的发展趋势基本呈现出波动式增长(1960年以前)、恢复性增长(1960~2000年)和快速增长三个发展阶段。
     (5)通过以上分析,得出河西绿洲农田生态系统碳增汇/减排的战略措施:①调整耕作制度:免耕法是一种对土壤扰动最小的耕作方式,能非常有效的提高农田土壤有机碳。②改善施肥方式:长期施用有机肥能显著提高土壤活性有机碳的含量,有机无机配施,可提高作物产量,而使用化学肥料能增加土壤有机碳的稳定性。③秸秆还田:秸秆还田是减少农田碳排放、增加土壤有机质含量的重要途径,还可以将秸秆过腹还田,不仅能增加土壤有机质含量,而且还能发展养殖业,增加经济效益。④其他措施:如改良作物品种,有计划地抓紧培育具有对高温、干旱等极端气候及病虫害有抗性的品种,确保在新的生态环境中农牧产量不断提高,扩大碳的吸收存储。另外,也可以采取措施改变地表径流、改良土壤,扩大人工草地等来间接增加农田的碳汇功能。
With the escalation of global warming, in order to explore the strategy of reducing atmospheric concentrations of greenhouse gases, the problem of terrestrial ecosystem carbon cycle and the research of carbon balance of payments has become a hot issue of current global change research. Farmland ecosystem is an important greenhouse gas sources and sinks. On the one hand, through photosynthesis of crops and man-made way to absorb a lot of carbon; on the other hand, crops and soil through respiration, as well as artificial ways indirectly the release of carbon into the process. In addition, the original cultivated land into the process so that the loss of a large number of soil organic carbon. With the increase in intensity farming, the agricultural sector is faced with an increasing number of carbon releases. Therefore, how to take measures to achieve carbon sequestration by agricultural soils sinks become one of the issues to be settled urgently.
     In this article, from 1949 to 2005 statistics, combined with carbon source / sink model, 4 cities and counties of the Hexi oasis Farmland ecosystem carbon sequestration of soil carbon sequestration potential of the status, the major agricultural crops, under different land use patterns of soil carbon sinks, as well as Farmland ecological carbon sink function of the system cost effectiveness analysis, a preliminary understanding on the large-scale farmland ecosystem in Hexi Oasis of the characteristics of carbon sinks and Hexi oasis farmland ecosystem in reducing the contribution to global warming. Finally, put forward in Hexi oasis farmland ecosystem increasing carbon sinks & emissions reduction strategies. Through research, received the following conclusions:
     (1) The conclusion of the estimate study Hexi oasis farmland ecosystem soil carbon sequestration potential is:
     Through the analysis the current situation and sequestration potential of oasis farmland ecosystem soil carbon of 4 cities and counties of Hexi showed that:①soil carbon sequestration per unit area status and the average rate of carbon sequestration in different levels of farming is different. In the application of chemical fertilizers, organic manure, straw and no tillage or minimum tillage and other farming conditions, the soil carbon sequestration per unit area status and the average carbon sequestration rates of 6.65Tg·a-1 and 240.51kg·hm~(-2)·a~(-1), 5.97 Tg·a-1 and 215.91 kg·hm~(-2)·a~(-1), 3.27 Tg·a-1 and 118.26 kg·hm~(-2)·a~(-1) and 7.86 Tg·a-1 and 284.27 kg·hm~(-2)·a~(-1), relatively speaking, less no-tillage farming measures applicable to Hexi.②in land use patterns, farming measures the level of fertilization and climatic conditions remain unchanged, after years of farm management practices, the soil organic carbon density will reach a new steady state. According to simulation, the region west of the soil organic carbon density in 1989 by the 10.33kg·m-2 to reach a new steady state after 12.31kg·m-2.③Hexi soil carbon reserves 620Tg by 1989 to reach a new steady state at the time of 740Tg, the potential for carbon sequestration 120Tg.④the density of organic carbon from the soil and its reserves, the carbon density and inter-regional changes in reserves is not very big.The second time during the soil survey, soil carbon density in Hexi District are mainly distributed in Zhangye, followed by Yongchang, Wuwei and Jiuquan; in 2005, Zhangye is still the highest density of carbon, followed by Yongchang, Jiuquan and Wuwei.
     (2) The conclusion of the estimate study Hexi oasis farmland ecosystem soil carbon sinks is that: Through the analysis oasis farmland ecosystem carbon sequestration, the main crop estimates, different crop changes in ecosystem carbon sinks, as well as agricultural management soil of carbon sinks of 4 cities and counties of Hexi showed that:①farmland ecosystem in Hexi Oasis major contribution to carbon sequestration crop it is corn crops and vegetables, but on specific carbon sequestration, there is a big difference, which is in itself the characteristics of crops and planting of the area.②in crop-soil system of sources and sinks of CO2 on the relationship between changes, CO2 sources and sinks of the relationship between uncertainty, wheat ecological system is a medium level of carbon sinks; cotton ecosystem is a weak carbon sink; corn ecosystem is a strong carbon sinks; changes in the year, wheat ecosystem in addition to August to September is a weak carbon source, the rest of the month are carbon sinks;cotton, ecosystem in the June to September for carbon sinks, and the rest of the month as carbon source.③1949~2005 years in Hexi oasis farmland ecosystem carbon sequestration was phased growth trends, the total carbon sequestration from 243,900 tons in 1949 to 2,983,700 tons in 2005, a net increase of 2,739,800 tons, an increase of 12.23 times. Carbon sequestration, the basic trend of development shows that the three stages of development: growth of fluctuations in phase (before 1960), the resumption of growth stage (1960 ~ 2000) and the rapid growth phase (after 2000).④In 4 cities and counties of the farmland ecosystem effects of carbon sinks, organic and inorganic fertilizers in which the role of a more obvious increase in SOC will enable the 0.81tCha~(-1)·a~(-1), followed by no-tillage, SOC annual growth of 0.62 tCha~(-1)·a~(-1). The effects of straw and organic fertilizer rather, soil organic carbon, respectively, the annual increase of 0.57 and 0.38 tCha~(-1)·a~(-1). With single N,P,K, SOC increased almost can not even play a negative role. Combined application of nitrogen, phosphorus and potassium can only compensate for the loss of soil organic matter mineralization, can not significantly improve its content.
     (3) The conclusion of the patterns of different land utilization effect on soil carbon sinks is that: From changes in land use and its point of view, on the west of farmland, grassland and woodland reserves of soil organic carbon, ecosystem carbon sink functions of the impact analysis showed that,①bush, Populus davidiana and (Picea crassifolia×Sabina przewalskii) to cropland or grassland, the soil surface (0 ~ 50cm) of soil organic carbon content decreased; and in the grass in the fields or to create a larch plantation, the soil surface (0 ~ 40cm) of soil organic will increase the carbon content in the soil profile of organic carbon content of the underlying land-use changes by less affected.②bush, Populus davidiana and (Sabina przewalskii×Picea crassifolia) or grassland into farmland, the decline in soil organic carbon density (35% and 14%); farmland Create a post in the larch plantation, soil organic carbon density will be increased; in the grass to create a larch plantation, the soil organic carbon density is not changed significantly. In addition, after the land-use change, soil organic carbon density than soil organic carbon content of the small magnitude of changes.③under different land use patterns of soil organic carbon accumulation is different in the 0 ~ 45cm soil, grassland soil organic carbon were significantly higher than that of soil organic carbon; in tillage, less tillage and three kinds of no-tillage farming methods, the contribution to soil carbon accumulation of the order is: Reduced tillage> no tillage> tillage.④natural secondary forest ecosystems through land-use change to cropland or grassland ecosystem, the soil carbon storage sinks lower functional strength, stability, and reduced non-stability of exchange, protection and non-protective, the strength of activated carbon sinks will also be weakened. And farmland or grassland ecosystem through reforestation plantation into the ecosystem, the soil carbon storage function of the strength of these sinks will increase.⑤Carbon accumulation in vegetation productivity, the natural secondary forest and plantation ecosystems have a strong sink, and farmland and grassland ecosystem is relatively small. Reserves in the soil organic carbon change, natural secondary forest ecosystem health is strong, and farmland and grassland ecosystem as the source, plantation ecosystem health for the weak.
     (4) The conclusion of the assessment the function of soil carbon sinks of Hexi is that: By the mathematical model of Hexi oasis farmland ecosystem functions of soil carbon sinks analysis showed that the economic benefits,①1949 ~ 2005 years in Hexi oasis farmland ecosystem carbon sink function of changes in the trend of economic growth was phased, carbon sink function of the economic benefits from 63 million yuan in 1949 to 776 million yuan in 2005, a net increase of 713 million yuan, an increase of 11.32 times.②Hexi oasis farmland ecosystem carbon sink function of the basic economic trends showing a growth of fluctuations (before 1960), the resumption of growth (1960 to 2000) and the rapid growth of the three stages of development(since 2000).
     (5) Through the above analysis, the strategies of oasis farmland ecosystem carbon by sinks & emissions reduction of Hexi are that:①The adaptation of farming systems: no-tillage is the least disturbance of soil tillage which can be very effective to improve soil organic carbon.②Fertilization to improve the way: long-term application of organic manure could significantly increase the activity of soil organic carbon content, inorganic fertilizer organic fertilizer can increase crop yield, and the use of Chemical fertilizers to increase the stability of soil organic carbon.③Straw: straw is to reduce the carbon emissions of farmland, increasing soil organic matter content in an important way, it can be treated straw as cattle feed, sheep, and then stool after ripening fields, not only can increase the soil organic matter content, but also the development of aquaculture, increase cost effectiveness.④Other measures: such as improved crop varieties, there are plans to have to pay close attention to nurturing high temperature, drought and other extreme weather and pest resistant varieties, to ensure that the ecological environment in the new production of farmers and continuously improve and expand the absorption of carbon storage. Alternatively, you can take measures to change the surface runoff, soil improvement, expansion of artificial turf fields, such as to indirectly increase the carbon sink function.
引文
1.J Houghton著.戴晓苏,等译.全球变暖[M].气象出版社,1998
    2.张涛.森林生态效益补偿机制研究:[博士学位论文] [D].北京:中国林业科学研究院,2003
    3.美国大自然保护协会.土地利用和林业项目在清洁发展机制下的应用.清洁发展机制林业碳汇项目潜力研讨会,2003
    4.刘允芬.农业生态系统碳循环研究[J]..自然资源学报,1995,10(l):1~8.
    5.莱斯特R布朗著.林自新,等译.生态经济——有利于地球的经济构想.东方出版社,2002
    6.钱杰.大都市碳源碳汇研究——以上海市为例[D].华东师范大学, 2004.
    7.王效科,白艳莹,欧阳志云,苗鸿.全球碳循环中的失汇及其形成原因[J].生态学报. 2002(01):94-103
    8.徐小锋,宋长春.全球碳循环研究中“碳失汇”研究进展[J].中国科学院研究生院学报2004年02期
    9.Fan S, Gloor M, Mahlman J, et al; North American carbon sink [M];Science; 1999年
    10.Sharkey T D; Photosynthesis in inact leaves of C3 plants: physics, physiology and rate limitations [M].Bot Rev. 1985
    11.许文强.森林碳汇价值评价[D].西南林学院. 2006年
    12.蒋倩.岩溶水对不同环境的响应以及其与大气CO2源汇的关系[D].中国科学院研究生院(地球化学研究所). 2006年
    13.林德荣;森林碳汇服务市场化研究[D];中国林业科学研究院; 2005年
    14.刘再华.大气CO2两个重要的汇[J].科学通报. 2000 (21).
    15.徐胜友,蒋忠诚.我国岩溶作用与大气温室气体CO2源汇关系的初步估算[J].科学通报.1997 (09).
    16.郭李萍,林而达.减缓全球变暖与温室气体吸收汇研究进展[J].地球科学进展, 1999 (04)
    17.李顺龙,杜咏梅,蒋敏元.我国森林碳汇问题初探[J].地球科学进展, 2000 (03).
    18.邱冬生,庄大方,胡云锋,姚锐.中国岩石风化作用所致的碳汇能力估算[J].地球科学-中国地质大学学报. 2004(02).
    19.Houghton J T,Callender B A, Varney S K. IPCC Climate Change 1992: The Supplementary. Report to the IPCC Scientific Assessment[R]. UK: Cambridge University Press, 1992.
    20.Foody G M, palubinskas G, Lucas R M et al. Identifying Terrestrial Carbon sinks: Classification of Succession Stages in Regenerating Tropical Forest from Land sat TM Data [J]. Remote Sens. Environ, 1996,55: 205-216.
    21. Tian H, Mellilo J M, Kichlighter D W, et al. Effects of interannual climate variability on carbon storage in Amazonian ecosystems [J]. Nature, 1998,396:664-667.
    22.Kauppi P E, Mielikainen K, Kuusela K. Biomass and carbon budget of European forests, 1971 to 1990[J]. Science, 1992,256:70-74.
    23.Fang J.Y, Chen A.P., Peng C.H. et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001,292: 2320-2322.
    24.Chichester F W, Chaison R F, Analysis of Carbon in Calcareous Soil using a Two Temperature Dry Combustion Infrared Instrumental Process [J]. Soil Science, 1992, 153(3): 237-242.
    25.李克让,王绍强,曹明奎等.中国植被和土壤碳储量[[J].中国科学,2003, 33(1): 72~80.
    26.金峰,杨浩,赵其国.土坡有机碳储量及影响因素研究进展[J].土壤.2000.32(1): 11~17.
    27.汪业助,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999, 18(5):29-35.
    28.杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的贡献[(J].地理科学, 2003,23(1):101~106.
    29.王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18(4):349~356.
    30. Schneider U.A. Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the United States [D]. Texas A &M University.2000.
    31.林而达.气候变化与农业可持续发展[M].北京:北京出版社,2001.
    32. Cole C V. Agricultural options for mitigation of greenhouse gas emission [A]. Climate change Impacts, Adaptations and Mitigation of climate change: Intergovernmental panel on Climate Change [C], Cambridge: Cambridge University Press, 1996:1~27
    33. Lal R, Kimble J M, Follett R F et al. The Potential of US Cropland to Sequester Carbon and Mitigate the Greenhouse Effect [M]. Ann Arbor Press, 1998.
    34.Li, C. Modeling trace gas emissions from agricultural ecosystems [J]. Nutrient Cycling in Agro-ecosystems.2000, 58, 259-276.47.Mccarl, B.A., B. Murray, U.A. Schineider. Jointly Estimating Carbon Sequestration Supply from Forests and Agriculture [EB/OL]. 2001.
    35.王效科,欧阳志云,苗鸿.DNDC模型在长江三角洲农田生态系统的CH4和N2O排放量估算中的应用[J].环境科学,2001,22(3):15~19.
    36.李忠佩,王效举.红壤丘陵区土地利用方式变更后土壤有机碳动态变化的模拟[[J],应用生态学报,1998, 9(4):365~3700
    37.孙睿,朱启疆.陆地植被净第一性生产力的研究[[J].应用生态学报,1999, 10(6): 757~760.
    38.Prince S.D, Goward S.N. Evaluation of the NOAA/NASA Pathfinder AVHRR land data set for global primary production modeling [J]. International Journal of Remote Sensing, 1996,17(1): 217~221.
    39.肖乾广,陈维英,盛永伟等.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J].植物学报.1996,38(1):35~39.
    40. Fontana, D.C., Weber, E., Ducati, J.R.et al. A case study for crop monitoring and harvest forecast in south Brazil. Proceedings of the 28th International Symposium on Remote Sensing For Environment, Margo 2000. CapeTown, Africa,: ICRSE,..91-94.
    41.侯英雨,王石立.基于作物植被指数和温度的产量估算模型研究[[J].地理学与国土研究.2002,18 (3):105-107.
    42.Post W M, Emanuel W R, Zinke P J et al. Soil carbon pools and life zones [J). Nature, 1982,298:156-159.
    43.Torn M S, Trunbore S E, Chadwick O A et al. Mineral control of soil organic carbon storage and turnover [J). Nature, 1997,389:170-173.
    44.王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[[J].地理学报,2000, 55 (5):533-544.
    45.李凌浩,刘先华,陈佐忠.内蒙古锡林河流域羊草草原生态系统碳素循环研究【J].植物学报,1998,40 (10):955-961.
    46.杨听,王明星.一个计算平均土壤呼吸速率和土壤碳密度的简单模型[[J].中国科学院研究生院学报,2001,18(1):90-96.
    47.Kucera C.L. Soil respiration studies in Tallgrass prairie in Missouri [J]. Ecology, 1971.52(5): 912~915.
    48.杜宝华,杨平,全乘风等.农田土壤二氧化碳释放问题研究[[J].水土保持研究,1996, 3(3):100~103.
    49.蔡祖聪,Arivn R Mosier.土壤水分状况对CH4氧化、NZO和COz排放的影响[J].土壤,1999,31(6): 289~298.
    50.蔡祖聪.水分类型对土壤排放温室气体组成和综合温室效应的影响[[J].土壤学报,1999,36 (4):484~490.
    51.谢小立,王卫东,上官行健等.施肥对稻田甲烷排放的影响[(fl.农村生态环境,1995,11(1): 10~14.
    52.叶笃玉,陈浮勤.中国的全球变化预研究(第二部分)[M].地震出版社,1992:253-256.
    53.FAO. Carbon Sequestration Options Under the Clean Development mechanism to Address Land Degradation. World Soil Resources Reports 92. FAO and IFAD, Rome, 2000.
    54.enkinson, D.S.The Rothamsted long-term experiments: are they still of use? [J]. Agron. J. 1991, 83:2-12.
    55.Paustian, K., Collins, H.P., Paul, E.A., Management controls on soil carbon. In: Paul, E.A., Paustian, K., Elliott, E.T., Cole, C.V. Soil Organic Matter in Temperate Agro-ecosystems. Boca Raton, FL: CRC Press, 1997:15-49.
    56.伍光合,田连恕,胡双熙等.自然地理学[M].北京:高等教育出版社,2000:322-323.
    57.陈阜.农业生态学[M].北京:中国农业大学出版社,2002:131.
    58.Giampietro, M., Ulgiati, S., Pimentel, D.Feasibility of larges-cale bio-fuel production [J]. Bioscience, 1997,147:587-600.
    59.何建坤,陈文颖.温室气体减排项目评价方法研究[J].环境科学研究,1999,12(2):24-27.
    60.Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion .Global Biogeochemistry Cycle, 1996, 10(1) :23-41 .
    61.Fan S, Gloor M, Mahlman J, et al. North American carbon sink .Science, 1999, 283 :1815 .
    62.Cang K, Roberts J K M. Quantitation of rates of transport, metabolic fluxes, and cytoplasmic levels of inorganic carbon in maize root tips during potassium ion uptake .Plant Physiology, 1992, 9(1) :291-297 .
    63.Gillon J, Yaki D. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2 .Science, 2001, 291 :2584-2587 .
    64.Dreybrodt W, Buhmann D. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion .Chemical Geology, 1991, 90 :107~122 .
    65.Meybeck M. Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Load .Amer. J. Sci, 1987, 287 :401-428 .
    66.Azam F, Fenchel T, Gray J G, et al. The ecological role of water-column microbes in the sea .Mar Ecol Prog Ser, 1983, 10 :257 .
    67.Rotatore C. Colman B The acquisition and accumulation of inorganic carbon by the unicellular green alga Chlorella ellip soidea .Plant Cell and Environment, 1991, 14(4) :377~382 .
    68.Liu Zaihua, Chris Groves, Daoxian Yuan, Joe Meiman,Guanghui Jiang, Shiyi He. 2004 Hydrochemical variations during flood pulses in the southwest China peak cluster karst :Impacts of CaCO3 -H2O-CO2 interactions .Hydrological Processes, 18(13) :2423~2437 .
    69.Poinar H N, Hofreiter M, Spaulding W J, et al. Molecular coproscopy: dung and diet of the extinct ground sloth Northrotheriops shastensis .Science, 1998, 281(5375) :402~406 .
    70.陈洪斌,郎家庆,祝旭东等.1979~1999年辽宁省耕地土壤养分肥力的变化分析[J]..沈阳农业大学学报,2003,34(2):106~109.
    71.程先富,史学止,于东升等.江西兴国县农田土壤固碳潜力20a变化研究[J].应用与环境生物学报,2007,13(l):37~40.
    72.杜宝华,杨平,全乘风.农田土壤二氧化碳释放问题的研究.水土保持研究[J].1996,3(3):100~103.
    73.裴翠娟,刘海忠,王宝强等.小麦、夏玉米两茬作物秸秆全量还田对土壤有机质含量的影响[J].河北农业科学,2004,8(3):110~111.
    74.甘海华,吴顺辉,范秀丹.2003.辽东土壤有机碳储量及空间分布特征[J].应用生态学报,14(9):1499~1502.
    75.高鲁鹏,梁文举,赵军等.气候变化对黑士有机碳库影响模拟研究[J].辽宁工程技术大学学报:自然科学版,2005,24(2):288~291.
    76.李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2000.
    77.高以信,李锦,周明极等.中华人民共和国土壤图(1:4000000).北京:科学出版社,2000.
    78.方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5): 594~602.
    79.方精云,郭庆华.寻找失去的陆地碳汇[J].植物生态学报2001 27(5): 648-656
    80.方精云.全球生态学——气候变化与生态响应[M].北京:高等教育出版社,2000.
    81.方精云,刘国华,徐高龄.中国陆地生态系统的碳库[J].见:王庚辰,温玉璞.温室气体浓度和排放监测及相关过程[C].北京:中国环境科学出版社,1996.109-128.
    82.耿元波,董云社,孟维奇.陆地碳循环研究进展[J].地理科学进展,2000,19:297~306.
    83.魏殿生主编.造林绿化与气候变化——碳汇问题研究.北京:中国林业出版社,2003
    84.华路.VintenA.J.,陈清一.N标记的葛改残体、废纸浆及容重对土壤反硝化及矿化作用的动态影响(英文).中国核科技报告,1997
    85.黄斌,王敬国,金红岩等.长期施肥对我国北方潮土碳储量的影响[J].农业环境科学学报,2006,25(1):161~164.
    86.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750~760.
    87.黄元仿,李韵珠,李保国等.区域农田土壤水和氮素行为的模拟[J].水利学报,2001,11
    88.荆建军,王小琳,谭梅.河南省耕地土壤养分状况及施肥建议[J].甘肃农业科技,1999,(9):40~41.
    89.解宪丽,孙波,周慧珍等.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35~43.
    90.金峰,杨浩,蔡祖聪,等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522~528
    91.王效科,自艳莹,欧阳志云等.全球碳循环中的失汇及其形成原因[J].生态学报,2002,22(1):94~103.
    92. Ciais P, Tans P P, White J W C, et al. Partitioning of ocean and land uptake of C02 as inferred by d13 C measurements from the NOAA Climate Monitoring and Diagnostics laboratory global air sampling network [J]. J.Geophys. Res, 1995,100:5051~5070.
    93.Carter, M.R., Gregorich, E.G., Anderson, D.W. et al. Concepts of soil quality and their significance. In: Gregorich, E.G., Carter, M.R. Soil Quality: for Crop Production and Ecosystem Health. Elsevier, Amsterdam, 1997:1~19.
    94.Christian, D.G., Ball, B.C. Reduced cultivation and direct drilling for cereals in Great Britain. In: Carter, M.R. Conservation Tillage in Temperate Agroecosystems [M]. Lewis Publishers, Boca Raton, FL, 1994: 117~140.
    95.Riley, H., Borresen, T., Ekeberg, E., Rydebert, T. Trends in reduced tillage research and practice in Scandinavia. In: Carter, M.R. Conservation Tillage in Temperate Agro-ecosystems. Lewis Publishers, Boca Raton, FL, 1994:23~45.
    96.Choudhary, M.A., Baker, C.J. Overcoming constraints to conservation tillage in New Zealand. In: Carter, M.R. Conservation Tillage in Temperate Agro-ecosystems. Lewis Publishers, Boca Raton, FL, 1994: 183~207.
    97.Steed, G.R., Ellington, A., Pratley, J.E. Conservation tillage in the Southeastern Australian wheat-sheep belt. In: Carter, M.R. Conservation Tillage in Temperate Agro-ecosystems. Lewis Publishers, Boca Raton, FL, 1994: 231~251.
    98.Lal, R. Conservation tillage for sustainable agriculture: tropics vs. temperate environments [J]. Adv. Agron. 1989,42:85~197.
    99.Carter, M.R.Conservation Tillage in Temperate Agroecosystems [M]. Lewis Publishers, Boca Baton, FL, 1994:390.
    100.FAO. Production Yearbook. FAO [M]. Rome, Italy. 1996.
    101.韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,12(4):6~11
    102. Aber JD,Mcdowell W, Nadelhoffer K,et al. 1998. Nitrogen saturation in temperate forest ecosystems[J].Bioscience,48:921~934.
    103.Battle M,Bender ML,Tans P,et al.2000.Global carbon sink sand their variability inferred from atmosphere CO2 [J].Science,287:2467~2470.
    104. Bousquet P,Peylin P,Ciais P,et al.2000.Regional changes in carbon dioxide fluxes of land and oceans since 1980[J].Science,290:1342~1346.
    105.Cole, V., Cerri, C., Minami, K., et al. Agricultural Options for Mitigation of Greenhouse Gas Emissions. IPCC, Working Group 2, Cambridge University Press, UK, 1995: 748~771.
    106.Greenland, D.J., Gregory, P.J., Nye, P.H. Land resources and constraints to crop production. In: Riley, R., Waterlow, J.C. Feeding a World Population of more than 8 Billion People: a Challenge to Science. Oxford Univ. Press, New York. 1997.
    107.王绍强,许君,周成虎.土地植被变化对陆地碳循环的影响—以黄河三角洲河口地区为例[J].遥感学报,2001,5(2):142~148.
    108.王绍强,周成虎,刘纪远等.东北地区陆地碳循环平衡模拟分析[[J].地理学报,2001,56(4): 390~400.
    109.刘小虎,邹德乙,康笑峰等.长期轮作施肥对土壤有机质及其组分的影响.沈阳农业大学学报,1998,29(1):53~58.
    110.黄东迈,朱培立,王志明等.早地和水田有机碳分解速率的探讨与质疑[J].土壤学报,1998,35(4):482~492
    111.李跃林,彭少麟,赵平等.鹤山几种不同土地利用方式的土壤碳储量研究[J].山地学报,2002,20,(5): 548~552.
    112.张军,葛剑平,国庆喜.中国东北地区主要植被类型NDVI变化与气候因子的关系[J].生态学报,2001,21(4):522~527.
    113.潘志强,刘高焕,周成虎.黄河三角洲农作物种植分区的遥感研究[J].地理研究,2003,22, (6):799-806.
    114.钱峻屏,李岩,廖其芳.利用遥感植被指数分析中国东部样带农业生态系统的生产力格局[J].生态学杂志,2001,20(6):46~49.
    115. CTIC. National Crop Residue Management Survey: Executive Summary. Conservation Tillage Information Center, West Lafayette, 1997.
    116.黄勤,魏朝富,谢德体等.不同耕作制对稻田甲烷排放通量的影响[J1.西南农业大学学报,1996, 18(5): 436~439.
    117. Cao MK,Woodward FI.1998.Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J].Nature,393:249~252.
    118.Carswell FE,et al.2002.Seasonality in CO2and H2O flux at an easternAmazonian rain forest[J].J.Geophys.Res.,107:8076.
    119.李德文,孟凡祥,史弈等.农业管理措施对土壤有机碳固存潜力影响的研究进展[J].农业系统科学与综合研究,2005,22(4):260~263.
    120.李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学,2003,33(l):72~80.
    121.李克让.土地利用变化和温室气体排放与陆地生态系统碳循环[J].北京:气象出版社,2002,151~305.
    122.李恋卿,潘根兴.江苏省农地土壤有机碳及碳截存动态研究[J].中国农学通报,1999,15(6):41~44.
    123.李世朋,汪景宽.温室气体排放一与土壤理化性质的关系研究进展[J]..沈阳农业大学学报,2003,34(2):155~159.
    124.李新宇,唐海萍.陆地植被的固碳功能与适用于碳贸易的生物固碳方式[J].植物生态学报,2006,30(2):200~209.
    125.李正才,傅愚毅,杨校生.经营千扰对森林土壤有机碳的影响研究概述[J].浙江林学院学报,2005,22(4):469~474.
    126.李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报,2002,39(3):351~360.
    127.梁二,王小彬,蔡典雄等.河南省土壤有机碳分布空间自相关分析[J].应用生态学报,2007,18(6):1305~1310.
    128.林而达,李玉娥,郭李萍等.中国农业土壤固碳潜力与气候变化[M].北京:科学出版社,2005
    129.刘纪远,王绍强,陈明镜.1990~2000年中国土壤碳氮蓄积量与土地利用变化[J].地理学报,2004,59(4):483~496.
    130.骆世明.农业生态学近年研究动向[J].世界科技研究与发展,2000,22(10):42~44.
    131.毛留喜,张建新,王利文.河南省农业自然资源与农作制度浅析[J].耕作与栽培,2000,(4):3~4.
    132.孟磊,丁维新,蔡祖聪等.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687~692.
    133.潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报,1999,15(5):330~332.
    134.潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4):384~392.
    135.潘根兴,李恋卿,张旭辉等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609~618.
    136.彭文英,张科利,陈瑶.黄上坡耕地退耕还林后土壤性质变化研究[J].自然资源学报,2005,20(2):272~278.
    137.Parton, WJ., Ojiama, D.S., Cole, C.V, et al. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. In: Quantitative Modeling of Soil Forming Processes, SSSA Spec. Pub. 1994,39, Madison, WI, 147~167.
    138.邱建军,唐华俊,陈庆沐等.中国农业耕地土壤碳平衡与碳排放研究[J].中国青年农业科学学术年报,2002,121~125.
    139.全国土壤普查办公室.中国土种志(1一6册).北京:中国农业出版社,1994
    140.全国土壤普查办公室.中国土壤.北京:中国农业出版社,1998
    141.秦明周.红壤氏陵区农业土地利用对土壤肥力的影响和评价[J]..山地学报,1999,18(1):71~75.
    142.秦小光,李长生,蔡炳贵.气候变化对黄土碳库效应影响的敏感性研究[J].第四纪研究,2001,21(2):153~161.
    143.苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效应的研究进展[J].中国沙漠,2002,22(3):220~228.
    144.孙成权,曲建升.国际地球科学发展趋势[J].地球科学进展,2002,17(3):344~347.
    145.孙维侠,史学正,于东升.土壤有机碳的剖面分布特征及其密度的估算方法研究一以我国东北地区为例[J].土壤通报,2003,35(3):236~241.
    146.穿下业勋,赵于洞.陆地碳循环研究中的模型方法[J]..应用生态学报,1998,6.
    147.Houghton R A, Hackler J L. Continental scale estimates of the biotic carbon flux from land cover change: 1850-1980[R]. ORNL/CDIAC-79, NDP-050, Oak Ridge Nat. Lab., Oak Ridge, Tenn., 1995.
    148.Houghton R A. The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: Geographic distribution of the global flux [J]. Tell US Ser B, 1987,39:122~139.
    149.王长生,王遵义,苏成贵等.保护性耕作技术的发展现状[J]..农业机械学报,2004,35(1):167~169.
    150.王建革,陆建七.华北平原土壤肥力的变化与影响因素分析[J].农村生态环境,1998,14(3):12~l6.
    151.王茹,张凤荣,王军艳等.潮土区不同质地土壤的养分动态变化研究.土壤通报,2001,32(6):255~257
    152.王绍强,刘纪远.土壤碳蓄积量变化的影响因素研究现状.地球科学进展.2002,17(4):528~534
    153.王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报,2003,14(5):797~802.
    154.王小彬,蔡典雄,华路等.土壤保护性耕作——全球农业可持续发展优先领域[J].中国农业科学,2006,39(4):741~749.
    155.文海燕,赵哈林,傅华.开垦和封育年限对退化沙质草地土壤性状的影响[J].草业学报,2005,14(1):31~37.
    156.吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响[J].应用生态学报,2004,15(4):593~599.
    157.吴金水,童成立,刘守龙.亚热带和黄土高原区耕作土壤有机碳对全球气候变化的响应[J].地球科学进展,2004,19(l):131~137.
    158.吴克宁,郑义,康鸳鸯.河南省耕地地力调查与评价[J].河南农业科学,2004,(9):49~52.
    159.吴生才.我国农田土壤碳库演变机制及发展趋势一第236次香山科学会议侧记[J].地球科学进展,2005,20(5):587~590.
    160.谢军屹,李丘娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(14):47~52.
    161.熊毅,李庆违.中国土壤[M].北京:科学出版社,1978,1~730
    162.杨景成,韩兴国,黄建辉.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,2:3(4):787~795.
    163.杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义[J].地理科学,2003,23(1):101~106.
    164.于东升,史学正,孙维侠等.基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J].应用生态学报,2005,16(2):2279~2283.
    165.张君,宫渊波,王巧红.土壤碳现状及其对全球气候变化的响应.四川林业科技,2005,26(5):56~61.
    166.杨学明,张晓平,方华军.农业土壤固碳对缓解全球变暖的意义.地理科学,2003,23(1):101~106.
    167.Lal R.Soil carbon sequestration impacts on global climate change and food security.Science,2004,304:1623~1627.
    168.黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势.科学通报,2006,51(7):750~763.
    169.La1 R. Soil carbon dynamics in cropland and rangeland.Environmental Pollution,2002,1 16:353~362.
    170.于强,王大铎.农田生态系统模型与农业资源高效利用[J].世界科技研究与发展,2001,23(5):22~27.
    171.俞海,黄季蜕,Scott Rozelle等.中国东部地区耕地土壤肥力变化趋势研究[J].地理研究,2003,22(3):380~388.
    172.于严严,郭正堂,吴海斌.1980~2000年中国耕作土壤有机碳的动态变化[J].海洋地质与第四纪地质,2006,26(6):123~130.
    173.张爱兵,谭声江,陈建等.空间分子生态学:一个新的分子生态和空间生态的交义学科[J].生态学报,2002,22(5):752~769.
    174.张朝生,陶澎,袁贵平等.大津平原地区微量元素含量的空间白相关分析[J].土壤学报,1995,32(l):50~57.
    175.张朝生,章中,何建邦.长江流域重金属空间分布特征:空间自相关和分形方法[J].地理学报,1998,53(1):87~95.
    176. Braun S,Rihm B,Schindler C,et al.2000.Growth of mature beech in relation to ozone and nitrogen deposition: an epidemiological approach[J].Water Air Soil Pollut.,116356~364.
    177.Eggleston S,Buendia L,Miwa K,Ngara Tanabe K.2006 IPCC Guidelines for National Greenhouse Gas Inventories.Japan:IGES,2006.
    178.甘肃省土壤普查办公室.甘肃土壤.农业出版社.1993.
    179.甘肃省土壤普查办公室.甘肃土种志、甘肃科学技术出版社.1993.
    180.陈义,王胜佳,吴春艳等.稻田土壤有机碳平衡及其数学模拟研究.浙江农业学报,2004,l6(1):l~6.
    181.张雷,严红,魏涟.土壤有机碳储量及影响其分解因素[J].东北农业大学学报,2004,35(6):744~748.
    182.中国科学院南京土壤研究所.中国土壤[M].北京:科学出版社,1978,1~730.
    183.钟华平,樊江文,于贵瑞等.草地生态系统碳循环研究进展[J].草地学报,2005,13(增刊):67~73.
    184.周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响[J].地理学报,2003,58(5):727~734.
    185.方精云,朴世龙,赵淑清..CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报, 2001,25(5):594~602.
    186.李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社2002.
    187.王效科,白艳莹,欧阳志云等.全球碳循环中的失汇及其形成原因[J].生态学报, 2002.22(1):94~103.
    188.周广胜.全球碳循环[M].北京:气象出版社. 2003.
    189.周光明,黄农.湘潭市能源的生态足迹及森林固碳减排效应的分析[J].湖南林业科技,2006,33(1):4~6.
    190.章力建,蔡典雄,王小彬等.农业立体污染中的碳氮链[J].中国农业科技导报,2005,7(1):7~l2.
    191. Sass R L, Fisher F M, Wang Y B, et al. Mathane Emission from Rice Fields: The Effect of Floodwater management [J]. Global Biogeochemical Cycles, 1992,6:249~262.
    192.徐华,蔡祖聪,李小平.种稻土壤CH4排放规律的研究[J].土壤与环境,1999,8(3):193~197.
    193.林而达,李玉娥,饶敏杰.稻田甲烷排放量估算和减缓技术选择[J]..农村生态环境. 1994, 10(4):55~58.
    194.王明星.中国稻田甲烷排放[M].北京:科学出版社,2001:5~16.
    195沈壬兴,上官行健,王明星等.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化[J].地球科学进展,1995,10(4):387~392.
    196.周毅,陶战,杜道灯.控制稻田甲烷排放的农业技术选择阴.农村生态环境,1994,20(3):6~8.
    197.李长生.土壤碳储量减少:中国农业之隐患一中美农业生态系统碳循环对比研究[J].第四纪研究,2000,20(4):345~350.
    198.Cramer W, Bondeau A, Woodward FI,et al. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models[J].Global Change Biol.,7:357~373.
    199.DeLucia EH,Hamilton JG,Naidu SL,et al.1999.Net primary production of a forest ecosystem with experimental CO2 enrichment[J].Science,284:1177~1179.
    200.Driscoll CT,et al.2001.Acidic deposition in the northeastern US: sources and inputs, ecosystem effects and management strategies[J].Bioscience,51,180~198.
    201.Fang J,Chen A,Peng C,et al.2001.Changes in forest biomass carbon storage in China between 1949 and 1998[J].Science,292:2320~2322.
    202.Farquhar GD,Roderick ML.2003.Pinatubo,Diffuse Light,and the carbon cycle[J].Science,299:1997~1998.
    203.Fowler D,Cape JN,Coyle M,et al.2000.The global exposure of forests to air pollutants[J].Water Air SoilPollut.,116:5~32.
    204.Grace J,Lloyd J,McIntyre J,et al.1995.Net carbon dioxide uptake by an undisturbed tropical rain forest in South West Amazonia during 1992 to 1993[J].Science,270:778~780.
    205.Gu LH,Baldocchi DD,Wofsy SC,et al.2003.Response of a deciduous forest to the mount pinatubo eruption: enhanced photosynthesis[J].Science,299:2035~2038.
    206.Gurney KR,et al.2002.Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models[J].Nature,415:626~630.
    207.Harvey LD,Gregory DJ,et al.1997.An introduction to simple climate models used in the IPCC second assessment report[R].IPCC,Bracknell United Kingdom.
    208.Holland EA,Braswell BH,Lamarque JF,et al.1997.Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems[J].J. Geophys. Res. Atmos.,102(D13):15849~15866.
    209.Holland EA,Brown S,Potter CS,et al.1999.North American carbon sink[J]. Science,282:1815.
    210.Houghton RA. 2002. Terrestrial carbon sinks—uncertain explanations[J]. Biologist,49(4):155~160.
    211.Houghton RA. 2002. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy [J].Climate Policy,2:71~88.
    212.Houghton RA.2003.Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850~2000[J].Tellus B,55(2):378~390.
    213.Houghton RA,Hackler JL.2000.Changes in terrestrial carbon storage in the United StatesⅠ: The roles of agriculture and forestry[J].Global Ecol. Biogeogr, 9:125~144.
    214.Hughen K,Lehman S,Southon J,et al.2004.14C activity and global carbon cycle changes over the past 50 000 years[J].Science,303:202~207.
    215.IGBP Terrestrial Carbon Working Group.1998.The terrestrial carbon cycle:implications for the Kyoto protocol[J].Science,280:1393~1394.
    216.IPCC. 2000a. Land Use, Land-Use Change, and Forestry. A Special Report of the IPCC [R]. Cambridge: Cambridge University Press.
    217.IPCC,2001.Climate Change 2001:The Scientific Basis[R]. Cambridge: Cambridge University Press.
    218.IPCC. 2001. Climate Change 2001: Synthesis Report [R].Cambridge: Cambridge University Press.
    219.Janssens IA, Freibauer A, Ciais P,et al. 2003. Europe’s Terrestrial Biosphere Absorbs 7% to 12% of European Anthropogenic CO2 Emissions [J]. Science, 300:1538~1542.
    220.Keeling CD,Chin JFS,Whorf TP.1996.Increased activity of northern vegetation inferred from atmosphere CO2measurements [J].Nature,382:146~149.
    221.Keeling RF,Piper SC,Heimann M.1996.Global and hemispheric CO2 sinks deduced from changes in atmospheric O2concentration [J].Nature,381:218~221.
    222.Knorr W,Heimann M.2001.Uncertainties in global terrestrial biosphere modeling.Part 1.A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme [J].Global Biogeochem.Cycles,15:207~225.
    223.Koch GW,Mooney HA.1996.Response of terrestrial ecosystems to elevated CO2: a synthesis and summary [A]. In: Carbon Dioxide and Terrestrial Ecosystems[C]. SanDiego: Academic Press.
    224.K rner C.2000.Biosphere responses to CO2–enrichment[J]. Ecol.Appl.10: 1590~1619.
    225.Law RM,et al. 1996. Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions [J]. Global Biogeochemistry Cycles, 10:783~796.
    226.Lovett RA.2002.Rain might be leading carbon sink factor[J].Science, 296:1787.
    227.Luo YQ,Reynolds J,Wang YP.1999.A search for predictive understanding of plant responses to elevated [CO2][J].Global Change Biol.,5:143~156.
    228.Marland G,Boden T.2003.Global CO2emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751~2000.
    229.Marland G,Boden T.2003.National CO2Emissions from Fossil-Fuel Burning, Cement Manufacture, and Gas Flaring: 1751~2000.
    230.Mclaughlin S,Percy K.2000.Forest health in North America:some perspectives on actual and potential roles of climate and airpollution[J].Water Air Soil Pollut.,116:151~197.
    231.Nadelhoffer KJ,Emmett A,Gundersen P,et al.1999.Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 398:145~148.
    232.Oren R,et al.2001.Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere[J].Nature,411:469~472.
    233.Pacala SW,Hurtt GC,Baker D,et al.2001.Consistent land-and atmosphere-based US carbon sink estimates[J].Science,292:2316~2320.
    234.Phillips OL,Malhi Y,Higuchi N,et al.1998.Changes in the carbon balance of tropical forests: evidence from long-term plots [J].Science,282:439~442.
    235.Prentice IC,et al.2001.The carbon cycle and atmospheric CO2 [ R ]. IPCC Third Assessment Report, WG1. Cambridge:Cambridge University Press.
    236,Schimel DS,House JI,Hibbard KA,et al.2001.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems [J].Nature,414:169~172.
    237.Schimel D,Melillo J,Tian HQ,et al. 2000.Contribution of increasing CO2and climate to carbon storage by ecosystems in the US[J].Science,287:2004~2006.
    238.方精云,郭兆迪.寻找失去的陆地碳汇[J].自然杂志2007年01期
    239.Scott RS,Scott DM,Daniel MM,et al.2003.Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses [J].Science,302:1554~1557.
    240.Shaverb GR,Canadell J,Chapin FSⅢ,et al.2000.Global warming and terrestrial ecosystems: a conceptual framework for analysis[J].Biol. Sci. 50:871~882.
    241.Smith LC,MacDonald GM,Velichko AA,et al.2004.Siberian peat lands a net carbon sink and global methane source since the Early Holocene[J]. Science, 303:353~356.
    242.Su YZ,Zhao HL.2003.Influence of grazing and enclosure on carbon sequestration in degraded sandy grassland, Inner Mongolia, north China[J].New Zeal.J.Agric.Res.,46:321~328.
    243.Tans P,Fung IP,Takahashi T.1990.Observational constraints on the global atmospheric CO2budget[J].Science,247:1431~1438.
    244.Vukicevic T,Braswell BH,Scheimel D.2001.A diagnostic study of temperature controls on global terrestrial carbon exchange[J].Tellus B,53:150~170.
    245.Xiao XM,Melillo JM,et al.1998.Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and atmospheric CO2concentration[J].Acta Phytoecol.Sin.,22(2):97~118.
    246.赵荣钦,秦明周.中国沿海地区农田生态系统部分碳源/汇时空差异[J].生态与农村环境学报2007,23(2):1~6,11.
    247.IPCC Climate Change 2007." The Physical Science Basis.Contribution of Working Group J to the Fourth Assessment Report of the lnter-governmental Panel on Climate Change.UK:Cambridge University Press,2007.
    248.IPCC.Climate Change 1995."The Science of Climate Change—Contribution of Working Group,to the Second Assessment of the lnter-governmental Panel on Climate Change. UK: Cambridge University Press,1996.
    249.IPCC.Climate Change 2001."Synthesis Report of the Third Assessment of thelnter-governmental Panel on Climate Change.UK:Cambridge University Press,2001.
    250.Falkowski P,Scholes RJ,Boyle E,et al.2000.The global carbon cycle: a test of our knowledge of earth as a system[J].Science,290:291~295.
    251.Fan S,Gloor M,Mahlman J,et al. 1998.A large terrestrial carbon sink in north America implied by atmospheric and oceanic carbon dioxide data and models[J].Science,282,442~446.
    252.West T.O. Gregg Marland. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States [J]. Agriculture, Ecosystems and Environment, 2002, 91:217-232.
    253.Yang X,Wang MX,Huang Y.2001.The climatic-induced net carbon sink by terrestrial biosphere over 1901~1995[J].AdvAtmos.Sci.,18(6):1192~1206.
    254.Schulze ED,Wirth C,Heimann M.2000.Managing Forests After Kyoto[J]. Science, 289:2058~2059.
    255. 261.PanGX,Li LQ,Zhang Q,Wang xK,Sun XB,Xu XB,Jiang DA.Organic carbon stock in topsoil of Jiangsu Province,China,an d the recent trend of carbon sequestration.Journal of Environmental Sciences,2005,l7(1):1~7
    256. Weft E V Lack’s clutch size hypothesis:An examination of the evidence using meta-analysis.Ecology,1992。73(5):1699~1705.
    257.Sampson R N.Scholes R J.Additional human·induced activities.In:Land Use, La nd-Use Change, and Forestry. UK: Cambridge University Press,2000.
    258.193.Cao MK,Tao B,Li KR,et al.2003.Interannual variation in terrestrial ecosystem carbon fluxes in China from 1981 to 1998[J].Acta Bot.Sin.,45(5):552~560.
    259.张小全,武曙红,何英等.森林、林业活动与温室气体的减排增汇[J].林业科学,2005,41(6):150~156.
    260. 262.杨景成,韩兴国,黄建辉,潘庆民.土壤有机质对农田管理措施的动态响应.生态学报,2003,23(4):787~796.
    263.王旭东。张一平,吕家珑,樊小林.不同施肥条件对土壤有机质及胡敏酸特性的影响.中国农业科学,2000,33(2):75~81.
    264.刘巽浩,陈阜.中国农作制.北京:中国农业出版社,2005:l95~197.
    265.林而达,李玉娥,郭李萍,高德明.中国农业土壤固碳潜力与气候变化.北京:科学出版社,2005:137.
    266.黄东迈,朱培立,王志明,余晓鹤.旱地和水地有机碳分解速率的探讨与质疑.土壤学报,1998,35(4):482~492
    267.高方,郭勤峰.控制全球温暖化的国际协作:京都协议[M]//方精云主编.全球生态学,北京:高教出版社与施普林格出版社,2000:246~257.
    268.张国盛,黄高宝,Yin Chan.农田土壤有机碳固定潜力研究进展.生态学报,2005,25(2):351~357.
    269.方华军,杨学明,张晓平.东北黑土有机碳储量及其对大气CO2的贡献.水土保持学报,2003,l7(3):9~12,20.
    270.张荔薇,韩建国,韩永伟等.不同放牧强度对草地土壤微生物量碳、氮的含量[J].草地学报,2003,11(4):343~345.
    271.郑立臣,解宏图,张威等.秸秆不同还田方式对土壤中溶解性有机碳的影响[J].生态环境,2006,15(l):80~83.
    272.陶波,葛全胜,李克让等.陆地生态系统碳循环研究进展[J].地理研究, 2001,20(5):564~574.
    273.Keeling Charles D. Climate change and carbon dioxide: An introduction [J],National Academy of Science,1997, 94:8273~8274.
    274.Watson R T, Verardo D J.Land-use change and forestry [M]·Cambridge University Press, 2000.
    275.李克让·全球气候变化及其影响的研究进展和未来展望[J]·地理学报, 1996, 51增刊:1~14.
    276.刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,11(1):1~8.
    277.李长生.土壤碳储量减少:中国农业之隐患一中美农业生态系统碳循环对比研究第四纪研究,2000,20(4):345~349.
    278.Canadell J G, Mooney H A.Ecosystem metabolism and the global carbon cycle [J]·Tree,1999,14(6): 249.
    279.Canadell J G, Mooney H A, Baldocchi D D,et al. Carbon Metabolism of the Terrestrial biosphere: A multi-technique approach for improved understanding [J],Ecosystems, 2000, 3:115~130.
    280. Falkowski P, Scholes R J, Boyle E,et al. The Global Carbon Cycle: Atest of Our Knowledge of Earth as a System [J],Science, 2000, 290:291~296.
    281.Budyko M L. The Earth’s Climate Past and Future [M],New York, Academic Press, 1982.
    282.Albritton D L, Allen M R, Baede Alfons P M,et al.Summary for policymaker. A Report of Working Group I of the IPCC [EB/OL]·http://www.ipcc.ch/ , 2001.
    283.Kleypas J A, Buddemeier R W, Archer D ,et al. Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs [J]·Science, 1999, 284:118~120.
    285.蒋有绪.中国森林生态系统结构与功能规律研究[M],北京:中国林业出版社1996.
    286.Dixon R K, Brown S, Houghton R A,et al. Carbon pools and flux of global forest ecosystems [J],Science, 1994,263:185~190.
    287.Houghton R A. The annual net flux of carbon to the atmosphere from changes in land use 1850~1990[J]. Tellus,1999, 51B:298~313.
    288.Houghton. Callander B A, Varney S K. Climate change: The supplementary report to the IPCC scientific assessment[M],Cambridge University Press, 2000.
    289.Houghton J T, Jenkins G J,et al. Climate change: the IPCC scientific assessment [M].Cambridge University Press.1990.
    290.Marland G, Andres R J, Boden T A,et al. Global, Regional, and National CO2Emission Estimates from fossil fuelburning, cement production, and gas flaring: 1751~1996 [A]·In:Report NDP-030, Oak Ridge.TN. USA, Carbon dioxide information analysis center, Oak Ridge national laboratory, 1999.
    291.Lal R. Soil carbon dynamics in cropland and rangeland [J]. Environmental Pollution.2002,116:353~362.
    292.Lal R., Bruce J.P. The potential of world cropland soils to sequester C and mitigate the greenhouse effect [J]. Environmental Science &Policy 1999, 2: 177~185.
    293.Scholes B.Will the terrestrial carbon sink saturate soon? [J]·IGBP Newsletter, 1999,37(3):2~3.
    294.Kheshgi, Jain A K, Wuebbles D J,et al. Model-based estimation of the global carbon budget and its uncertainty from carbon dioxide and carbon isotope records [J]·Journal of geophysical research, 1999, 104:31127~31144.
    295.Joos F, Meyer R, Bruno M,et al. The variability in the carbon sinks as reconstructed for the last 1000 years [J]. Geo-physical research letters [J]·1999, 26:1437~1441.
    296.Houghton R A, Skole D L, Nobre C A,et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon [J]·Nature, 2000, 403: 301~304.
    297.Tans, Conway T J, Nakazawa T. Observational constraints on the global atmospheric carbon dioxide budget [J]·Science, 1990, 247:1431~1438.
    298.Ciais P, Tans, White J W,et al. A large northern hemisphere terrestrial CO2sink indicated by the13C/14Cratio of atmospheric CO2[J]·Science, 1995, 269:1098~1102.
    299.Fan S,Gloor M,Mahlman J,et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2data and models [J]·Science, 1998, 282:442~446.
    300. Lal, R. Degradation and resilience of soils [J]. Phil. Trans. R. Soe. London. 1997, 352: 869~889.
    301..Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment [J]. Soil Tillage Res. 1997(43):81~107.
    302. Lal, R. Soil erosion impact on agronomic productivity and environment quality [J]. Crit. Rev. Plant Sci. 1998,17: 319~464.
    303.崔增团,孙大鹏.甘肃节水农业技术实践[M].甘肃科学技术出版社(2007)
    304.蔺海明.河西走廊绿洲农业区生态足迹和环境资产负债研究[D].博士论文.2003
    305. Blair G J and Lefroy R D B.Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural systems. Aust. J.Agri.Res., 1995, 46: 1459~1466.
    306.Jenkinson and Rayner J H.The turnover of soil organic matter in some of the Rothamsted classical experiments.Soil Sci.,1977,123:298~305.
    307.Dalal R C and Mayer R J.Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland.Ⅳloss of organic carbon from different density fractions. Aust.J. Soil Res.,1986,24:301~309.
    308.张国盛,黄高宝等.农田土壤有机碳固定潜力研究进展生态学报.2005,25 (2)351~357.
    309.张勃.甘肃酒泉绿洲农业生态系统结构、功能及效益分析[J].干旱区资源与环境[J].1995,9(4):259~266.
    310.方精云,唐艳鸿,林俊达等.全球生态学——气候变化与生态响应[M].北京:高等教育出版社,2000.118.
    311. Schlesinger Shan-min S,Brookes P C and Jenkinson D S.Soil respiration and the measurement of microbial biomass by the fumigation technique in fresh and air-dried soil.Soil Biol.Biochem.,1987,19:153~158.
    312. La1 R. Soil carbon dynamics in cropland and rangeland.Environmental Pollution,2002,116:353~362.
    313. Jarecki, Franzluebbers A J,Hons F M and Zuberer D A.Seasonal changes in soil microbial-biomass and mineralizable C and N wheat management systems.Soil Biol. Biochem., 1987, 26:1469~1475.
    314. Dendoncker, Patra D D,Chand S and Anwar M.Seasonal changes in microbial biomass in soils cropped with palmarosa(Cymbopogon martinii L.)and Japanese mit(Mentha arvensis L.)in subtropical india.Biol.Fertil.Soils.,1995,19:193~196.
    315,Vleeshouwers, Costanza, R.,d’Arge, R., Groot, et al.The Value of theWorld’s Ecosystem Services and Natural Capital[J].Nature,1997,387(15):253~260.
    316.李德文,孟凡祥,史奕等.农业管理措施对土壤有机碳固存潜力影响的研究进展[J].农业系统科学与综合研究.2005,11:21(4):260~263.
    317.Sith.Christensen B T.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol-Biochem., 1987, 19: 159~164.
    318.贾洪涛.干旱地区陆地生态系统碳循环规律研究[D]硕士论文.2004.
    319.金琳,李玉娥,高清竹等.中国农田管理土壤碳汇估算[J].中国农业科学2008,41(3):734~743.
    320.陈义,王胜佳,吴春艳等.稻田土壤有机碳平衡及其数学模拟研究[J].浙江农业学报,2004,l6(1):l~6.
    321.刘小虎,邹德乙,康笑峰等.长期轮作施肥对土壤有机质及其组分的影响.沈阳农业大学学报[J].1998,29(1):53~58.
    322.黄耀,刘世梁,沈其荣,宗良纲.环境因子对农业土壤有机碳分解的影响[J].应用生态学报,2001.13(6): 709~714
    323. Xie ZB,Zhu JG LiuG,CadischG HasegawaT,ChenCM,SunHF,Tang H Y,ZengQ.Soil organic carbon stocks in China and changes from 1980s to 2000s.Global Change Biology,2007,13:1~19.
    324.崔晓勇,陈佐忠等.草地土壤呼吸研究进展[J].生态学报,2001.21(2): 315~325
    325.杜宝华,杨平,全乘风农田土壤二氧化碳释放问题的研究[J].水土保持研究,1996.3(3): 100~103
    326.吴建国,张小全,徐德应.土地利用变化对生态系统碳汇功能影响的综合评价[J].中国工程科学,2003,5(9):66~77.
    327.Nadelhoffer, Arnebrandt,K,Bth,E.,Sgderstrg,M.B.Changes in micro-fungal community structure after fertili-stati-on of Scots pine forest soil with ammonium nitrate or urea[J].Biology and Fertility of Soils,1990 (22):309~312.
    328.马慧英,沈延辉.森林资源碳汇效益及价值体现的探讨[J]. 2005,734(4):45~47.
    329.M.Ha-Duong Transaction costs of forest carbon projects [R]. Bogor :Center for International Forestry Research , 2002.
    330.袁嘉祖,范晓明.中国森林碳汇功能的成本效益分析[J].河北林果研究.1997.12(1):20~24.
    331.刘允芬,欧阳华,张宪洲.青藏高原农田生态系统碳平衡.土壤学报,2002.39(5):636~642
    332. Daily G C. Nature's Services: Societal Dependence on Natural Ecosystems[M]. Washington D. C.:Island Press,1997.
    333.张新时,欧阳志云等.中国生态系统效益的价值[J].科学通报,2000,45(1):17~22.
    334.肖寒,欧阳志云,赵景柱等.森林生态系统服务功能及其生态经济价值评估初探[J].应用生态学报,2000,11(4):48l~484.
    335.关文斌,王自力等.贡嘎山地区森林生态系统服务功能价值评估[J].北京林业大学学报,2002,24(4):80~84.
    336.志斌,刘茂松,徐驰等.江阴市植被净初级生产力及碳汇价值分析[J].南京林业大学学报(自然科学版),2007,5,31(3):139~142.
    337. M,J,Grubb, FRANKJ . Transaction costs , institutional rigidities and the size of the clean development mechanism[ J ] . Energy Policy , 2005(33) :511~523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700