用户名: 密码: 验证码:
TiO_2/云母复合材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化由于其独特的光催化特性,在废水处理、空气净化等领域得到了广泛的应用,但TiO_2光催化剂带隙较宽,对太阳能利用率很低。加之光生电子和光生空穴易于复合,光量子效率低,严重制约了TiO_2光催化的实际应用效率。通过在TiO_2材料中掺杂一些贵金属或非金属离子,可以提高TiO_2的可见光响应范围,从而达到提高光催化活性的目的。TiO_2的团聚和难以回收也是限制其应用的另一原因,将其负载于合适的基体上,是解决这一问题的有效方法。近年来,有关纳米二氧化掺杂及负载的研究,得到了广泛的关注。
     本文以云母为载体,TiCl_4为源,NaOH为沉淀剂,采用水解―沉淀法制备出了云母负载纳米TiO_2光催化剂(TiO_2/M),研究了制备过程中温度、加料速率和浓度、粉体焙烧温度、光催化剂添加量,重复次数对光降解甲基橙活性的影响;同时分别以尿素为N源、Ag_2CO_3为Ag源,采用后掺杂法制得具有可见光响应的N掺杂TiO_2/M和Ag掺杂TiO_2/M。研究了N或Ag的掺杂对粉体中TiO_2晶相结构,粒度和光催化性能的影响。采用TG、XRD、XPS、SEM、EDS、DUV等对所制得的样品进行了表征,并以日光色镝灯为光源,甲基橙为模拟污染物检测其光催化活性。
     研究表明:绢云母与TiO_2通过桥氧相连形成均匀牢固的包覆层,样品中TiO_2物相为锐矿相和金红石相混晶,平均晶粒尺寸为10~30 nm,制备的TiO_2/M光催化剂对200~370 nm的紫外光有较高的吸收率,经400℃焙烧2h制备的光催化剂以5 g/L加入时,60 min对甲基橙的降解率达到44%;相同条件下重复利用三次,60 min对甲基橙的降解率仍然可高达28%;N或Ag的掺杂抑制了TiO_2晶粒的长大,减缓锐矿向金红石相的转变,同时N的掺杂形成Ti-O-N键,形成新的能级结构,使样品对光的吸收边红移至440~550 nm,具有明显的可见光响应,对甲基橙的光催化降解率与没有掺N的样品相比,最高可达1.6倍,N的掺杂能有效增加样品的使用寿命,相同条件下重复利用四次,光照60min对甲基橙的降解率仍然可高达43%;同时Ag的掺杂形成新的能级结构,随Ag~+/Ti4~+摩尔比的增加,样品对光的吸收边逐渐红移至440~520 nm,具有明显的可见光响应,当Ag~+/Ti4~+=0.05时,制得样品对甲基橙的光催化降解率是没有掺Ag的样品的1.5倍,相同条件下重复利用四次,该样品60 min对甲基橙的降解率仍然可达34%。
Nano-TiO_2 photocatalytic material has been widely studied in the past years due to its attractive characteristics of long-term stability and nontoxicity. However, only a small portion of the solar energy can be utilized because the absorption edge of Nano-TiO_2 is below 380nm and the material shows photoactivity only under ultraviolet (UV) light. This is the one reason why nano-TiO_2 has not been widely used commercially. In recent years, theoretical and experimental studies have indicate that using non-metal or metal main group dopants, such as N and Ag, can greatly enhance the photoactivity of Nano-TiO_2 in the visible spectral range. For nano-TiO_2, easy to agglomerate and difficult to reuse is also another reason for restricting their application, using appropriate base to load the nano-TiO_2 is a good method to resolve this problem. Hence, many researches have been focused on the doping and loading.
     Using TiCl_4 as the source of titanium, NaOH as the precipitating agent, NanoTiO_2/mica photocatalyst (TiO_2/M) were prepared by the hydrolysis– precipitation method. The influence of the calcination temperature, adding amount and repetition of the degradation on photocatalytic activity about methyl orange were also discussed. N-doped or Ag-doped TiO_2/M samples with photocatalytic activity under visible light were directly prepared by hydrolysis-precipitation, where urea was the resource of N and Ag_2CO_3 was the resource of Ag ,respectively.The as-prepared samples were characterized by TG,XRD, XPS, SEM, EDSand DUV methods. The photocatalytic activity of the samples was tested by taking methyl orange as pollution models and using the solar dysprosium-color as light source.
     The results show that: The formation of TiO_2 film connected with the mica by bridging oxygen. The phases of as–produced powders are mixed crystal of anatase and rutile, the average grain size is from 10 nm to 30 nm. NanoTiO_2/mica photocatalyst shows high absorbtion of UV-light. Adding catalyst calcinated at 400℃for 2h with the concentration of 5 g/L, the degradation rate of methyl orange reaches 44% after 60 min; the degradation rate of methyl orange is still up to 28% when repeated this process three times under the same conditions. N-doping or Ag-doping could restrain the grain growth of TiO_2 and delay the phase transformation of anatase to rutile phase. N-doping formed a new energy level above the valence band of TiO_2 which can extended the adsorption edge to 440~550nm. The photocatalytic degradation rate of methyl orange can reached 1.6 times higher than those samples without N-doping. Ag-doping could also formed a new energy level above the valence band of TiO_2 which can extend the adsorption edge to 440~520nm, the photocatalytic degradation rate of methyl orange can reach 1.5 times higher than those samples without Ag-doping. The degradation rate of methyl orange can reach to 34% when this process was repeated four times under the same conditions.
引文
[1] Fujishma, A.and K.Honda[J].Nature,1972.37: 238.
    [2] D.F. Ollis, and H. Al-Ekabi,Photocatalytic Purification and Treatment of Water and Air[J]. Elsevier Science, Lausanne, 1993.
    [3] Schiavello,M, Heterogeneous Photocatalysi. Wiley Series in Photoscience and Photo engineering, Wiley, Chichester, 1997.3.
    [4]高镰,郑珊,张青红.纳米二氧化光催化材料及应用[M].北京:化学工业出版社,2002,12:144~188.
    [5]熊家林,贡长生,张克立.无机精细化学的制备和应用[M].北京:化学工业出版社,1999.
    [6] Gratzel, M., Heterogeneous Photochemical Electron Transfer[J]. CRC Press, Baton Rouge, FL, 1998 .
    [7]季君晖,史维明.抗菌材料[M].北京:化学工业出版社,2003:208.
    [8]丁新更.银离子掺杂纳米二氧化粉体的制备、性能研究与应用[D].浙江大学博士学位论文.浙江.2001
    [9] Salvador P, Gonzalez Garcia A L, Munoz F. Catalytic role of Lattice D efects in the Pho tassisted Oxidation of Water at (001) N-TiO_2 Ruffle . [J]. Phys. Chem., 1992, 96 (25):10349~10353
    [10]陈旭.氮掺杂二氧化的制备及其光催化性能的研究[D]:福州大学硕士学位论文.福建: 2005.
    [11] PRABAKAR K, TAKAHASHI T, NEZUKA T, et al. Effect of nitrogen on the photocatalytic activity of TiOxNy thin films [J]. Surf Films, 2006, 24(4): 1156~1160.
    [12] SIRISUK A, HILL J, ANDERSON M. Photocatalytic degradation of ethylene over thin films of titania supported on glass rings [J ] . Catalysis Today, 1999 , 54 (1) : 159~164.
    [13]余家国,赵修建.多孔TiO_2光催化钠米薄膜的制备和微观结构研究[J].无机材料学报,2000,15 (2):347~355.
    [14]陈士夫,赵梦月,陶跃武,等.玻璃纤维负载TiO_2光催化降解有机磷农药[J].环境化工,1996,17 (4):33~35.
    [15]李凤生,杨毅,马振叶等.纳米功能复合材料及应用(第一版)[M].北京:国防工业出版社,2003.
    [16]陈小泉,李芳柏,李新军.二氧化/蒙脱土复合光催化剂制备及对亚甲基蓝的催化降解[J].土壤与环境. 2001, 10(1): 30.
    [17]蒋引珊,金为群,张军等. TiO_2/沸石复合物结构与光催化性能[J].无机材料学报,2002, 17(6): 1301.
    [18]张晓晖,吴瑞华,汤云晖.电气石的自发电极性在水质净化和改善领域的应用研究[J].中国非金属矿工业导刊,2004, 3: 39.
    [19]梁金生,冯艳文,梁广川.电气石/TiO_2复合薄膜的显微结构及光催化活性研究[J].硅酸盐学报,2004, 32(5): 652.
    [20]刘勋,栾亚兰,刘恒等.纳米TiO_2/天然矿物复合光催化材料的制备[J].矿产综合利用,2004, 1: 10.
    [21]袭著革,李君文,王福玉.环境卫生纳米应用技术(第一版)[M].北京:化学工业出版社, 2004.
    [22]贺飞,唐怀军,赵文宽等.纳米TiO_2光催化剂负载技术研究[J].环境污染治理技术与设备,2001, 2(2): 47.
    [23]朱新峰,杨家宽,肖波等.负载型纳米二氧化光催化剂制备及其光催化性能研究[J].材料科学与工程学报,2004, 22(6): 863.
    [24]陈崧哲,张彭义,祝万鹏等.不同基材上TiO_2膜的表征和光催化活性评价[J].催化学报,2004, 25(8): 641.
    [25]国伟林,王西奎.负载型纳米二氧化的液相沉积法制备及性能研究[J].化工技术与开发,2004, 33(5): 1.
    [26] S. Sato. Photocatalytic activity of NOx-doped TiO_2 in the visible light region[J] . ChemPhys. lett., 1986, 123 (1-2): 126~128.
    [27] R Asahi, T Morikawa, T Ohwahi, etal. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides[J]. Science, 2001, 293 (5528): 269~271.
    [28] S Mozia. Decomposition of nonionic surfactant on a nitrogen-doped photocatalyst under visible-light irradiation[J]. Applied Catalys is B :Environmental ,2005,55:195~200.
    [29] S Mozia. The preparation of TiO_2 nitrogen doped by calcination of TiO_2-xH2O under ammonia atmosphere for visible light photocatalysis[J]. Solar Energy Materials and Solar Cells ,2005,88 :269~280.
    [30] TLindgren. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J]. Phys Chem B ,2003,107:5709~5716
    [31] S Yin,H Yamaki . Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J]. Mater Chem, 2003(13):2996~3001.
    [32] S Yin,H Yamaki . Mechanochemical synthesis of nitrogen-doped titania and its visible lightinduced NOx destruction ability[J]. SolidState Ionics,2004,172: 205~209.
    [33] Y Suda,et al . Preparation of nitrogen-doped titanium oxide thin film using aPLD method as parameters of target material and nitrogen concentration ratio in nitrogenΠoxygen gas mixture[J]. Thin Solid Films ,2005,475:337~341.
    [34] Y.Suda,et al . Preparation of high quality nitrogen doped TiO_2 thin film as a photocatalyst using a pulsed laser deposition method[J]. Thin Solid Films,2004,253:162~166
    [35] S Yang. New method to prepare nitrogen - doped titanium dioxide and its photocatalytic activities irradiated by visible light[J]. Communications of the American Ceramic Society ,2004,87(19):1803~1805.
    [36] Di Li. Visible-light-driven nitrogen-doped TiO_2 photocatalysts:effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants[J]. Materials Science and Engineering B,2005,117:67~75.
    [37] YLiu, X Chen. Photocatalytic degradation of azo dyes by nitrogen-doped TiO_2 nanocatalysts[J]. Chemosphere,2005,61:11~18.
    [38]邱炜.掺氮光敏化纳米晶TiO_2的研制[M].华东理工大学学报(自然科学版),2005,31(1):79~83.
    [39]杨松旺.简单有效掺氮氧化纳米晶的制备及其可见光催化性能[J].无机材料学报,2005(7):785~788.
    [40]黄雪峰.水热法制备N掺杂纳米TiO_2及其光催化活性研究[J].环境化学,2006(1):16~19.
    [41] Dupouy F, Snoeck E,Casanove M J, et al . Microst ructural characterization of high st rength and high conductivity nanocomposite wires[J]. Scr Mater, 1995, 34 (7):1067.
    [42] Verhoeven J D, Chumbley L S, Laabs F D. Measurement of filament spacing in deformation processed Cu2Nb alloys[J]. Scr Acta Metall, 1991, 39 (11):2825.
    [43] Asahi R, et al. Visible-light photocatalysis in nitrogen doped titanium oxides[J]. Science, 2001, 293: 269.
    [44] Irie H, Watanabe Y, Hashimoto K. Nitrogen-concent ration dependence on photocatalytic activity of TiO_2-xNx powders[J]. Phys Chem B, 2003, 107 (23): 5483.
    [45] Ihara T, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient st ructure and by nitrogen doping[J]. Appl Catalysis B, 2003, 42: 403.
    [46] Chu S Z, Inoue S, Wada K, et al. Fabrication and photocatalytic characterizations of ordered nanoporous X-doped(X= N, C, S, Ru, Te, and Si) TiO_2 / Al2O3 films on ITO/glass[J]. Langmuir, 2005, 21: 8035.
    [47] Shen H,et al. Visible-light photocatalysis of nitrogen-doped TiO_2 nanoparticulate films prepared by low energy ion implantation[J]. Appl Surf Sci, 2007, 253 (17): 7024.
    [48] Diwald O, Thomp son T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO_2 (110) in visible light[J] . Phys Chem B, 2004, 108: 6004.
    [49] Sclafani A,Herrmann J[M].J Photochem Photobiol A,1998,113 ( 2):181.
    [50] Hoffmann M R,Martin S T,Choi W ,Bahnemann D W. Chem Rev[J]。1995,95 (1):69.
    [51] Rengaraj S, Li X Z. Journal of Molecular Catalysis A[J], 2006, 243(1): 60.
    [52]梁晓娟,杨昕宇,向卫东. Ag/TiO_2光催化薄膜清除乙烯气体的研究[J].功能材料,2005, 36(6): 881.
    [53]马琦,胡富苗,张保柱等. Ag+修饰改性TiO_2薄膜的制备、表征及日光催化性能研究[J].化工科技,2005, 13(5): 23.
    [54]侯兴刚,吴晓玲,刘安东. Ag/TiO_2薄膜光催化性能的研究[J].北京师范大学学报,2005, 41(6): 604.
    [55]邱成军,曹茂盛,张辉军等.磁控溅射制备掺银TiO_2薄膜的光催化特性研究[J].材料工程,2005, (10): 45~46.
    [56]沈杰,蔡臻炜,沃松涛等.射频磁控共溅射制备光催化Ag-TiO_2薄膜[J].真空科学与技术学报,2005, 25(1): 33.
    [57]叶映雪. Ag-TiO_2和Au-TiO_2复合薄膜光催化降解偶氮染料酸性大红GR的研究[J].光谱实验室,2004, 21(3): 525.
    [58] Sadeghi M, Liu W, Zhang T-G, Stavropoulos P, Levy B[J]. J Phys Chem, 1996, 100(50):19466~19473.
    [59] TO SH IH IK O Kondo,KA ZUH IK O Shindo, MASAY ASU A rakaw a, etal. Microstructure and hydrogen absorption-desorption properties of Mg-TiFe0.92Mn0.08 composites prepared by wet mechanical milling [J]. Journal of Alloys and Compounds, 2004, 375: 283~291.
    [60]李星星.生产工艺对滁州绢云母粉体特征的影响[D].合肥工业大学:材料学院,2006.
    [61] Yang Juan Mei Sen Ferreira J M F. Hydrothermal processing of nanocrtalline anatase films rom tetraethylamonium hydroxide peptized titania sols [J]. J Eur ceram Soc 2004 (2): 335~339.
    [62] Ohya T Ito M Yamada K, et al. Aqueous titanate sols from Ti alkoxide-alpha hydroxycarboxylic acid system and preparation of titania films from the sols [J].Sol-Gel Sci Technol, 2004, 30(2):71~81.
    [63]史建新,徐惠,张艳君,陈金妹.纳米TiO_2的分散及表面改性的研究综述[J].印染助剂,2007,1(24):5~9.
    [64]高濂,郑珊,张青红.纳米氧化光催化材料及应用[M].北京:化学工业出版社,2002, 2:25~35.
    [65] Abrams B L Wilcoxon J P. Nanosize semiconductors for photo-oxidatio[J]. Crit Rve Solid State, 2005, 30(3):153~182.
    [66]陈静.微乳液法制备钴蓝云母珠光颜料、纳米TiO_2/云母复合材料的研究[D].华南理工大学硕士学位论文,2004, 6:54~55.
    [67]许珂敬,杨赞中,董抒华.以多孔陶粒为载体的纳米Ag/N–TiO_2光催化膜的制备与表征[J].硅酸盐学报,2009,37(8):1361~1366.
    [68] CHEN XiaoYun, LIU ShouXin, CHENXi. China. [J]. Appl. Chem. (Yingyong Huaxue), 200623(11):1218~1222
    [69]张金龙,何斌.光催化[M].上海:华东理工大学出版社,2004:58~60.
    [70] Jian Yuan, Mingxia Chen, Jian weishi, Wenfeng Shangguan. Preparations and photocatalytic hydrogen evolution of N-doped TiO_2 from urea and titanium tetrachloride[J].International Journal of Hydrogen Energy.31(2006) 1326~1331.
    [71]谢晓峰,陆文璐,张剑平,等.拓展作用光范围的纳米TiO_2-XNX制备和表征[J].材料科学与工程学报. 2004, 22(2): 212~215.
    [72] Chen X B, Burda C. Photoelect ron Spect roscopic Investigation of Nitrogen-doped Titania Nanoparticles[J] . Journal of Physical Chemistry [B], 2004,108:15446~15449.
    [73] Hong Y C, Bang C U. Band Gap Narrowing of TiO_2 by Nitrogen Doping in Atmospheric Microwave Plasma [J]. Chem. Phys. Lett., 2005, 413: 454~457.
    [74] Irie H,Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO_2-XNX powders [J]. Journal of Physical Chemistry B, 2003,107(23): 5483~5486 .
    [75] TOM LIEW ICZM. Scaling properties in photocatalysis[J]. Catalysis Today, 2000, 58: 115~123.
    [76] Yang Juan, et al. Hydrothermal processing of nanocrtalline anatase films rom tetraethylamonium hydroxide peptized titania sols [J]. J Eur ceram Soc 2004 (2): 335~339.
    [77]谢希德.固体能带理论[M].上海:复旦大学出版社,2007:3062522.
    [78] S. Rengaraj, et al. Enhanced photocatalytic activity of TiO_2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension[J]. Journal of Molecular Catalysis A: Chemical 243 (2006) 60~67.
    [79] TOM LIEW ICZM. Scaling properties in photocatalysis [J].Catalysis Today, 2000, 58:115~123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700