用户名: 密码: 验证码:
B和Mo对钢结硬质合金覆层材料影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将钢结硬质合金的优异性能赋予钢基体表面,获得了具有高硬度、高耐磨性与高耐腐蚀性能且界面结合优异的钢结硬质合金覆层材料。研究了B和Mo的掺入对钢结硬质合金覆层烧结温度、力学性能、物相组成以及微观结构的影响,并将其应用于机械零件表面改性,获得了较好的效果。
     本研究在钢基体表面制备了M、3B、4B、5B、3BMo五类钢结硬质合金覆层材料。确定了硬质相和粘结相的体积分数,B、Mo等合金组分添加量以及粘结剂PVB的添加量。
     确定了制备钢结硬质合金覆层材料的工艺流程,主要包括成形料浆的制备工艺、钢基体的处理、覆层坯体的成形工艺与覆层材料的烧结工艺等四大部分。
     确定了覆层材料的烧结工艺制度。烧结真空度为1.0×10-2~1.0×10-3Pa;烧结温度制度为:以10℃/min从室温加热至400℃保温30min,继续以10℃/min加热至1000℃保温30min,然后以5℃/min的速度升温至最高烧结温度保温30min,再随炉自然冷却。
     通过烧结实验确定了各体系覆层材料的烧结温度,并分析了B和Mo的添加对覆层材料烧结温度的影响。结果表明,B添加后,有效的降低了覆层材料的烧结温度,3B覆层材料的烧结温度相比M覆层材料的烧结温度降低50℃。随着B质量分数的增加,烧结温度有所提高。在3B覆层配料基础上添加Mo,覆层材料的烧结温度相对Mo添加前升高25℃。
     研究了钢结硬质合金覆层材料的硬度、弯曲强度等力学性能,分析了B和Mo的添加对覆层材料力学性能的影响。结果表明,B添加后,覆层材料无论是洛氏硬度还是维氏硬度都有所提高,洛氏硬度可提高2HRA,维氏硬度提高28.38 Kgf/mm2。随着B质量分数的增加,覆层硬度进一步提高。在3B覆层配料基础上添加Mo后,3BMo覆层的洛氏硬度相对3B覆层提高1.4HRA,维氏硬度提高17.67Kgf/mm2。覆层受压应力或受张应力时,B的加入均降低了覆层材料弯曲强度,但随B含量的增加而降低。无论覆层受压应力还是受张应力,添加Mo的3BMo覆层材料的弯曲强度相对Mo未添加的3B覆层材料的弯曲强度有所提高,覆层受压应力时提高237.47 MPa,覆层受压应力时提高237.10MPa。
     采用干摩擦磨损与冲蚀磨损两种方式研究了钢结硬质合金覆层材料的摩擦磨损性能。结果表明,与M覆层材料比较,添加B和Mo后的覆层材料的耐磨性均有不同程度的提高。研究了覆层材料的耐腐蚀性能,结果表明,钢结硬质合金覆层具有比钢基体更优越的耐腐蚀性能。
     研究了钢结硬质合金覆层材料中的物相组成、硬质相与粘结相的分布状态以及覆层与基体的界面结合特征。分析了覆层材料扩散界面区域的范围,并通过线扫描照片结合覆层/钢基体结合界面显微硬度的测试分析了界面过渡区的形成机理。B和Mo添加后有Fe2B和Mo2FeB2等新相生成。B的添加使覆层和钢基体之间形成了具有冶金镶嵌结构的过渡层。
     初步将钢结硬质合金覆层复合于易磨易蚀的机械零件表面,成功制备了部分钢结硬质合金覆层零件。试验证明,覆层处理大大延长了覆层零件的使用寿命。
In this thesis, a novel kind of steel bond hard alloy cladding materials with outstanding hardness, excellent wear and corrosion resistance and high cladding/substrate bonding strength was developed by vacuum liquid phase sintering technique, and the influence of B and Mo on the performance of the steel bond hard alloy cladding materials was studied. The cladding material was applied in the surface of the machine accessories, and good effects were obtained.
     Five types of cladding materials have been developed successfully on the sides of steel for the first time, which were designated M, 3B, 4B, 5B and 3BMo respectively. The basic volume fraction of hard phase and binder phase, the contents of alloy elements B and Mo, and the adhesive PVB in claddings were determined.
     The technology process of the preparation of the cladding materials were established, which included four parts: the technology of the preparation of the slurry; disposal technology of the steel substrate; molding mode of the cladding formation and the sintering technology of the cladding materials.
     The liquid phase sintering technique was used for sintering of cladding materials. During sintering, the vacuum in furnace keeps 10×10-2~10×10-3Pa, The temperature is elevated from room temperature to 400℃at a speed of 10℃/min, and holds for 30 min, After that , the temperature is raised to sintering temperature, and holds for 30 min, the temperature is further elevated to 1000℃at a speed of 5℃/min, and holds for 30min. Finally, the samples are cooled in the furnace naturally. The elevated rate of temperature is 5℃/ min.
     The sintering temperature of five types cladding materials was determined, and the influence of the B and Mo on sintering temperature was analyzed. The results indicated that the sintering temperature of cladding material was almost 50℃lowered compared with that without B and heightened as more and more B added. When Mo was added on the base of B, the sintering temperature of cladding material was 25℃higher compared with that without Mo.
     The mechanical properties of the steel bond hard alloy cladding materials such as hardness and bending strength were investigated. The effects of B and Mo on hardness and bending strength were investigated in detail. The Rockwell hardness and Vickers hardness of cladding materials containing B were both higher than that of cladding material M without B and the hardness kept increasing with more and more B containing in the cladding, and the Rockwell hardness was 2HRA higher and Vickers hardness was 28.38 Kgf/mm2 higher. The Rockwell hardness of cladding material 3BMo was 1.4HRA higher than that of 3B and the Vickers hardness was 17.67Kgf/mm2 higher than that of 3B. The results of three-point bending method indicated that the bending strengths of the cladding materials endured compressive stress and tensile stress respectively were improved after B was added, however, the bending strength reduced with the content of B increasing. The adding of Mo in the cladding could heighten the bending strength markedly.
     The wear resistance of the steel bond hard alloy cladding materials was studied by dry friction method and erosion wear method. The results indicated that the wear resistance of cladding material 3B, 4B, 5B and 3BMo was improved reasonably compared with the cladding material M without B and Mo. The corrosion resistance of the steel bond hard alloy cladding material was investigated and from the results of that, the corrosion resistance of the cladding materials was better than Q235 steel.
     The phase composition of the steel bond hard alloy claddings and the distribution of the hard phase and binder phase were studied. The interface character between hard phase and binder phase and the interface character between the cladding and the steel substrate were both investigated. The compartmentalization of the diffuse interface layer between steel and cladding material was advanced. The formation mechanism of the interface layer was investigated by the line scan analysis and the micro-hardness testing on the interface of cladding and steel. There were new phase Fe2B and Mo2FeB2 produced after B and Mo added. A metallurgical inlaying structure without cavity or gap formed between the cladding and the steel substrate because of B. The operational life of cladded hardware was much longer than that of uncladded hardware.
     The steel bond hard alloy cladding material was applied on the surfaces of the facile abrasion and erodible mechanical accessories, and some cladding hardwares were fabricated successfully. The working condition of steel bond hard alloy cladding hardwares under practical working condition was studied.
引文
[1]关成君,陈再良.机械产品的磨损-磨料磨损失效分析[J].理化检验,2006,24(1):50-54.
    [2]庞兆夫,黄磊,李文竹.机械零部件失效浅析[J].鞍钢技术,2007(4):25-27,40.
    [3]张涛,李兆前,刘福田,王永国.在钢板上涂覆三元硼化物基金属陶瓷的反应烧结工艺[J].陶瓷学报,2001,6(2).
    [4]李国英主编.表面工程手册[M].北京:机械工业出版社,1997.
    [5]曾爱香,唐绍裘.金属基陶瓷涂层的制备和应用及发展[J].表面技术,1999, 28(1): 1-3,8.
    [6]徐滨士,李长久,刘世修,等.表面工程与热喷涂技术及其发展[J].中国表面工程,1998,(1): 3-9.
    [7]温金海,黄伯云,吕海波,等.高性能抗磨损涂层的进展[J].材料导报,1994,4:19-23.
    [8]程国安,刘洪刚,毛琼.(Ni,Cr)/Al2O3复合涂层制备工艺的研究[J].材料工程,1998,8:28-30.
    [9]王正平,朱胜,徐滨士,等.热喷涂技术在中国的应用与发展[J].表面工程,1995,4:1-4.
    [10]周长华,张孝彬.热喷涂技术的现状和发展[J].材料科学与工程,1998,16(4):71-73.
    [11]王皓,傅正义,E.P.Kostogorov,等.表面涂层新技术-燃烧反应化学气相传质涂层技术[J].表面技术,1996,25(1):1-5.
    [12]许泊藩,张细菊,蒙鹏博.铝热自蔓延高温合成钢内衬陶瓷涂层的研究[J].1998,27(3):13-15.
    [13]王双喜,王建江,李俊寿,等.氧化铝陶瓷内衬不锈钢复合钢管的组织与性能[J].硅酸盐学报,1998,26(6):808-812.
    [14]林立,薛群基,刘慧文.碳化铬金属陶瓷SHS熔覆层的磨料磨损机理研究[J].材料开发与应用,1997,12(5):10-15.
    [15]李淑华,王建江,王双喜,等.小口径内衬陶瓷复合钢管涂层厚度控制[J].材料保护,2000,33(3):28-29.
    [16]万怡灶,罗红林,周贤良,等.用热化学反应法制备金属陶瓷涂层工艺的研究[J].材料工程,1997,10:25-28.
    [17]穆柏春,刘秉余.金属表面化学反应陶瓷涂层的研究[J].硅酸盐通报,1997,6:19-22.
    [18]王一三,张欣苑,黄文,等.液态反应生成Fe-VC表面复合材料组织与耐磨性能[J].复合材料学报,2000,17(1):71-75.
    [19] Y. Miyamoto et al. FGM research programmes in Japan-from structural to functional uses[J]. Tsukuba, Japan. 1996, 10:1-8.
    [20]单际国,任家烈,徐滨士.聚焦光束表面强化技术[J].中国表面工程,1998,1:16-18.
    [21]单际国,任家烈.钢表面光束熔覆镍基耐磨合金技术[J].中国表面工程,1999,1:22-24.
    [22] Arkhipov, ablaev, krasnov. Structure and hardness of high-strength Vch500 cast iron with hardening with a light beam[J]. Metal Science and Heat Treatment,1991,32(7-8):511-513.
    [23] G. Lallemand, A. Loredo, B. Martin. Influence of laser cladding on the surface hardness of small-diameter metallic wire substrates[J]. Materials Science and Engineering. 2000 (277): 192-197.
    [24] Li Yajiang, Zou Zengda, Holly Xiao. A study on microstructure in the brazing interface of WC–TiC–Co hard alloys[J]. International Journal of Refractory Metals & Hard Materials. 2002(20): 169-173.
    [25] R. M. Jasim, R. D. Rawlings, D. R. F. West. Metal ceramic functiornally gradient material produced by lase processing[J]. J. Mater. Sci, 1993, 128(10): 2820-2826.
    [26]吴健.影响激光熔覆层品质的主要因素分析[J].机械制造与自动化,2004,33(4):52-56.
    [27]张庆茂.送粉激光熔覆应用基础理论的研究[D].北京:中国科学院,2000.
    [28]高淑英.用于激光熔覆的同轴送粉喷嘴的设计及研究[D].天津:天津工业大学,2002.
    [29]王勇.合金表面激光合成与熔覆稀土生物陶瓷复合涂层的研究[D].重庆:重庆大学, 2002.
    [30]欧阳家虎.激光熔覆Ni/TiCp复合涂层的组织结构及干滑动磨损行为[D].哈尔滨工业大学, 1994.
    [31]陈明飞,黄金林,张亚平,等.激光熔覆制备新型梯度植入材料[J].材料导报,1996, (1):45-46.
    [32] De Sanctis, L.Gomez, N.Parodi,etc. Protective glass coatings on metallic substrates[J]. J Non-Gryst Solids,1990,121:338.
    [33] A.R.Di Giampaolo Conde, M.Puerta, H.Ruiz. Thick aluminosilicate coatings on carbonstael via sol-gel[J]. J Non-Gryst Solids,1992,148:467.
    [34] M.Guglielmi, D.Festa, P.C.Innocenzi etc. Borosilicate coatings on mild steel[J]. J Non-Gryst Solids,1992, 148:474.
    [35] Keiji Izumi, Megumi Murakami, Takenori Deguchi etc. Zirconia coating on stainless steel sheets from drganozirconium compounds[J]. J Am Ceram Soc.,1989,72 (8):1465.
    [36]黄明珠,李澄,周一扬,等.溶胶-凝胶法在金属表面制备TiO2-SiO2系薄膜的研究[J].功能材料,1994,25(1):82.
    [37] R.Di.Maggio, S.Rossi, L.Fedrizzi etc. ZrO-CeO films as protective coatings against dry and wetcorrosion of metallic alloys[J]. Surface and Coatings Technology,1997,89:292.
    [38] A.R.Di.Giampaolo, M.Medina, R.Reyes etc. Zinc phosphate interlayer for sol-gel derived aluminosilicate coating on AISI-1010 carbon steel [J]. Surface and Coatings Technology, 1997, 89:31.
    [39]孙志平,王一三,丁义超,等.铸造烧结VC-Fe基表面复合材料[J].铸造技术,2001,(5): 46-48.
    [40]杨屹,冯可芹,王一三,等.铸造烧结法[J].热加工工艺,2003,(4):38-40.
    [41] Wang yisan. In Situ Production of Fe-VC and Fe-TiC Surface Composites by Cast-sintering[J]. Composites Part A, 2001.
    [42]李凤春,王一三,杨屹,等.铸造烧结Fe-TiC表面复合材料的制备及其耐磨性研究[J].热加工工艺,2001(2):19-21.
    [43]赵社国,李秀兵,方亮,等.浇注法制备表面复合材料用复合剂的强度表征及测试[J].热加工工艺,2003(2):30-31.
    [44]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展[J].铸造技术,2001,(2):42.
    [45] Kuan-Hong Lin, Chen-Sheng Hsu, Shun-Tian Lin. Structure analysis of the constitutional phases in liquid phase sintered W–Mo–Ni–Fe heavy alloys[J]. International Journal of Refractory Metals & Hard Materials. 2003,2(21): 193-203.
    [46] Jun Kui Yang, Hu-chul Lee. Microstructure evolution during the sintering of a Ti(C, N)-Mo2C-Ni alloy[J]. Materials Science and Engineering .1996 (209): 213-217.
    [47] Kuan-Hong Lin, Chen-Sheng Hsu, Shun-Tian Lin. Variables on the precipitation of an intermetallic phase for liquid phase sintered W–Mo–Ni–Fe heavy alloys[J]. International Journal of Refractory Metals & Hard Materials. 2002(20): 401-408.
    [48] K.S. Hwang, H.S. Huang. The liquid phase sintering of molybdenum with Ni and Cu additions [J]. Materials Chemistry and Physics. 2001(67): 92-100.
    [49]株洲硬质合金厂.钢结硬质合金[M].北京:冶金工业出版社,1982.
    [50] RogerN .Metal Powder Report[M].1988,43(3):198-200.
    [51] CapaldiM J.Production and characterization of TiC-containing Materials by Selfpropagating high temperature synthesis[J]. Journal of Materials Synthesis and Processing,1996, 4(4): 245-253.
    [52]朱荆璞.金属表面强化技术-金属表面工程学[M].机械工业出版社,1989.
    [53]日本化学会.无机化合物合成手册[M].北京:化学工业出版社,1983.
    [54]夏玉海,徐玉秀.钢结硬质合金用作模具材料的特点[M].模具工业,1995,11(177)54-55.
    [55] HusuM S.Synthesis of nanocrystalline titanium carbide by spark erosinon[J].Script Matallurgical of Materialia,1995,32(6):805-808.
    [56]郭志猛.SHS制备钢结硬质合金[J].粉末冶金技术,2001,19(2):26.
    [57]李沐山.国外钢结硬质合金新进展[J].硬质合金, 1994,11(2): 105-114.
    [58]孙保琦.硬质合金中铁镍代钴问题浅析[J].硬质合金.1996,13(1):47-55.
    [59] Kear B. H. and Strutt P R. Nanostructures: The Next generation of High Performance Bulk Materials and Coatings [J]. KONA Powder and Particle.1995,(13):46-55.
    [60] Ma X., Ji G, Ling Z, and Yuanda D .Structure and Properties of Bulk Nano-Structured WC-Co Alloy by Mechanical Alloying [J]. Alloys and Compounds.1998,264(1-2):267.
    [61] Mi S. and Courtney T. H . Synthesis of WC and WC-Co Cermets by Mechanical Alloying And Subsequent Hot Isostatic Pressing [J]. Scripta Mater.1998,38 (1):171-176. [62」刘永福.少钴的WC-Fe/Co/Ni硬质合金的研制和应用[J].四川有色金属1992,1.5-9.
    [63] L. Prakash etal, Towards improved Performance of Tool Materials [J], The Metal Society, 1982, 118-126.
    [64] Guillermet A F .The Co-Fe-Ni-W-C phase diagram [J]. Z Metallkande,1989 (2):83.
    [65] Dudrova E ,Selecka M and K abatovaM. Effect of Boron Addition onMicrostructure and Properties of Sintered Fe-1.5Mo power materials[J]. Iron and Steel jounal International, 1997, 42(37):59.
    [66] German R M, Hwang K S and Madan D S.A nalysis of Fe-Mo-B Sintered Alloys[J]. Powder Metallurgy In ternational,1987,19(2):15.
    [67]蔡千华.硼化物金属陶瓷膜的适用和效果[J].国外金属热处理. 2002,23(2):10-12.
    [68] Collins J A.Failure of Material in Machical Eesign [M].Jone Wiley & Soils. InC, 1981
    [69]王永国,李兆前.反应硼化烧结法制备三元硼化物基耐磨覆层材料[J].材料科学与工程.2002,20(2):210-213.
    [70]駒井正雄,高木研一.高强度硼化物系金属陶瓷[J].国外难熔合金与硬质金,1998,14(1):52-63.
    [71] Takagi K, Ohira S, Ide T, et al. Modern Development sin Powder Metallrgy[J]. Metal Powder Industries Federation, Princeton, 1985, 16 :153-166.
    [72]王永国.三元硼化物基金属陶瓷覆层材料的研制[D].济南:山东大学,2002.
    [73]刘福田,李兆前,黄传真.三元硼化物基金属陶瓷复合材料及其液相烧结机理[J].济南大学学报(自然科学版),2001,15(4):291-295.
    [74]刘福田,黄巍岭,杨俊茹,等.三元硼化物金属陶瓷覆层材料耐腐蚀性能研究[J].山东冶金.26(5):37-41.
    [75] T.Torvund,Q Grong.A process model for active brazing of ceramics[J].J.Mater.Sci.1996, 31: 6215-6222.
    [76]王庆平,姚明,陈刚.反应生成金属基复合材料制备方法的研究进展[J].江苏大学学报2003,5(3).
    [77]曹元.液相烧结钢结硬质合金覆层材料的研制及性能研究[D].济南:山东大学.
    [78]高志国,杨涤心,魏世忠,等.烧结温度对碳钢基钢结硬质合金TLMW50覆层力学性能的影响.稀有金属与硬质合金.2005,33(4):23-27.
    [79]师昌绪主编材料大辞典[M].北京:化学工业出版社,1994.
    [80]理查德,J.布鲁克主编,清华大学新型陶瓷与精细工艺重点实验室译.陶瓷工艺[M].北京:科学出版社,1999.
    [81] Richard E. mistler. Tape casting. The basic process for meeting the needs of the electronics industry [J]. Am. Ceram. Soc.Bull,1990, 69(6): 1022-1026.
    [82] Lu K., LuJ.,Nanostructured Surface Layer on Matellic Materials Induced by Surface Mechanical Attrition Treatment[J], Materials Science and Engineering, A375-377,2004,:38-45.
    [83]刘福田.金属陶瓷覆层材料及其耐磨损与耐腐蚀性能研究[D].山东济南:山东大学, 2003.
    [84]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社, 2003.
    [85]龚江宏,张戈,关振铎.陶瓷材料压痕弯曲梁中残余应力的研究[J].硅酸盐报,1993,21(3): 275-279.
    [86]李兆前,艾兴.硬质合金断裂力学参数的实验研究[J].山东工业大学学报,1996, (6):12.
    [87]顾延慰,潘敏元,张炳荣.陶瓷刀具材料的断裂韧性及其测试方法的研究[J].机械工程材料, 1996, 20(2): 15-17.
    [88]周建强.陶瓷-硬质合金复合刀片的研制及其损坏机理研究[D].济南:山东工业大学,1998.
    [89]全国压力容器标准化技术委员会.压力容器相关标准汇编(第三版)[M].北京:中国标准出版社, 1996.
    [90]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998,3.
    [91]理查德,J.布鲁克主编,清华大学新型陶瓷与精细工艺重点实验室译.陶瓷工艺[M].北京:科学出版社,1999.
    [92] R. M. German. Supersolidus liquid phase sintering, partⅠ: Process review[J]. The international journal of powder metalluegy, 1990,26 (1):23-34.
    [93] Tsuneyuki Ide, Teiichi Ando. Reaction sintering of an Fe-6wt pct B-48wt pct Mo alloy in the presence of liquid phases.[J]. Metallurgical Transactions A. 1989, 20A. January:17-24.
    [94]李文虎,刘福田,黄巍岭,等.真空液相烧结Mo2FeB2硬质合金覆层材料的研究[J].粉末冶金工业,2006,16(5):24-28.
    [95]本溪钢铁公司.硼钢[M].北京:冶金工业出版社,1977:2-10.
    [96]刘家浚.材料磨损原理及其耐磨性[M ].北京:清华大学出版社,1993.
    [97]丁光健,邓志煜,王成福.断裂韧性KIC对WC-钢复合材料剥层磨损的影响研究[J].合肥工业大学学报,1983,1:66-73.。
    [98]李秀兵,方亮,高义民等.碳化钨颗粒增强钢基复合材料的冲蚀磨损性能研究[J].摩擦学学报.2007,27(1):16-19.
    [99]徐滨士,朱绍华.表面工程的理论与技术.[M].北京:国防工业出版社,1999,7.
    [100]高飞,素强,符蓉,宋宝韫.不同速度下石墨含量对铜基摩擦材料性能的影响[J].矿冶工程.2005,25(4):78-82.
    [101] J. F. Archard. Surface topography and tribology[J]. Tribology, 1974, 7 (5): 213-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700