用户名: 密码: 验证码:
近中性pH溶液双电位阶跃法电沉积CuInSe_2薄膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界能源问题的日趋严重,作为太阳能电池吸收层的CuInSe_2薄膜越来越受到人们的重视,本文研究了温和化学条件下CuInSe_2薄膜的电沉积制备,实现了可在ZnO等耐酸碱性差的基底上沉积CuInSe_2薄膜的目的。课题在调查近中性pH温和条件下电沉积CuInSe_2薄膜体系的影响因素的基础上,首次采用双电位阶跃电沉积(DPSED)方法,并结合络合剂的辅助,克服了三元组分沉积电位不匹配的问题,在温和条件下电沉积制备出了接近化学剂量的黄铜矿CuInSe_2薄膜。
     首先在ITO玻璃基底上,利用线性伏安法研究了不同络合剂、不同温度以及不同浓度对单一CuCl_2·2H_2O、InCl_3·4H_2O、SeO_2水溶液体系沉积电位的影响。实验得出,在温和条件下通过上述措施,难以实现CuInSe_2薄膜的常规电沉积;柠檬酸钠适合作温和条件下电沉积溶液的络合剂;在-800mV与-1400mV两个沉积电位下,沉积溶液中的三元素Cu、In、Se倾向于两两共沉积,由此提出了DPSED方法。
     在DPSED沉积研究中,沉积溶液pH值为6-7的近中性条件,以CuCl_2·2H_2O、InCl_3·4H_2O、SeO_2为前驱体,以柠檬酸钠为络合剂,通过加入过量的柠檬酸钠方式,获得了稳定三元共混的电沉积溶液。考察了DPSED沉积体系、溶液Cu/In比以及阶跃参数对薄膜沉积结构、化学计量与光学性能的影响。通过XRD、XPS、SEM、UV-Vis表征了薄膜。
     实验表明,双阶跃电位点分别为-800mV与-1400mV,持续时间分别为30s与60s,循环次数为5次。使用柠檬酸钠为15mM,Cu:In:Se=5:3:5时,得到了接近化学剂量比的无定形沉积膜,随后在氩气氛保护热处理,400℃保温1小时,无定形沉积膜进一步结晶,获得结晶良好,光学性能优异的CuInSe_2薄膜。Cu/In比变化显著影响薄膜形貌及半导体性质,阶跃参数的变化也会影响薄膜形貌。
     DPSED沉积过程分析表明,在阶跃沉积样品的XRD衍射谱上出现了CuIn合金相,这可能为生成近化学剂量比的CuInSe_2薄膜提供了活性的两元金属成分。
As the energy problem becom more and more severe, CuInSe_2 as one of I–III–VI chalcopyrite materials, used as absorber layers in solar cells, has obtained widely attention, and it has also been proved to be a leading candidate for photovoltaic applications. This study focused on the electrodeposition of CuInSe_2 thin films using electrolyte with near neutral pH value (pH=6.5), which made the employ of ZnO substrate possible. In this paper, various parameters of mild electrolyte, such as complexing agents, concentrations and temperatures, were investigated as to obtaining CuInSe_2 films. Double potential step electrodeposite (DPSED) methods were creatively adopted in this experiment to prepare CuInSe_2 thin films for the first time.
     Linear sweep voltammetry was used to study deposition potential of single raw material (CuCl2, InCl3 and SeO2, respectively) in aqueous solutions systems with different complexing agents, concentrations and temperatures. The results showed that CuInSe_2 couldn’t be obtained at single potential step electrodeposition under any condition with near neutral pH value, whereas binary compound (CuSe, CuIn etc.) could be deposited easily when sodium citrate (CitNa) were used as complexing agent in mild solutions. So DPSED method was proposed to synthesize CuInSe_2 material.
     During the deposition of CuInSe_2 by DPSED method, the pH values of electrolyte were fixed between 6~7. CuCl_2·2H_2O, InCl_3·4H_2O, SeO_2 were used as raw materials, and CitNa was adopted as complexing agent. Effects of DPSED systems, such as Cu/In ratio and the step potential parameters, were investigated. XRD、XPS、SEM、UV-Vis were used to characterize films’structure, stoichiometric, morphology and optical properties.
     When Cu/In/Se ratio was 5/3/5 with 15mM CitNa, and DPSED parameters was V1=800mV for 30s and V2=1400mV for 60s with 5cycles, as-deposited film were amorphous with near Cu:In:Se=1:1:2. After annealed at 400℃in Ar atmosphere for 60 min, CuInSe_2 films with chalcopyrite structure were obtained. Further studies showed that CuInSe_2 films’semiconductor properties and morphology could be affected when Cu/In ratios of electrolyte and step potential parameters were changed.
     The reason for CuInSe_2 successful deposition by DPSED method can be deduced by XRD test. The characteristic peak of CuIn alloy appeared on the samples’XRD spectra , which indicated that active binary metal elements were formed and transformed to be CuInSe_2 films in later annealing process.
引文
[1]瞿秀静、刘奎仁、韩庆,新能源技术。北京:化学工业出版社,2005. 1-3
    [2]王革华、艾德生,新能源概论。北京:化学工业出版社,2006. 7-1
    [3]陈军、陶占良,能源化学。北京:化学工业出版社,2004. 1-3
    [4]王长贵、王斯成,太阳能光伏发电实用技术。北京:化学工业出版社. 2005
    [5]ю.в.波利斯科夫,光电化学太阳能转换。北京:科学出版社,1994
    [6]杨靖霞,SILAR法CuInSe2薄膜的结构与性能:[硕士学位论文],天津:天津大学,2007
    [7]Bisquert, J.C., D.; Hodes, G.; Ruhle, S.; Zaban, A. Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells. J. Phys. Chem. B, 2004. 108(24): 8107-9118
    [8]Adolf Goetzberger, J.L.a.G.W., Solar cells: past, present, future. Solar Energy Materials and Solar Cells, 2002. 74(1-4): 1-11
    [9]Deb, S.K., Recent developments in high eficiency photovoltaic cells. Renewable Energy, 1998. 15(1-4): 467-472
    [10]Adolf Goetzberger, C.H.a.H.-W.S., Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports, 2003. 40(1): 1-46
    [11]C. Rost, K.E., S. Siebentritt, R. K?nenkammp, M.C. Lux-Steiner, CdTe and CdS as extremely thin absorber materials in anηsolar cell (ETA). Proceedings of the 14th European Thotovoltaic Solar Energy Conference and Exibition, Barceloga, 1997: 1823-1826
    [12]曲远方,功能陶瓷材料。北京:化学工业出版社化学工业出版社,2003
    [13]莫以豪等,半导体陶瓷及其敏感元件。上海:上海科技出版社上海科技出版社上海科技出版社,1983
    [14]周东祥、张绪礼等,半导体陶瓷及应用。武汉:华中理工大学出版社,1991
    [15]薛玉芝、张力、林纪宁,太阳能光伏技术研究与发展。大连铁道学院,2003,24(4):71-74
    [16]倪萌,M K Leung,K sumathy,太阳能电池研究的新进展。可再生能源,2004,114(2) :9-11
    [17]Mora-Sero, I.B., J.; Fabregat-Santiago, F.; Garcia-Belmonte, G.; Zoppi, G.; Durose, K.; Proskuryakov, Y.; Oja, I.; Belaidi, A.; Dittrich, T.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.; Barrioz, V.; Irvine, S. J. C., Implications of the Negative Capacitance Observed at Forward Bias in Nanocomposite and Polycrystalline Solar Cells Nano Lett., 2006. 6(4): 640-650
    [18]R. K?nenkamp, L.D., K. Ernst and C. Olesch, Nano-structures for solar cells with extremely thin absorbers. Physica E: Low-dimensional Systems and Nanostructures, 2002. 14(1-2):219-223
    [19]Deb, S.K., Thin-film solar cells: An overview. Renewable Energy, 1996. 8(1-4): 375-379
    [20]黄宝圣,太阳能电池新进展。化学教育,2002,7-8:7-9
    [21]吕笑梅、方靖淮、陆祖宏等,敏化TiO2纳米晶太阳能电池。功能材料,1998. 29(6): 574-578
    [22]赵争鸣、刘建政、孙晓瑛、袁力强,太阳能光伏发电及其应用。北京:科学出版社.,2005
    [23]庄大明、张弓,CIGS薄膜太阳能电池研究现状及发展。Advanced Materials Industry,2005. 4: 43-48
    [24]A. Timoumi, H. Bouzouita*, M. Kanzari, B. Rezig. Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique. Thin Solid Films 480–481 (2005) 124–128
    [25]Tokio Nakada, Kazuo Migita, Shigeru Niki1, Akio Kunioka. Sputter-Deposited CuInSe2 Films and Photovoltaic Devices. Appl.Phys.34(1995)4715.
    [26]刘瑞鹏、李刘合,磁控溅射镀膜技术简述。中国青年科技,2006. 08
    [27]遇衍澄,离子镀技术的发展和现状。薄膜科学技术,1995. 8 (3): 240-250
    [28]杨左宸,分子束外延技术。长春师范学院学报,1995. 06: 23-24
    [29]Nelson.H, Epitaxial growth from the liquid phase state and its application to the fabrication of tunnel and laser diodes. RCA. Rew, 1963. 24(4): 603-615
    [30]孙媛媛、王芬、周彦昭,液相外延技术的研究进展。陶瓷,2004. 05: 12-16
    [31]Roberts GG. Langmuir-Blodgett films. New York Plenum Press.
    [32]王文军,刘金凤,LB膜的制备及其在光学中的应用。应用光学,2004. 25(1): 52-54
    [33]S. Kunjachan*1, I. Korah2, and M. A. Ittyachen3, Cryst. Res. Thermodynamic feasibility study for chemical vapour deposition of some ternary crystals using iodine and hydrogen iodideTechnol. 40, No. 9 (2005) 871
    [34]杨烈宇、关文铎等,材料表面薄膜技术。北京:人民交通出版社,1991
    [35]Besling W, S.A.S., et al, Atomic layer deposition of barriers for interconnect. Proceedings of the IEEE 2002 International. 2002(6): 288-291
    [36]Suntola T, A.J., Method for Producinn Compound Thin fi1ms, U. Patent, Editor. 1977
    [37]申灿、刘雄英、黄光周,原子层沉积技术及其在半导体中的应用。真空,2006. 43(4): 1-6
    [38]时刻、黄英、李鹏、廖梓珺,非金属材料化学镀的应用新进展。玻璃钢/复合材料,2005. 2: 45-48
    [39]唐武、邓龙江、徐可为,化学镀金属薄膜与磁控溅射的关联性。中国有色金属学报,2005. 15(11): 1822-1826
    [40]Chamberlin R R, S.J.S., J Electrochem Soc, 1966. 113: 86-92
    [41]Patil, S., Versatility of chemical spray pyrolysis technique. Mater Chem Phys, 1999. 59(3): 185-198
    [42]Messing G I, Z.S.C., Jayanthi G V, J Am Cerm Soc, 1993. 76(11): 2707-2726
    [43]Nakada, T., Nano-structual investigation on Cd-doping into Cu(In,Ga)Se2 thin films by chemical bath deposition process. Thin Solid Films, 2000. 21: 346-352
    [44]步绍静、靳正国、杨立荣、刘晓新,纳米氧化多孔薄膜的溶胶-凝胶法制备及其结构特征。硅酸盐学报,2003. 31(9): 848-852
    [45]靳正国、刘晓新、步绍静、程志捷,SILAR法制备无机化合物薄膜。材料导报,2003. 17(3): 66-68
    [46]M.Fahoume , F.Chraib , M.Aggour , A.Ennaoui, Preparation and characterization of electrodeposited CuInSe2 thin films. Ann.Chim.Sct.Mat, 1998. 23: 373-376
    [47]N.B.Chaure,J.Young,A.Samantilleke,I.M.Dharmadasa, Electrodeposition of p-I-n type multilayers CuInSe2 for photovoltaic applications. Solar Energy Materials & Solar Cells, 2004. 81: 125-133
    [48]吴辉煌,电化学。北京:化学工业出版社,2004
    [49]Caballelo F G,Bhadeshia H D,Mawella K A,et a1.Design of Novel High Strength Bainitic Steels:Part2[J].Materials Science and Technology,2001,17:512~516.
    [50]J.L. Ortsb,R. Diaza,P. Herrastib,F. Ruedaa, E. Fatasb.CuInSe2 and In-rich telluride chalcopyrites thin films obtained by electrodeposition techniques. Solar Energy Materials & Solar Cells 91 (2007) 621–628.
    [51]Nancheva N,Docheva P,Djourelov N et a1.Positron and X—ray Diffraction Study of Cu—Se,In—Se and CulnSe2 Thin Films[J].Solar Energy Materials and Solar Cells,2002,54:l69~174.
    [52]I.H. Choi , D.H. Lee.Preparation of CuIn1?xGaxSe2 films by metalorganic chemical vapor deposition using three precursors. Thin Solid Films 515 (2007) 4778–4782.
    [53]Tiwari A N,Krejci M,Hang F J,et a1.Heteroepitaxy of CuInSe2:A Review of the Material and Interface Properties[J].Thin Solid Films,2000,41:36l~362.
    [54]Yong Shi, Zhengguo Jin , Chunan Li, Hesong An, Jijun Qiu. Effects of post-heat treatment on the characteristics of chalcopyrite CuInSe2 film deposited by successive ionic layer absorption and reaction method. Thin Solid Films 515 (2007) 3339–3343.
    [55]Subbaramaiah K.Structural and Optical Properties of Spray-delmsited CIS Thin Films[J].Solar Energy Materials and Solar Cells,1994,32:1~8.
    [56]N.B. Chaure, J. Young et, N.B. Chaure, J. Young et. Electrodeposition of p-i-n type CuInSe2 multilayers for photovoltaic applications. Solar Energy Materials & Solar Cell 81(2004)125-13
    [57]G S. D. Sartale, C.D.Lokhande.rowth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method. Materials Chemistry and Physics, 2000, 65(1): 63-67
    [58]Mika P. Valkon, Seppo Lindoora Thin multilayer CdS/ZnS films grown by SILAR technique[J].. Applied surface science, 1997,120:58-64
    [59]Mika P. Valkon, Seppo Lindoora. Atomic force microscopy studies of ZnS films grown on(100) GaAs by the successive ionic layer adsorption and reaction(SILAR)method[J]. Journal of materials research, 1998,13: 1688-1692
    [60]Growth of CuS thin films by the successive ionic layer adsorption and reaction(SILAR)method[J]. Seppo Lindoora, Alexandre Arnold. Applied surface science, 2000,158:75-80
    [61] Daniel Lincot. Electrodeposition of semiconductors. Thin Solid Films 487 (2005) 40– 48
    [62]J. Herrero, C. Guillén. Study of the optical transitions in electrodeposited CulnSe2 thin films.J. Appl. Phys. 69 (1991) 429.
    [63]P. Garg, A. Garg, A.C. Rastogi, J.C. Garg. Growth and characterization of lectrodeposited CulnSe2, thin films from seleno-sulphate solutionJ. Phys D: Appl. Phys. 24(1991) 2026.
    [64] Y. SUDO, S. ENDO, T. IRIE. Preparation and Characterization od Electrodeposited CulnSe2 thin films.. Jpn. J. Appl. Phys. 32 (1993) 1562.
    [65]A.M. Fernandez, P.J. Sebastian, R.N. Bhattacharya, R. Noufi, M. Contreras, A.M. Hermann.Electrodeposition of CuInSe2 thin flms and their characteristics.Semicond. Sci. Technol. 11 (1996) 964
    [66]张辉、马向阳,杨德仁,太阳能光电材料CuInSe2的研究进展。材料导报,2001.1 5(5):11-13
    [67]Cch0ck H W ,Shab A Barcelona:l4th Euro—pean Photovohaic Solar Energy Conterence一1997.
    [68]Burgelman, C.G.a.M., Theoretical study on the effect of an intermediate layer in CIS-based ETA-solar cells Thin Solid Films, 2004. Volumes 451-452: 156-159
    [69] Daniel Lincot, Jean-Franqois Guillemoles, Pierre Cowache, Sylvie Massaccesi,Laurent Thouin, Kame1 Fezzaa, Frederic Boisivon and Jacques Vedel, Tailoring the electronic properties of one step electrodepositied CulnSe2 films by annealing in Se vapor under controlled activity conditions elaboration of efficient CIS / ZnO solar cells. First WCPEC; Dec. 5-9, 1994; Hawaii
    [70]C. Platzer-Bjōrkman*, J. Lu, J. Kessler, L. Stolt. Interface study of CuInSe2yZnO and Cu(In,Ga)Se2yZnO devices using ALD ZnO buffer layers .Thin Solid Films 431–432 (2003) 321
    [71]Ruhle, S.G., M.; Chen, S.-G.; Merson, A.; Pizem, H.; Sukenik, C. S.; Cahen, D.; Zaban, A, Molecular Adjustment of the Electronic Properties of Nanoporous Electrodes in Dye-Sensitized Solar Cells J. Phys. Chem. B., 2005. 109(40): 18907-18913
    [72]Takahiro Wada, H.K., Rapid exothermic synthesis of chalcopyrite-type . Journal of CuInSe2. Physics and Chemistry of Solids, 2005. Vol. 66: 1987–1989
    [73]S. Bereznev *, J. Kois, I. Golovtsov, A.ōpik, E. Mellikov. Electrodeposited (Cu–In–Se)/polypyrrole PV structures.Thin Solid Films 511– 512 (2006) 425
    [74]A.M. Fernandeza,*, M.E. Calixtoa, P.J. Sebastiana, S.A. Gamboaa, A.M. Hermannb, R.N. Noufic. Electrodeposited and selenized (CuInSe2) (CIS) thin Tlms for photovoltaic applications.Solar Energy Materials and Solar Cells 52 (1998) 423
    [75]A.A.I. Al-Bassam*. Electrodeposition of CuInSe2 thin flms and their characteristics. Physica B 266 (1999) 192
    [76]C.J. Huang*, T.H. Meen, M.Y. Lai, W.R. Chen. Formation of CuInSe2 thin films on flexible substrates by electrodeposition (ED) technique. Solar Energy Materials & Solar Cells 82 (2004) 553
    [77]M. Valdés a,b, M.A. Frontinia, M. Vázquez a,*, A. Goossens b.Low-cost 3D nanocomposite solar cells obtained by electrodeposition of CuInSe2. Applied Surface Science 254 (2007) 303
    [78]S. Moorthy Babua,_, A. Ennaouib, M.Ch. Lux-Steinerb. Composition and growth procedure-dependent properties of electrodeposited CuInSe2 thin films. Journal of Crystal Growth 275 (2005) 1241
    [79]杨靖霞,电沉积法CuInSe2薄膜的制备与性能研究。[学士学位论文],天津:天津大学,2005
    [80]P. Garg, A. Garg, A.C. Rastogi, J.C. Garg. Growth and characterization of electrodeposited CulnSe2, thin films from seleno-sulphate solution. J. Phys D: Appl. Phys. 24(1991) 2026.
    [81]A.C. Rastogi*, K.S. Balakrishnan, R.K. Sharma, Kiran Jain. Growth phases during electrochemical selenization of vacuum deposited CuIn metal layers for the formation of semiconducting CuInSe2 flmsThin . Solid Films 357 (1999) 179
    [82]S.R.Morrison. Electrochemistry at semiconductor and oxidized metal electrodes.北京:科学出版社出版。1988:146-151
    [83]李建庄、夏冬林、赵修建,电沉积制备CIS薄膜太阳能电池材料。材料导报,04(2004)18(I)
    [84]J. A. R. Renuncio, A. Caba?as and C. Pando. Calorimetry in the near-critical and supercritical regions. Nitrous oxide + hydrocarbon mixtures* Pure Appl. Chem.,71(1999)7, 1197-1205 Pure Appl. Chem. 72(1999)1326-1074.
    [85]V.P.Tolstoi. Synthesis of FeOOH nanolayers on silica surface by "layer-by-layer" technique Russ.J.Appl.Chem. 72(1999)1326-1328
    [86]H.Kawahara, H.Honda. Japanese patent 59141441 A(Nip-pon Sheet Glass), Augast 14,1984
    [87]F.C. Meldrum, J. Flath, W.Knoll, Langmuir 13(1997)2033-2049
    [88]K.Bindu, C.S.K., K. Vijayakumar, T. Abe and Y. Kashiwaba, CuInSe2 thin film preparation through a new selenisation process using chemical bath deposited selenium. Solar EnergyMaterials and Solar Cells, 2003. 79(1): 67-79
    [89]申承民、张校刚、力虎林,电化学沉积制备半导体CulnSe2薄膜。感光科学与光化学,02(2001)19-1
    [90]K.Bindu, C.S.K., K. Vijayakumar, T. Abe and Y. Kashiwaba, CuInSe2 thin film preparation through a new selenisation process using chemical bath deposited selenium. Solar Energy Materials and Solar Cells, 2003. 79(1): 67-79
    [91]Yunxiang Hu, Mohammad Afzaal, Mohammad A. Malik, Paul O’Brien*,Deposition of copper selenide thin films and nanoparticles. Journal of Crystal Growth 297 (2006) 61–65
    [92]田昭武,电化学研究方法。北京,科学出版社,1984
    [93] M.D.Kannan,R.Balasundaraprabhu,S.Jayakumar.Preparation and study of structural and optical properties of CSVT deposited CuInSe 2 thin films.Solar Energy Materials & Solar Cells,2004,81,379-386

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700