用户名: 密码: 验证码:
利用压电超声导波时间反转法的管道结构裂纹监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的主要工作是对压电超声导波时间反转法在管道结构健康监测中应用进行研究。与传统的管道结构常规超声无损监测过程相比,时间反转法可以很好地解决传统方法中聚焦点散焦,形成相差畸变、图像失真和模糊问题。结构健康监测的超声导波时间反转处理可以使复杂的信号实现信号聚焦或重建,且参与的传感器数量越多,聚焦效果越明显;信号复杂程度越高,聚焦前后信号的反差越大。本文在国内首次对充液埋地管道结构的裂纹监测进行了理论和试验研究。开发了一套快捷准确的试验系统,对准确判定管道结构完整性,提高其监测水平具有重要的现实意义。主要的研究成果可以概括为以下几个方面。
     (1)根据时间反转方法基本原理推导了超声导波时间反转聚焦理论公式并进行试验验证。对单个以及多个压电传感器在板中的信号时间反转聚焦过程进行了试验研究,实现了对窄带超声导波信号的时反聚焦,为后续试验奠定基础。结果表明:板中聚焦信号分为两部分,第一部分为零时刻主波峰,该波峰为监测信号中多个模式的聚焦,也是各监测信号的聚焦,波峰幅值显著增大;第二部分为旁瓣波峰,各旁瓣出现的时刻也不尽相同,互相之间不会发生叠加,有时甚至会互相抵消,主波峰信号显著突出。
     (2)研究确定合理的选择在管道中传播的超声导波模态和激励频率的基本原则,使其频散最小,以简化管道超声回波信号分析的复杂性。根据频散曲线的模态特征及管道径向位移和应力分布曲线,确定导波的模态和激励频率,通过截止频率计算和频散曲线比较,确定激励频率盲区的范围;根据信号的频谱图和激励脉冲的宽度来确定激励信号的周期数。多个单音频叠加信号经HANNING窗调制窄带激励,既可以提高信号强度,又可以增加导波的传播距离。结果表明:周期数目高的信号,频带窄,有利于频率控制周期数多,在时域内信号持续时间长,波形易叠加,一般折中选择。
     (3)根据脉冲回波法,分别对无损管道、含周向裂纹管道、含轴向裂纹管道和含不同夹角的斜裂纹管道进行了数值模拟。给出了L(0,2)模态和T(0,1)模态导波在管道中传播的可视化结果,并对导波在有损和无损管道中的传播情况做了分析。对各种损伤信号进行时间反转处理,并进行了比较。对含裂纹管道模拟的结果表明:导波在缺陷处不但发生反射和透射现象,而且还会发生模态转换,其转换的模态多为弯曲模态;当激励的导波能量相当时,时间反转导波监测方法获得的信号中缺陷回波的幅值将比直接导波监测方法获得的大,因此,对小缺陷的监测能力增强。缺陷造成的模态转换现象和时间反转信号取点率是决定时间反转聚焦增强监测能力的重要因素。
     (4)利用压电超声导波对管道结构中缺陷进行监测的试验研究。分别在管道中激励L(0,2)模态和T(0,1)模态的导波信号,对管道中存在的周向裂纹、轴向裂纹和斜裂纹分别进行监测,确定缺陷所在位置以及各模态所敏感的缺陷形式。试验结果表明:将各时间反转激励信号单独激励再叠加的方式可以增强导波缺陷监测能力,并将此过程称为近似时间反转监测。信号经时间法反转处理后,无论对于周向裂纹、轴向裂纹、还是斜裂纹缺陷反射系数较直接导波监测方法有所增大,说明时间反转方法有利于小缺陷的监测。同时在信号中出现了许多其它模态的波包,会对信号的判读造成一定影响。在管道参数等条件相同的前提下,模态转换现象越严重,时间反转法越能在更大程度上提高原有导波缺陷监测的能力。这与数值模拟得到的分析结果是一致的。
     (5)推导出了充液埋地管道的频散方程,计算了管道中不同模态的频散和衰减等特性。随着频率的增加,模态衰减值也相应增大,同时导波波长变小,对缺陷更加灵敏。由于衰减随频率增大而增大,监测距离也随之缩短。因此,在工程实际中需要根据监测需要,进一步选择频率和衰减适中的纵向模态用于该类管道中不同类型的缺陷监测。建立了一套试验系统,对导波在管道充液埋地状态下的传播特性进行了研究。对充液埋地状态下的管道进行了试验研究,并将时间反转法在充液埋地管道结构健康监测中进行了应用,对理论分析得到的结论进行了验证。
This dissertation focuses on the application of PZT-based ultrasonic guided waves time reversal method (TRM) which is used in pipeline structure health monitoring. Compared with the traditional pipeline conventional ultrasonic nondestructive testing process, the developed TRM can solve such problems which traditional method can't solved as the defocusing effect at the focal point, the aberrations formation, and image distortion and blurring. TRM of ultrasonic guided waves for structural health monitoring (SHM) can focus or reconstruct complex signals. The more sensors work, the more obvious the focusing effect would be; the higher the degree of the signal complexity, the greater the contrast of the signal focusing. Fluid-filled and buried in soil pipelines are theoretically and experimentally researched for the first time in China and reported in this dissertation. A fast and accurate testing system is developed which has important practical significance for accurate determination of the pipeline structure integrity and pipeline monitoring. The main research works are given as follows.
     Firstly, the time reversal focusing equations for ultrasonic guided waves are derived and experimentally validated according to the basic principle of the time reversal process. An experimental research is performed to validate the time reversal focusing process for signals excited and propagated in an aluminum plate placing a single or multiple piezoelectric transducers, and the time reversal focusing of the narrowband ultrasonic guided wave signal is realized which lay the foundation for the follow-up experiments. The results show that the focusing signal is divided into two parts. One part is the main peak signal at zero moment which is the focusing of the multiple monitoring signal modes and is also the focusing of various monitoring signals, resulting in a significant increase in the amplitude. The other part is the side lobe peaks with the various appearing moment. The side lobe peaks will not superimpose among them or even sometimes offset each other, and meanwhile the main peak signal will be significantly prominent.
     Secondly, the excitation frequency rules for ultrasonic guided wave modes are studied to determine a reasonable choice in the pipeline transmission, which can minimize the frequency dispersion and simplify the complexity of the analysis on pipeline ultrasonic echo signals. The guided wave mode and the excitation frequency are determined by the characteristic and reference displacement of dispersion curves and the pipeline guided wave modal dispersion curves. The cutoff frequency is calculated from dispersion curves to determine the excitation frequency range of blind, and the period of the excitation signal is determined in accordance with the width of the frequency spectrum of the signal and the excitation pulse number. The narrowband excitation signals, which increase the signal strength and the propagation distance of guided waves, can be made by the plurality of single tone superimposed signals modulated by HANNING window. The results show that the signal of a high number of cycles is usually of the narrow band and conducive to the frequency control, more number of cycles, and long signal duration in time, and the waveforms are easily superimposed. Generally, a compromise method is selected.
     Thirdly, numerical simulations are performed respectively for the cases of a non-destructive pipeline, circumferential crack pipes, axial crack pipe and the oblique crack pipes from different angles, according to the pulse-echo method. L(0,2) mode and T(0,1) mode are given as the visualization results of the guided waves propagation, and the guided wave propagation in the health or damaged tubes is analyzed respectively. A variety of damage signals are processed and compared in time reversal method. The simulation results of the cracked pipelines show that guided waves would not only reflect and transmit but also convert mode at the defective position, and the converting mode are usually multi-bending. As the energy of the emitted guided waves is considerable, the amplitude of the flaw echo dealt with TRM is obviously greater than that obtained by the direct method; therefore, the capacity of small defect detection is enhanced The mode conversion phenomenon caused by defects and the access point rate for time reversal signals are the main factors determining the time reversal focusing efficiency and enhancing the defect detection capability.
     Fourthly, the experimental research on the defect detecting in the pipeline by using PZT-based ultrasonic guided waves is performed. The guided waves with L(0,2) and T(0,1) modes are excited and used in the tube to monitor the presence of a circumferential crack, axial cracks and inclined crack detection respectively, to determine the defect location and signal mode form sensitive to defects. The experimental results show that the method for separately emitting signals by TRM and then superimposing the signals can enhance the monitoring capacity by using the PZT-based guided waves, and this process is named as approximate time reversal detection. After processing the signals in time reversal method, the signals'reflectivity to all of circumferential cracks, axial cracks, or diagonal crack defects increase more greatly than the method of direct guided wave detect dose, indicating that the TRM method is conducive to detecting small defects. Meanwhile, many other modal wave packets appear and interfere with the signal discrimination. Under the same condition of pipe parameters, the more serious modal conversion phenomenon, the greater extent to improve the detection capabilities of the original guided wave defect detection. This is consistent with the numerical simulation analysis results.
     Fifthly, the dispersion equations for the liquid filled and buried pipe are derived, and the different modal dispersion and attenuation characteristics in the structure are calculated. With the increase of the frequency, the modal attenuation value also increases correspondingly, and the guide wavelength becomes shorter which is more sensitive to defects. Since the attenuation increases with the frequency increasing, the detection distance will also be shortened. Therefore, it is advisable to choose the proper frequency and moderate attenuation longitudinal mode state for detecting different kinds of defects in such pipelines according to the practical engineering requirement of the pipeline motoring. An experimental system is setup for the analysis on the propagation of the guided wave state in the liquid-filled underground pipeline. The experimental research for the liquid-filled underground pipeline is performed and the time reversal method is applied in the structural health monitoring, and the theoretical results are validated by the proposed experiment.
引文
[1]臧铁军,臧天红.我国管道运输的发展概况[J].管道技术与设备,1998(4):1-4.
    [2]黄松龄,李路明,张家俊.在役管道漏磁检测装置的研制[J].无损检测,2009,21(8):344-375.
    [3]陈积懋.管道无损检测与评价技术[J].状态检测与分析,2007,18(1):59-62
    [4]范弘等.钢管漏磁检测的新方法[J].钢铁研究学报,2000,12(6):50-54.
    [5]冉启芳.无损检测方法的分类及其特征简介[J].无损检测,1991,21(2):75-80.
    [6]陈华波,涂亚庆.输油管道泄漏检测方法综述[J].工管道技术与设备,2000,22(1):38-41.
    [7]何存富,吴斌,范晋伟.超声柱面导波技术及其应用研究进展[J].力学进展,2009,3(2)209-214.
    [8]LAMB H. On waves in an elastic plate[M]. London:Proc.Royal soc.1917. A93:114-152.
    [9]CHREE C. Longitudinal vibrations of a circular bar[J]. Quarterly Journal of Mathematics.2010,21: 287-298.
    [10]LIN T C. Morgan G W. A study of axi-symmetric vibrations of cylindrical shells as affected by rotatory inertia and transverse shear[J]. Journal of Applied Mechanics,1956.78:255-261.
    [11]NAGHDI P M, Cooper R M. Propagation of clastic waves in cylindrical shells, including the effects of ransverse shear and rotatory inertia[J]. Journal of the Acoustical Society of America. 1956,28(1):56-63.
    [12]COOPER R M. Naghdi P M. Propagation of nonaxially symmetric waves in clastic cylindrical shells[J]. Journal of the Acoustical Society of America.1957,29:1365-1373.
    [13]GHOSH J. Longitudinal vibrations of a hollow cylinder[J]. Bulletin of the Calcutta Mathematical Society,1923.24(4):31-40.
    [14]GAZIS D C. Hxact analysis of the plane-strain vibrations of think-walled hollow cylinders[J]. Journal of the Acoustical Society of America.1958,30:786-794.
    [15]GAZIS D C. Three-dimensional investigation of the propagation of waves in hollow circular cylinders I[J]. Journal of the Acoustical Society of America,1959,31:568-573.
    [16]GAZIS D C. Three-dimensional investigation of the propagation of wave mhollow circular cylinders.Ⅱ. Numerical results[J]. Journal of the Acoustical Society of America.1959,31:573-578.
    [17]ARMENAKAS N A. Gazis D C, Hemnann G. Free vibrations of circular cylindrical shells [M]. Oxford:Pergamon Press,1969:23-59.
    [18]DITRI J J, Rose J L. Excitation of guided wave modes in hollow cylinders by applied surface tractions[J]. Appl.Phys,2002,72(7):2589-2597.
    [19]ALLEYNE D N, Cawley P. The interaction of lamb wave with defects[J]. IEEE Transaction on Ultrasonics, Ferroclectrics and Frequency Control.1992.39(3):381-397.
    [20]ROSE J L, Zhang W. Cho Y. Boundary element modeling for guided wave reflection and transmission factor analyses in defect classification[J]. IEEE Ultrasonics Symposium,2008: 885-888.
    [21]CHO Y, Rose J L. A boundary element solution for amodc conversion study on the edge rcfiction[J]. The Journal of the Acoustical Society of America,1999,359:2097-2109.
    [22]ZHAO X, Rose J L. Boundary element modeling for defect characterization potential in a wave guide [J]. International Journal of Solids and Structures,2003,40:2645-2658.
    [23]Zhao X, Rose J L. Three-dimensional boundary element modeling for guided waves scattering from a defect [J]. Review of Quantitative Nondestructive Evaluation,2004(23):134-141.
    [24]FITCH A H. Observation of elastic pulse propagation in axially symmetric and nonaxially symmetric longitudinal modes of hollow cylinders[J]. Journal of the Acoustical Society of America, 1963.35:706-707.
    [25]SILK M G, Bainton K F. The propagation in metal tubing of ultrasonic wave modes equivalent to waves[J]. Ultrasonics,1979,17(1):11-19.
    [26]BROOK M V, Ngoc T DK, Eder J E. Ultrasonics inspection of steam generator tubing by cylindrical guided waves[J]. Review of Progress in Quantitative Nondestructive Evaluation,1980,9: 243-249.
    [27]ALLEYNE D N, Cawley P. The interaction of Lamb waves with defects[J]. IEEE Trans UFFC,1992, 39(3):381-397.
    [28]ALLEYNE D N, Cawley P. The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducer[J]. Journal of Nondestructive Evaluation,1996,15(1):11-20.
    [29]ALLEYNE D N, Lowe M J S, Cawley P. The inspection of chemical plant pipework using Lamb waves:defect sensitivity and field experience [J]. Review of Progress in Quantitative Nondestructive Evaluation,1996,15:1859-1866.
    [30]CAWLEY P, Alleyne D. The use of Lamb waves for the long range inspection of large structures[J]. Ultrasonies,1996,34:287-290.
    [31]ALLEYNE D N, Cawley P. Long range propagation of Lamb waves in chemical plant pipework[J]. Material Evaluation,1997,53(4):504-508.
    [32]LOWE M J S, Alleyne D N, Cawley P. Defect detection in pipes using guided waves[J], Ultrasonies, 1998.36:147-154.
    [33]ALLEYNE D N, Lowe M J S, Cawley P. The reflection of guided waves from circumferential notches in pipes[J]. Journal of Applied Mechanics,1998,65:635-641.
    [34]ALLEYNE D N, Pavlakovic B, Lowe M J S, Cawley P. Rapid long-range inspection of chemical plant pipework using guided waves[J]. Insight,2001,43(101):93-96.
    [35]CAWLEY P. Practical long range guided wave inspection-applications to pipes and rails [C/OL]. (2001,12,19)[2002,04,15].http://www. nde2002.org.
    [36]Lowe M J S, Alleyne D N, Cawley P. Mode conversion of guided waves by defects in pipes [J]. Review of progress in Quantitative Nondestructive Evaluation,1997,16:1261-1268.
    [37]ALLEYNE D N, Pavlakovic B, Lowe M J S, Cawley P. Rapid long-range inspection of chemical plant pipework using guided waves [J]. Insight,2012,43(101):93-96.
    [38]MOON Ho Park, In Sup Kim, Young Ku Yoon.Ultrasonic inspection of long steel pipes using Lamb waves[J]. NDT&E International,1996,29(1):13-20.
    [39]ROSE J L, Zhao Xiaoliang. Flexural mode tuning for pipe elbow testing [J]. Material Evaluation, 2011,5:621-624.
    [40]ARISTEGUI C, Lowe M J S, Cawley P. Guided waves in fluid-filled pipes surrounded by different fluids [J]. Ultrasonics,2011,39:367-375.
    [41]HYEON Jae Shin, Rose J L. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders [J]. Ultrasonics,1999,37:355-363.
    [42]ROSE J L, Li Jian, Zhao Xiaoliang. Ultrasonic guided wave flexural mode tuning for limited access pipe inspection[J]. Quantitative Nondestructive Evaluation,2002,20:164-171.
    [43]刘镇清.圆管中的超声导波[J].无损检测,1999,21(12):560-562.
    [44]他得安,刘镇清,田春光.超声导波在管材中的传播特性[J].声学技术,2000,20(3):131-134.
    [45]刘增华,吴斌,王秀彦,何存富.带粘弹性包覆层充液管道中的超声导波纵向模态[J].声学学报,2007,32(4):316-322.
    [46]焦敬品,何存富.管道超声导波检测技术研究进展[J].实验力学,2002.17(1):1-9.
    [47]李衍,强天鹏竹道长距离超声导波检测新技术的特性和应用[J].无损栓测,2002,4:1-5.
    [48]程载斌,王志华.马宏伟等.管道应力波检测技术及研究进展[J].太原理工大学学报.2003,34(4):426-431.
    [49]何存富,刘增华,王秀彦.弯管缺陷超声导波检测的有限元分析[J].北京工业大学学报,2006.32(4):289-294.
    [50]刘增华,吴斌,何存富,王秀彦.扭转模态在充水管道缺陷检测的实验研究[J].仪器仪表学报.2006.27(6):1587-1589.
    [51]吴斌,邓菲,何存富,李隆涛.基于导波理论的竹道缺陷成像研究[J].数据采集与处理.2006,21(3):345-349.
    [52]张伟伟,王志华,马宏伟.含缺陷管道超声导波检测信号的相关性分析[J].暨南大学学报,2009.3()(4):269-272.
    [53]孙广开,焦阳,理光海等.超声导波管道缺陷检测数值模拟[J].河北工业科技,2010,27(1):18-21.
    [54]李睿智,何箭,李亮,王振Ansys分析在钢管管端检测中的应用[J].合肥工业大学学报.2010.33(4):1363-1365.
    [55]王秀彦,孙雅欣,刘增华等ANSYS二次开发技术在弯管缺陷超声导波检测数值模拟中的应用[J].无损检测.2006.28(4):413-415
    [56]何存富,李伟.吴斌.扭转模态导波检测竹道纵向缺陷的数值模拟[J].北京工业大学学报,2007,33(10):1009-1013.
    [57]李勇攀,王寅观,赵亚军.圆管中SH周向导波的频散特性[J].无损检测,2008,30(10):719-720.
    [58]禹建功,吴斌,何存富.周向导波对各向异性圆柱板纵向缺陷检测的有限元模拟[J].北京工业大学学报,2007,33(5):567-571.
    [59]李隆涛,何存富,吴斌.周向导波在空心圆柱体中传播的数值模拟研究[J].力学季刊,2007,28(4):286-292.
    [60]刘增华,何存富,杨士明,王秀彦,吴斌.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报,2006,42(3):171-178.
    [61]刘增华,何存富,王秀彦,吴斌.带粘弹性包覆层充液管道中的超声导波缺陷检测研究IJ].机械科学与技术,2007,26(6):687-691.
    [62]刘增华,吴斌,王秀彦,何存富.带粘弹性包覆层充液管道中的超声导波纵向模态[J].声学学报,2007,32(4):316-322.
    [63]胡广书.数字信号处理—理论、算法与实现[M].北京:清华大学出版社,2000:63-67.
    [64]郑中兴.超声检测中缺陷的定性[J].无损检测,1994,16(1):24-27.
    [65]吴湘淇.数字信号处理技术及应用[M].北京:中国铁道出版社,1986:45-78.
    [66]GAZIS D C. Three-Dimensional investigation of the propagation of waves in hollow circular cylinders.1. analytical foundation[J]. The Journal of the Acoustical Society of America,1989,31(5): 568-673.
    [66]LKEDA, Clay. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders[J]. Ultrasonics,1999,37:355-363.
    [67]FINK M. Time reversal of ultrasonic fields-part 1:basic principles [J]. IEEE Transaction on Ultrasonics, Ferroelectrivs,and Frequency Contr01,1989,39(5):555-566.
    [68]魏炜,刘晨,汪承灏.固体中时间反转法的声束自聚焦[J].声学学报,1998,,31(3):43-47.
    [69]丁辉.计算超声学[M].北京:科学出版社,2010:102-123.
    [70]吴斌,邓菲,何存富.超声导波无损检测中的信号处理研究进展[J].北京工业大学学报.2007,33(4):342-348.
    [71]邓菲,吴斌,何存富.基于时间反转的管道导波小缺陷检测数值分析[J].北京工业大学学报,2008,34(7):673-4577.
    [72]Furness R A, Development in pipeline instrumentation [J]. Measurement and Control,1987,20: 17-15
    [73]李清迈.近八年来俄罗斯油气管道重大事故大事记[N].石油消息,1995,6,14(2).
    [74]王迈编译.国外油气管道事故分析[J].世界石油工业,1996,3(12):45-52
    [75]YOON M S, et al. Leak detection performance specification[C]. ASME 1991,34:21-26
    [76]陈华波,涂亚庆.输油管道泄漏检测方法综述[J].管道技术与设备,2000,1:38-41
    [77]夏海波,张来斌,王朝辉.国内外油气管道泄漏检测技术的发展现状[J].油气储运,2001,2:1-5
    [78]陶宝祺.智能材料结构[M].北京:国防工业出版社,1997:76-83.
    [79]袁慎芳.结构健康监控[M].北京:国防工业出版社,2007:108-190.
    [80]DONALD A, Bernathy A. Airborne detection of pipeline leaks [J]. Pipe Line Industry,1987,67 (3) 26-32
    [81]YANG S,Yuan F G. Transient wave propagation of isotropic plates using a higher-order plate theory [J]. International Journal of Solids and Structures,2005,42(14):4115-4153.
    [82]LEE B C, Staszewski W J. Modeling of lamb waves for damage detection in Metallic Structures:part 1. wave propagation [J]. Smart Materials and Structures,2011,12:804-814.
    [83]LEE B C, Staszewski W J. Modeling of lamb waves for damage detection in metallic structures:part Ⅱ. wave interactions with damage[J]. Smart Materials and Structures,2012,12:815-824.
    [84][日]森村正直,正崎弘郎主编,黄香泉译.传感器技术[M].北京:科学出版社.1988:34-38.
    [85]CULSHAW B, Dakin J著,李少慧等译.光纤传感器[M].武汉:华中理工大学出版社,1997:73-79.
    [86]于达.用压力波监测顺序输送管道泄漏的特点[J].管道技术与设备,1995,1:24-27.
    [87]王海生,张布悦,王桂增等.输油管道实时泄漏监测系统的设计与应用[J].油气储运,2001,20(12):17-22.
    [88]郑杰,吴荔清,何维望等.输油管道泄漏自动检测装置的研制[J].遥测遥控,2001,22(3):44-46.
    [89]吴荔清,莫彬,娄晓东.用贝叶斯法判断输油管道的汇漏[J].油气储运,2001,20(12):15-17.
    [90]税爱社,周绍骑,李生林等.长输管道泄漏诊断专家系统的开发[J].油气储运,2002,21:38-42.
    [91]ELLUL I.R. Advances in pipeline leak detection techniques [J]. Pipes and Pipelines International. 1989,34(3):7-12.
    [92]FURNESS R.A. Modern pipeline monitoring techniques[J]. Pipelines International,1985,30(5): 42-60.
    [93]REPORT P. Staff G J Subsea leak detector[J]. Pipeline and Gas Journal,1987,214(6):36-37.
    [94]邹大稼译.相关法流体管路检漏的研究[J].动态分析与测试技术,1988,2:60-71.
    [95]T.Kiuchi, A leak localization method of pipeline by means of fluid transient model[J]. Journal of Energy Resources,1993.33(4):162-167..
    [96]ANDY Wikc. SCADA-Based leak detection system[J]. Pipeline and Gas Journal.1986.213(6): 20-31.
    [97]RAYLEIGH J. The theory of sound(Vol.Ⅰ and Ⅱ)[M]. NewYork:Dover Publications.1945:45-47.
    [98]GAZIS D C. Thrce-Dimensional investigation of the propagation of waves in hollow circular cylinders.I.analytical foundation[J]. The Journal of the Acoustical Society of America.1959. 31(5):568-673.
    [99]许德刚,许俊平.含45°斜裂纹圆柱壳的动态特性试验研究[J].力学与实践,2006,28(2):41-44
    [100]DENG Fei, Wu Bin,He Cunfu. A time reversal defect identifying method for guided wave inspection in pipes[J]. Journal of Pressure Vessels and Piping,2008,130(2):21-25.
    [101]王伟东.管路系统动力特性计算的传递矩阵法研究[D].无锡:中国船舶科学研究中心,2002.
    [102]张振华,吴梵,冯文山.载流管道在基础振动下的振动拧制[J].海军工程大学学报,2001.13(6):83-86
    [103]李琳.载流曲管声-弹耦合振动高阶模态的稳定性及其能量分布[J].应用力学学报,1997,14(4):109-113.
    [104]张智勇,沈荣瀛,王强.允液管道系统的模态分析[J].固体力学学报,2001,22(2):143-149
    [105]耿荣生,沈功田,刘时风.基于波形分析的声发射信号处理技术[J].无损检测,2006,24(6):257-261.
    [106]李光海,刘时风.基于小波分析的声发射源定位技术[J].机械工程学报,2004,40(7):136-140.
    [107]耿荣生,景鹏,付刚强.声发射波形分析技术在复合材料故障评价中的应用[J].无损检测,1999,21(7):289-296.
    [108]腾宁钧,苏先樾:王仁.有限长圆柱壳中轴对称弹性瞬态波[J].力学学报,1992,24(6): 680-690
    [109]吴斌,张善元,杨桂通.有限长正交异性圆柱壳受冲击扭矩作用的弹性波传播[J].太原工业大学学报,997,28(2):49-108.
    [110]李永池,陈力,唐之景.瞬态波在层合板中传播的粘弹比拟法[J].爆炸与冲击,1989,9(2):97-108.
    [111]田家勇,苏先樾.刚架结构中的瞬态波的传播[J].爆炸与冲击,2001,24(2):500-504.
    [112]DENG Fei, He Cunfu,Wu Bin. Time reversal method for pipe inspection with guided waves[J]. Review of Progress in Quantitative Nondestructive Evaluation,2007,27:113-118.
    [113]DENG Fei. Wu Bin, He Cunfu. A time reversal method for guided wave inspection in pipe[J]. Frontiers of Mechanical Engineering in China,2012,3(3):251-260.
    [114]THOMPSON RB, Alers GA, Tennison MA. Application of direct electromagnetic Lamb wave generation to gas pipeline inspection [M]. NewYork:Ultrasonic Symposium Proceedings, IEEE, 1992:3408-3413.
    [115]MAXFIELD B W, Fortunko C M. The design and use of electromagnetic acoustic wave transducers (EMATs)[J].Materials Evaluation,1983,41:1399-1408.
    [116]THOMPSON R B. Physical principles of measurements with EMAT transducers. In:Physical acoustics [J]. New York:Academic Press,1990,19:157-200.
    [117]OGI H. Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves [J]. Appl Phys,1997,82:3940-3949.
    [118]FORTUNKO C M, Petersen G L, Chick B B,Renken M C, Preis A L. Absolute measurement of elastic-wave phase and group velocities in lossy materials[J]. Rev Sci lnstrum,1992,63: 3477-3486.
    [119]PETERSEN G L, Chick B B, Fortunko C M. Hirao M. Resonance techniques and apparatus for elastic-wave velocity determination in thin metal plates[J], Rev Sci Instrum.1994,65:192-198.
    [120]OGI H, Hirao M, Minoura K. Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel[J]. Appl Phys,1997,81 (36):77-84.
    [121]MEEKER T R, Meitzler A H. Guided wave propagation in elongated cylinder and plates.In: Physical acoustics[M]. New York:Academic Press,1964:138-160.
    [122]AULD B A, Acoustic. Field sand wave sinsolids [M]. NewYork:Wiley-Interscience Press,1973: 43-49.
    [123]MIRSKY 1, Herrmann G. Axially symmetric motions of thick cylindrical shells [J]. Journal of Applied Mechanics,1958(80):97-102.
    [124]HERRMANN G, Mirsky I. Three-dimensional and shell-theory analysis of axially symmetric motion of cylinders[J]. Journal of Applied Mechanics,1956(78):563-568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700