用户名: 密码: 验证码:
基于嵌入式机器视觉的信息采集与处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有机器视觉设备不太方便携带到田间作业,且价格昂贵,导致该项技术不易向农户推广。嵌入式机器视觉系统是以嵌入式计算机为应用中心,以机器视觉技术为理论基础,软硬件可裁剪,是机器视觉技术的扩展与延伸。研究嵌入式机器视觉的作物生长信息采集与处理技术,能促进该项技术在农、林、牧、渔等互联网和供电不方便的野外应用,实现信息快速获取,使研究工作显得更有现实意义。
     本文结合机器视觉系统的结构,开发了嵌入式机器视觉设备。全文围绕嵌入式机器视觉设备的研发及其在作物生长信息的采集与处理过程中的适用性展开了研究,选取了水果和植物叶片进行了信息采集与处理,对反映作物生长的大小、面积、产量等信息采集与处理算法进行了适用性研究,取得了较好的效果。主要结论如下:
     (1)对提高图像处理运行速度算法进行了研究。提出的将多维数组合理降为一维数组方法,可数倍的节省内存运行空间,提高程序执行效率;使用整数系数代替浮点运算、将乘除法换成移位运算、把四字节的数据类型转化为两字节、使用查表算法代替程序中的乘法运算、编写自己的代码替代开发环境提供的API函数等方式来提高图像处理算法的运行效率。从图像灰度化的实验结果来看,采用研究的方法可提高软件运行速度20倍以上。该方法具有很高的灵活性和实用价值。
     (2)研制了Linux与Android系统的嵌入式机器视觉设备。该设备使用核心为嵌入式计算机的手机开发模块代替计算机视觉系统中的计算机和摄像头部分,实现图像采集和数据处理;利用倾角测量技术控制摄像头与研究对象之间的角度;采用距离测量技术控制摄像头与研究对象之间的距离;采用Java语言为该设备和市场上流行的Android系统智能手机I9300开发了图像处理软件。实验结果表明,该视觉系统可测量不同形状和颜色的叶片面积及对柑橘进行估产,延伸了机器视觉技术的应用。
     (3)应用所研制的嵌入式机器视觉系统,对簇生水果的数量判别进行了研究。提出了改进Freeman八邻域链码对簇生水果数量判别的方法,在Freeman八邻域链码的基础上,增加了3个新的元素,即“S”、“8”、“9”,其中“S”是簇生区域水果图像轮廓链码的起点,“8”是图像轮廓的方向变化转折点,“9”是图像轮廓的最低点;对图像轮廓编码完成后,利用链码中“8”的个数信息进行簇生水果的数量判别。利用该方法对采摘前两周的赣南脐橙和烟台苹果进行了判别,实验结果表明,该方法能100%的判别出二、三、四簇生情况,对五簇生的正确识别率能达到60%以上,但比较困难正确判断六簇生以上的情况。该方法可以借鉴判断具有规则轮廓水果的簇生情况,如梨、西红柿等,对提高采摘前水果估产准确率具有理论和实际意义。
     (4)通过所研制的嵌入式机器视觉设备对采摘前两周的单株柑橘树进行估产研究。提出了一种基于颜色信息的半自动自适应分割算法,对果园现场拍摄的柑橘树进行了柑橘分割;结合形态学滤波器,对被判别为具有簇生情况的图像区域进行了边缘平滑;采用改进的Freeman八邻域链码对簇生区域水果数量进行了判别;实现柑橘数量的估计。对赣南脐橙单株果树进行了估产,结果显示能达到近90%的准确率。为果园规划产前产量分布图提供了技术支持,为进一步估产提供技术方案。
     (5)应用所研制的嵌入式机器视觉设备,对叶面积测量的算法进行了研究。提出了一种适合嵌入式手持设备操作特性的半自动自适应分割算法,通过人工在触摸屏上显示的叶片图像的周围任意画个封闭圈,采用Canny边缘检测算法获取叶片的边缘像素位置信息,利用中值滤波对图像去噪处理,采用Otsu分割算法对封闭圈内的研究对象进行分割并二值化,图像重构以后把边缘检测的像素位置插入图像中,且对研究边缘内的像素进行填充。该方法保证了研究对象边缘的完整性的同时消除了图像中由光照引起的白噪声,提高了测量结果的精度,实验结果显示测量精度能达到1%,表明本研究方法具有实用性。
The existing machine vision systems are inconvenient to carry to the field for work. The expensive price and complex operation restrict it from popularization to the farmers. The embedded machine vision technology is a kind of machine vision technology using the embedded computer as data processing, and its software and hardware can be cut according to its practical application. It is the expansion and extension of the machine vision technology. Study of the information acquisition and processing technology based on embedded system computer vision has practical application in agriculture, forestry, animal husbandry and fishery which are far away from cities with limited Internet service and power supply. Thus, related research of machine vision technology in handheld devices has practical sense.
     In this context, a handheld machine vision system was developed using the machine vision technology. The main researches were focused on the development of handheld machine vision system and the test of its adaptability in crop growth information collection and data process. Fruits, plant leaves and citrus were used as experimental subjects to evaluate the adaptability of the algorithms to calculate the size of fruits, the area of leaves and the yield of citrus, and good results were obtained in this research. The main conclusions are as follows:
     (1) The developed handheld device vision system was adopted to study the processing algorithm of the handheld device to achieve higher speed. The procedures include dimension reduction for array, usage of integer arithmetic to simulate floating point, combination with computer principle, algorithm transmission from multiplication and division to shift operator, rational definition of data type in program, algorithm transmission from multiplication and division to table lookup, application of self-developed algorithm instead of that provided by development environment. According to the results of image grizzled processing, using this methods as mentioned above makes a significant improvement on the speed of software with more than20times. The methods were high flexibility and practical value.
     (2) Two handheld machine vision systems were developed. This system used mobile phone development module to replace the computer in computer vision system to set up a handheld machine vision system for data process. The inclination measurement module was used to measure the angle between the camera and the target. The distance measurement module was used to measure the distance between the camera and the target. The other one was Android based smart cellphone19300. The application softwares integrated with machine vision were written in Java. The app's algorithm applicability verified that the portable vision technology possesses stability and repeatability. All above extends application of computer vision in agriculture.
     (3) The developed handheld device vision system was performed to discriminant the quantity of cluster fruits. The paper introduces an improved Freeman chain code to discriminant the number of fruits. It adds three new elements namely "S'、"8"、"9", while the "S" is the starting point of clustering area edge,"8" is the turning point, and "9" is the lowest point of image contour. After the coding of edge image, the number of "8" is used for the discrimination of fruit number in clustering area. When the method is tested on Gannan orange and Yantai apple,100%discriminant rate is accomplished in two, three and four clustering case, in five clustering case can reaches above60%, but it is very difficult to correctly discriminant six clustering case. This method can extend to other clustering cases in fruit that has regular contour, like pear, tomato etc. and has theoretical and practical meaning in enhancing pre-harvesting fruit yield estimation.
     (4) The developed handheld device vision system was applied to estimate the citrus yield of a single tree two weeks before harvest. A semi-automatic self-adjusted segmentation algorithm was promoted for on-site application. It utilizes morphology filter for edge smoothing in clustering area, then improved Freeman8neighborhoods for clustering area fruit number counting calculates the total number of citrus. This algorithm has been used for Ganan orange yield estimation and reaches90%accurate rate. This method facilitates orchard pre-harvesting yield distribution mapping, and provides technical solution for further yield estimation.
     (5) The developed handheld device vision system was used to research on the vision algorithm for information collection and processing methods of crop growth. In this research, we put forward a semi-automatic adaptive segmentation algorithm for handheld device. During the application of leaf area measurement, after artificial selection of leaves to be measured, the boundary of the leaf image displayed on the touch screen is drawn as a closed circle. And then, Canny edge detection algorithm is used to obtain the information of the edge pixel position of the leaf followed by median filtering and binarization (using Otsu threshold algorithm). After the image reconstruction, the edge pixel would be inserted into the image, and the pixels within the edges would be filled. Results show that the display error is within1%which means this method ensures the integrity of the research object edge while eliminating the white noise in the image to improve the accuracy of the measurement results.
引文
1. Affeldt H.A., Brown G.K., Pason N. Treetrunk growth and damage prognoses by digital image analysis. Transactions of the ASAE.1989,32(5):1812-1820.
    2. Akira M., Noboru N., Kazunobu I. Development of robot tractor using the low-cost GPS/INS system. ASAE meeting presentation.2005, Paper number.051138.
    3. Akira M., Noboru N., Kazunobu I. Automatic navigation of agricultural vehicles using a low cost attitude sensor. Automation Technology for Off-road Equipment, Proceedings of the 7-8 October,2004 conference.2004,98-106.
    4. Annamalai P., Lee W.S., Burks T.F. Color vision system for estimating citrus yield in real-time. ASAE/CSAE Annual international meeting.2004, paper number:043054.
    5. Asefpour V.K., Massah J. Design, development and performance evaluation of a robot to early detection of nitrogen deficiency in greenhouse cucumber (cucumis sativus) with machine vision. International Journal of agriculture:research and review.2012,2(4):448-454.
    6. Baker B., Olszyk D.M., Tingey D. Digital Image Analysis to Estimate Leaf Area. Journal of Plant Physiology.1996,148(8):530-535.
    7. Bastiaanssen W.G.M., Ali S. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecosystems and Environment.2003,94:321-340.
    8. Bell T. Automatic tractor guidance using carrier-phase differential GPS. Computers and Electronics in Agriculture.2000,25:53-66.
    9. Benedetti R., Rossini E. On the use of NDVI profiles as a tool for agricultural statistics:The case study of wheat yield estimate and forecast in Emilia Romagna. Remote Sensing of Environment.1993,45: 311-326.
    10. Benson E.R., Reid J.R., Zhang Q. Machine vision based steering system for agricultural combines. Sacramento:Proceedings of the ASAE Annual International Meeting.2001.
    11. Bergeijk J.V., Goense D., Keesman K.J., et al. Digital filters to integrate global positioning system and deadreckoning. Journal of Agricultural Engineering Research.1998,710:135-143.
    12. Beucher S., Lantuejoul C. Use of watersheds in contour detection. In International Workshop on Image Processing:Real-Time Edge and Motion Detection/Estimation, Rennes, France.1979.
    13. Bignami C., Rossini F. Image analysis estimation of leaf area index and plant size of young hazelnut plants. The Journal of Horticultural Science Biotechnology.1996,71:113-121.
    14. Bjorn A., Baerveldt A.J. A vision based row-following system for agricultural field machinery. Mecharonics.2005,15:251-269.
    15. Blackmore S. New concepts in agricultural automation, in:HGCA Conference on precision in arable farming-current practice and future potential, Greece.2009(10).
    16. Blanco F.F., Folegatti M.V. A new method for estimating the leaf area index of cucumber and tomato plants. Horticultura Brasileira.2003,21(4):666-669.
    17. Blasco J., Aleixos N., Gomez S.J., et al. Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features. Biosysetms engineering.2009,103:137-145.
    18. Bulanon D.M., Kataoka T., Ota Y. AE-automation and emerging technologies:a segmentation algorithm for the automatic recognition of Fuji apples at harvest. Biosystems Engineering.2002,83(4):405-412.
    19. Bulanon D. M., Kataoka T., Zhang S., et al. Optimal thresholding for the automatic recognition of apple fruits. Sacramento:Proceedings of the ASAE Annual International Meeting.2001.
    20. Burger W., Burge M.J. Digital Image Processing:An algorithmic introduction using Java.北京:清华大学出版社.2010.
    21. Carlson T.N., Ripley D.A. On the Relationship between NDVI, Fractional Vegetation Cover, and LeafArea Index. Remote Sensing of Environment.1997,62:241-252.
    22. Casady W.W., Singh N., Costello T.A. Machine vision for measurement of rice canopy dimensions. Transactions of the ASAE.1996,9(5):1891-1898.
    23. Chen Y.Y., Lin P., He Y., et al. Classification of broadleaf weed images using Gabor wavelets and lie group structure of region convariance on Riemannian manifolds. Biosystems Engineering.2011(a),109: 220-227.
    24. Chen Y.Y., Lin P., He Y. Velocity representation method for description of contour shape and the classification of weed leaf image. Biosystems Engineering.2011(b),109:186-195.
    25. Chien C.F., Lin T.T. Non-destructive growth measurement of selected vegetable seedlings using orthogonal images. Transactions of the ASAE.2005,48(5):1953-1961.
    26. Cho S.I., Lee J.H. Autonomous speed sprayer using differential global positioning system, genetic algorithm and fuzzy control. Journal of Agricultural Engineering Research.2000,76:111-119.
    27. Choi C.H. Automatic guidance system for combine using DGPS and machine vision. Wisconsin: Proceedings of the ASAE Annual International Meeting.2000.
    28. Daugman J.G. Complete discrete 2D Gabor transform by neural network for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing.1988,36(7):1169-1179.
    29. David C, Roy C. Color vision in robotic fruit harvesting. Transactions of the ASAE.1987,30(4): 1144-1148.
    30. De Jesus W.C.J., Do Vale F.X.R., Coelho R. R., et al. Comparison of two methods for estimating leaf area index on common bean. Agronomy Journal.2001,93(2):989-991.
    31. De Swart E.A.M., Groenwold R., Kanne H.J., et al. Non-destructive estimation of leaf area for different plant ages and accessions of Capsicum annuum L. The Journal of Horticultural Science and Biotechnology,2004,79(6):764-770.
    32. Ehsani M.R., Upadhyaya S.K., Mattson M.L. Seed location mapping using RTK GPS. Transactions of the ASAE.2004,47(3):909-914.
    33. Ercal F., Moganti M., Stoecker W., et al. Detection of skin tumor boundaried in color images. Computer Journal of IEEE Transactions on Medical Imaging.1993,12,132-141.
    34. Falah R., Bolon P., Cocquerez J. A region region and region edge cooperative approach to image segmentation. IEEE International Conference on Image Process, USA.1994,470-474.
    35. Freeman H. On the encoding of arbitrary geometric configurations. In proceedings of IRE translation electron computer, New York.1961,260-268.
    36. Gantam R., Kumar. Image processing techniques and neural network models for predicting plant nitrate using aerial images. Proceedings of the International Joint Conference on Neural Networks.2003,2: 1031-1036.
    37. Gao H., Lin W., Xue P., et al. Marker-based image segmentation relying on disjoint set union. Signal Processing:Image Communication,2006,21(2):100-112.
    38. Giles D.K., Slaughter D.C. Precision band spraying with machine vision guidance and adjustable yaw nozzles. Transactions of the ASAE.1997,40(1):29-36.
    39. Gong A., Qiu Z., He Y., et al. A Non-destructive Method for Quantification the Irradiation Doses of irradiated Sucrose Using Vis/NIR Spectroscopy. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2012,99(2012):7-11.
    40. Granitto Pablo M., Verdes Pablo F. H. Alejandro. Large-scale investigation of weed seed identification by machine vision. Computers and Electronics in Agriculture.2005,47:15-24.
    41. Gunasekaran S., Cooper T.M., Berlage A.G. Image processing for stress o-acks in corn kernels. Transactions of the ASAE.1987,30(1):266-271.
    42. Guo L.S., Zhang Q., Feng L. A low-cost integrated positioning system of GPS and inertial sensors for autonomous agricultural vehicles. ASAE Meeting Presentation.2003, Paper No.033112.
    43. Guyer D.E., Miles G.E., Schreiber M.M., et al. Machine vision and image processing for Plant identification. Transactions of the ASAE.1986,29(6):1500-1507.
    44. Gyves E.M., Cristofori V., Fallovo C., et al. Accurate and rapid technique for leaf area measurement in medlar (Mespilus germanica L.). Advance Horticultural Science.2008,22(3):223~226.
    45. Hague T., Marchant J.A., Tillett N.D. Ground based sensing systems for autonomous agricultural vehicles. Computers and electronics in agriculture.2000,25:11-28.
    46. Harrell R.C., Adsit P.D., Munilla R.D., et al. Robotic picking of citrus. Robotica.1990,8(4):269-278.
    47. He D., Matsuura Y., Kozai T., et al. A binocular stereovision system for transplant growth variables analysis. Applied engineering in agriculture.2003,19(5):611-617.
    48. Hemming J., Rath T. Computer-vision-based weed identification under field conditions using controlled lighting. Journal of Agricultural Engineering Research.2001,78(3):233-243.
    49. Huang C. Determination of nitrogen content in rice crop using multispectral imaging. Las vegas:ASAE annual international meeting.2003.
    50. Humphries S., Simonton W. Identification of plant pans using color and geometric image data. Transactions of the ASAE.1993,36(5):1493-1500.
    51. Igathinathane C., Prakash V.S.S., Padma U., et al. Interactive computer software development for leaf area measurement. Computer and Electronic in Agriculture.2006,51(2):1-16.
    52. Iida M., Burks T.F. Ultrasonic sensor development for automatic steering control of orchard tractor. Automation Technology for Off-Road Equipment (ATOE), Proceedings of the 26-27 July,2002 Conference. Chicago, Illinois, USA.2002:221-229.
    53. lshizuka T., Tanabata T., Takano M., et al. Kinetic measuring method of rice growth in tillering state using automatic digital imaging system. Environment control in Biology.2005,43(2):83-96.
    54. Jarimopas B., Jaision N. An experimental machine vision system for sorting sweet tamarind. Journal of Food Engineering.2008,89:291-297.
    55. Jimenez A.R., Ceres R., Pons J.L. A survey of computer vision methods for locating fruit on trees. Transactions of the ASAE.2000,43(6):1911-1920.
    56. Kacira M., Sase S., Okushima L. Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation reates under wind-induced ventilation. Transastions of the ASAE.2004,47(6): 2059-2067.
    57. Kaiser W. P. Wireless integrated network sensors. Communications of the ACM.2000,43(5):551-558.
    58. Kataoka T., Kaneko T., Okamoto H., et al. Crop growth estimation system using machine vision. Proceeding of the 2003 IEEE/ASME International Conference on Advanced Intelligent Machatronics. 2003,1079-1083.
    59. Kataoka T., Kaneko T., Okamoto H., et al. Development of crop growth mapping system using machine vision (Part 1)-Producing entire crop rows image by montaging continuous image. Journal of the Japanese society of agricultural machinery.2004,66(5):74-82.
    60. King S.F., Gonzalez R.C., Lee C.S.G. Robotics:control, sensing, vision, and intelligence. McGraw-Hill, Inc. New York, NY, USA.1987.
    61. Kleynen O., Leerdans V., Destain M.F. Development of a multi-spectral vision system for the detection of defects on apples. Journal of Food Engineering.2005,69(1):41-49.
    62. Kong F., Tan J. DietCam:Automatic dietary assessment with mobile camera phones. Pervasive and mobile computing.2012,8(2012):147-163.
    63. Kulik J., Heinzelman W., Balakrishnan H. Negotiaton-based protocols for disseminating information in wireless sensor networks. Wireless network,2002,8(2):169-185.
    64. Laylin S., Alchanatis V., Fallik E., et al. Image-Processing algorithms for tomato classification. Transactions of the ASAE.2002,45(3):851-858.
    65. Lee D.J., Archibald J.K., Chou Y.C, et al. Robust color space conversion and color distribution analysis techniques for date maturity evaluation. Journal of Food Engineering.2008,88(2008):364-372.
    66. Li S., Tan Y.L. One rapid segmentation algorithm for quasi-circular fruits. Recent advances in computer science and information engineering.2012,128:287~293.
    67. Lin T.T., Chien C.F., Liao W.C., et al. Machine vision systems for plant growth measurement and modeling. Environmental Control in Biology.2006,44(3):181-187.
    68. Lin T.T., Lai T.C., Liu C.C., et al. A three-dimensional imaging approach for plant feature measurement using stereo vision. Journal of agricultural machinery science.2011,7(2):153-158.
    69. Ling P.P., Giacomeli G.A., Russell T. Monitoring of plant development in controlled environment with machine vision. Advances in Space Research.1996,18:101-112.
    70. Luccheseyz L., Mitray S.K. Image Swgmentation:A state of the art Survey. Proceedings of the Indian National Science Academy(INSA-A), Delhi, India.2001,207-221.
    71. Mao K.Z., Zhao P., Tan P.H. Supervised learning-based cell image segmentation for P53 Immunohistochemistry. IEEE Transactions on Biomedical Engineering.2006,53(6):1153-1163.
    72. Mark O., Anthony S. Vision-based perception for an automated harvester. IEEE:RSJ International Conference on Intelligent Robots and Systems. Grenoble, France.1997:1838-1844.
    73. Mesas-Carrascosa F.J., Castillejo-Gonzalez I.L., Orden M.S.D.L., et al. Real-time mobile phone application to suppoer land policy. Computers and electronics in agriculture.2012,85(2012):109-111.
    74. Meyer F., Beucher S. Morphological segmentation. Journal of Visual Communication and Image Represent.1990,1(1):21-46.
    75. Meyer G.E., Troyer W.W., Fitzgerald J.B., et al. Leaf nitrogen analysis of poinsettia (Euphorbia Pulcherrima Will D.) using spectral properties in natural and controlled lighting. Applied engineering in agriculture.1992,8(5):715-722.
    76. Meyer G.E., Stepanct A., Shelton D.P., et al. Electronic image analysis of crop residue cover on soil. Transactions of the ASAE.1987,31(3):968-973.
    77. Milan S., Vaclav H., Roger B. Image Processing, Analysis and Machine Vision. Second Edition. U.S.A.ThoIIlson Brooks/Cole Press.2001.
    78. Miller B., Delwiche M. A color vision system for peach grading. Transactions of the ASAE.1989,32(4): 1484-1490.
    79. Noboru N., Reid J.F., Zhang Q., et al. Development of robot tractor based on RTK-GPS and gyroscope. ASAE meeting presentation.2001, Paper No.011195.
    80. Noguchi N., Reid J.F., Benson E.R., et al. Vehicle automation system based on multisensor integration. Proceedings of the ASAE Annual International Meeting, Orlando, Florida, USA.1998.
    81. Noh H.K., Zhang Q., Han S., et al. Dynamic calibration and image segmentation methods for multispectral imaging crop nitrogen deficiency sensors. Transactions of the ASAE.2005,48:393-401.
    82. Noh H. K., Zhang Q., Shin B., et al. Multispectral image sensor for detection of nitrogen deficiency in corn by using an empirical line method. Las Vegas:ASAE annual international meeting.2006.
    83. Nyakwende E., Paull C.J., Atherton J.G. Non-destructive determination of leaf area in tomato plants using image processing. The Journal of Horticultural Science and Biotechnology.1997,72(9):225-262.
    84. O'Neal M.E., Landis D.A., Isaacs R. An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. Journal of Economic Entomology.2002,95(6):1190-1194.
    85. Okamoto H., Lee W.S. Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture.2009,66:201-208.
    86. Ostu N.A threshold selection method form gray-level histograms. IEEE Transaction on SMC.1979, 9(1):62~66.
    87. Pal N.R., Pal S.K. A review on image segmentation techniques. Pattern Recognition.1993,26(9): 1277-1294.
    88. Patrick K., Griswold W., Raab F., et al. Health and the mobile phone, American Journal of Preventive Medicine.2008,35 (2):177-181.
    89. Peters T.P., Evett S.R. Using low-cost GPS receivers for determining field position of mechanized irrigation systems. Applied engineering in agriculture.2005,21(5):841-845.
    90. Rafael C.G., Richard E.W. Digital Image Processing.2nd Edition, Publishing House of Electronics Industry.2002.
    91. Rasmussen M.S. Assessment of millet yields and production in northern Burkina Faso using integrated NDVI from the AVHRR. International Journal of Remosensing.1992,13:3431-3442.
    92. Robbins N.S., Pharr D.M. Leaf area prediction models for cucumber from linear measurements. HortScience,1987,22(6):1264-1266.
    93. Roland L., Benoit T., Christophe C., et al. A new nonlinear control for vehicle in sliding conditions: Application to automatic guidance of farm vehicles using RTK GPS. Proceedings of the 2004 IEEE International Conference on Robotics 8 Automation. New Orleans.2004,4384-4386.
    94. Rouphael Y., Mouneimne A.H., Ismail A., et al. Modeling individual leaf area of rose (Rosa hybrid L.) based on leaf length and width measurement. Photosynthetica.2010,48(12):9-15.
    95. Royira F., Han S.F., Wei J.T., et al. Fuzzy logic model for sensor fusion of machine vision and GPS in autonomous nayigation. Tampa:Proceedings of the ASAE Annual International Meeting.2005.
    96. Rutter S.M., Beresford N.A., Roberts G. Use of GPS to identify the grazing areas of hill sheep. Computers and Electronics in Agriculture.1997,17:177-188.
    97. Sakir T., Abdullah U., Seref I. Determination of body measurements on the Holstein cows using digital image analsis and estimation of live weight with regression analysis. Computers and Electronics in Agriculture.2011,76,189-197.
    98. Sankaran S., Mishra A., Ehsani R. Areview of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture.2010,72:1-13.
    99. Sarkar N., Wolfe R.R. Image processing for tomato grading. Transactions of the ASABE.1990,33(4): 564-572.
    100. Schueller J.K., Whitney J.D., Wheaton T.A., et al. Low-cost automatic yield mapping in hand-harvested citrus. Computers and Electronics in Agriculture.1999,23(2):145-154.
    101. Seginer I., Elster R.T., Goodrum J.W., et al. Plant wilt detection by computer vision tracking of leaf tips. Trans of the ASAE.1992,35(5):1563-1567.
    102. Shahab W., A1-Otum H., Al-Ghoul F.2009. A modified 2D chain code algorithm for object segmentation and contour tracing. The international Arab journal of information technology.6(3):250-257.
    103. Shen L., Song X., Manabu I., et al. A method for recognizing particles in overlapped particle images. Pattern Recogniton Letters.2000,21(1):21-30.
    104. Shimizu H., Heins R.R. Computer vision based system for plant growth analysis. Transactions of the ASAE.1995,38(3):958-964.
    105. Silva A.C.D.S., Arce A.I.U., Souto S., et al. A wireless floating base sensor network for physiological response of livestock. Computers and electronics in agriculture.2005,49(2005):246-254.
    106. Sun D.W., Du C.J. Segmentation of complex food images by stick growing and merging algorithm. Journal of Food Engineering.2004,61(1):17-26.
    107. Takashi K., Toshihiro K., Hiroshi O. Crop growth estimation system using machine vision. Proceedings of the 2003 IEEE/ASME international conference on advanced intelligent mechatronics.2003.
    108. Tang L., Tian L.F., Steward B.L., et al. Texture based weed classification using Gabor wavelets and neural network for real-time selective herbicide applications. Toronto:Proceedings of the ASAE Annual International Meeting.1999.
    109. Thorp K.R., Dierig D.A. Color image segmentation approach to monitor flowering in lesquerella. Industrial crops and products.2011,34(2011):1150-1159.
    110. Tian L. Sensor based Precision Chemical Application Systems. Proceedings of World Congress on Computers in Agriculture and Natural Resources.2002.
    111. Trooien T.P., Heermann D.F. Measurement and simulation of potato leaf area using image processing: Ⅲ. Measurement. Transactions on the ASAE.1992,35(5):1719-1721.
    112. Tsai C., Lee G., Raab F., et al. Usability and feasibility of pmeb:a mobile phone application for monitoring real time caloric balance. Mobile Networks and Applications.2007,12 (2-3) 173-184.
    113. Tumbo S.D., Wagner D.G., Heinemann P.H. Hyperspectral characteristics of corn plants under different chlorophyll levels. Transactions of the ASAE.2002,45(3):815-823.
    114. Urena R., Rodrguez F., Berenguel M. A machine vision system for seeds germination quality evaluation using fuzzy logic. Computers and Electronics in Agriculture.2001,32:1-20.
    115. Vincent L., Soille P. Watersheds in digital space:an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence.1991,13(6):583-598.
    116. Wang Y.C., Chou J.J. Automatic segmentation of touching rice kernels with an active contour model. Transactions of the ASAE.2004,47(5):1803-1811.
    117. Weinberg B. The embedded Linux OS. Embedded System Engineering.2001.
    118. Whitney J.D., Ling Q., Wheaton T.A., et al. A DGPS yield monitoring system for Florida citrus. Applied Engineering in Agriculture.1999,17(2):115-119.
    119. Whitney J.D., Wheaton T.A., Miller W.M., et al. Site-specific yield mapping for Florida citrus.Proceedings of the Florida State Horticultural Society.1998,111:148-150.
    120. Whittaker A.D., Miles G.E., Mitchell O.R., et al. Fruit location in a partially occluded image. Transactions of the AS AE.1987,30(3):591-597.
    121. Wilson G. Properties of contour codes. In proceedings of IEEE Visual Image and Signal Processing. 1997,145-149.
    122. Woebbecke D.M., Meyer G.E., Bargen K.Y., et al. Shape features for identifying young Weed susing image analysis. Transactions of the ASAE.1995,38(1):271-281.
    123. Yang Q. An approach to apply surface feature detection by machine vision. Computer and electronics in agriculture.1994,11:249-264.
    124. Yaylor R.W., Rehkugler G.E., Throop J.A. Apple bruise detection using a digital line scan camera system. American Society of Agricultural Engineers.1984,652-662.
    125. Ye X., Sakai K., Leroy O.G., et al. Estimation of citrus yield from airborne hyperspectral images using a neural network model. Ecological modeling.2006,98,426-432.
    126. Ye X., Sakai K., Manago M., et al. Prediction of citrus yield from airborne hyperspectral imagery. Precision agriculture.2007,8:111-125.
    127. Zhang J., Wang K., Bailey J.S., et al. Prediction Nitrogen status of rice using multispectral data at canopy scale. Pedosphere.2005,16(1):108-117.
    128. Zhou F.F., Feng J.F., Shi Q.Y. Texture feature based on local Fourier transform. IEEE International Conference on Image Processing.2001,17(2):610-613.
    129.Zhu F. L., Zhang R.D., He Y., et al. Application of visible and nea r infrared hyperspectral imaging to differentiate between fresh and frozen-thawed fish fillets. Food and Bioprocess Technology.2012, DOI 10.1007/sl 1947-012-0825-6.
    130.白菲.基于机器视觉的柑橘水果外形识别方法研究.[硕士学位论文].中国农业大学.2005.
    131.蔡健荣,周小军,李玉良,等.基于机器视觉自然场景下成熟柑橘识别.农业工程学报.2008,24,175-178.
    132.蔡义华,刘刚,李莉,等.基于无线传感器网络的农田信息采集节点设计与试验.农业工程学报.2009,25(4):176-178.
    133.陈飞,蔡建荣.柑橘收获机器人技术研究进展.农机化研究.2008,7:232-235.
    134.陈涛涛,迟道才,梁茜.基于矩形框几何校正的多叶面积测量方法.农业工程学报,2012,28(8): 206-213.
    135.陈晓光,于海业,周云山,等.应用图像处理技术进行蔬菜苗特征量识别.农业工程学报.1995,11(4):23-26.
    136.陈英,李伟,张俊雄.基于图像轮廓分析的堆葡萄果粒尺寸检测.农业机械学报.2011,42(8):168-172,121.
    137.冯斌,汪懋华.基于颜色分形的水果计算机视觉分级技术.农业工程学报.2002,18(2):141-144.
    138.冯斌,汪懋华.基于计算机视觉的水果大小检测方法.农业机械学报.2003,34(1):73-75.
    139.冯斌.计算机视觉信息处理方法与水果分级检测技术研究.北京:中国农业大学.2002.
    140.付树军,阮秋琦,王文恰.基于特征驱动地双向耦合扩散方程的图像去噪和边缘锐化.光学精密工程.2006,14(2):315-319
    141.高汉峰,房俊龙,陈月华.作物生长信息智能监测方法研究进展.农机化研究.2010,4:1-5,20
    142.郭世可,董槐林,龙飞,张海波.一种结合密度聚类和区域生长的图像分割方法.计算机研究与发展.2007,44:420-423.
    143.郝敏.基于机器视觉的马铃薯外部品质检测技术研究.[博士学位论文].内蒙古农业大学.2009.
    144.何东健,张海亮,宁纪锋,等.农业自动化领域中计算机视觉技术的应用.农业工程学报.2002,18(2):170-176.
    145.何绮云,黄巧娇,黄红星,等.农作物-农田环境系统关键信息采集规范研究与应用.中国农学通报.2012,28(06):288-292.
    146.洪添胜,杨洲,宋淑然,等.柑橘生产机械化研究.农业机械学报.2010,41(12):105-110.
    147.胡春华,李萍萍.基于图像处理的黄瓜缺氮与缺镁判别的研究.江苏大学学报.2004,25(1):9-12.
    148.贾云得.机器视觉.北京:科学出版社.2000.
    149.蒋焕煜,应义斌,谢丽娟.光谱分析技术在作物生长信息检测中的应用研究进展.光谱学与光谱分析.2008,28(6):1300-1304
    150.蒋焕煜,应义斌.尖椒叶片叶绿素含量的近红外检测分析实验研究.光谱学与光谱分析.2007,27(3):499-502.
    151.康晴晴.基于机器视觉的苹果检测分级方法研究.[博士学位论文].中国农业大学.2007.
    152.李长缨,滕光辉.利用计算机视觉技术实现对温室植物生长的无损监测.农业工程学报.2003,19(5):140-143.
    153.李建平,林妙玲.自动导航技术在农业工程中的应用研究进展.农业工程学报.2006,22(9):232-236.
    154.李君,王敏,黄心汉.二值图像的自动表述.华中理工大学学报.2000,28(4):74-76.
    155.李卫国,李花.水稻卫星遥感估产研究现状与对策.江苏农业科学.2010,5:444-445.
    156.李卫国,李正金,申双和.小麦遥感估产研究现状及趋势分析.江苏农业科学.2009,2:6-7.
    157.林萍.基于机器视觉的大米外观品质检测方法研究.[博士学位论文].浙江大学.2011.
    158.凌云,王一鸣,孙明,等.基于流域算法的谷物籽粒图像分割技术.农业机械学报.2005,36(3):95-98.
    159.刘彩.一种改进的Sobel图像边缘检测算法.贵州工业大学学报(自然科学版).2004,33(5):77-79.
    160.刘卉,汪懋华.基于无线传感器网络的农田土壤温湿度检测系统的设计与开发.吉林大学学报(工学版).2008,38(3):604-608.
    161.刘天亮,罗立民.基于分割稳健而快速的局部立体匹配及医学应用.计算机辅助设计与图形学学报.2010,22(1):100-107.
    162.刘勇奎Freeman链码压缩算法的研究.计算机学报.2001,24(12):1294-1298.
    163.刘兆祥,陈艳,籍颖,等.基于机器视觉的农业车辆路径跟踪.农业机械学报.2009,40(9):19-22.
    164.吕强,蔡健荣,赵杰文,等.自然场景下树上柑橘实时识别技术.农业机械学报.2010,41(2):185-188,170.
    165.罗锡文,臧英,周志艳.精细农业中农情信息采集技术的研究进展.农业工程学报.2006,22(1):167-173.
    166.马稚昱,清水浩,辜松.基于机器视觉的菊花生长自动无损监测技术.农业工程学报.2010,26(9):203-209.
    167.毛罕平,徐贵力,李萍萍.基于计算机视觉的番茄营养元素亏缺的识别.农业机械学报.2003,34(2):73-75.
    168.孟志军,赵春江,王秀,等.基于GPS的农田多源信息采集系统的研究与开发.农业工程学报,2003,19(4):13-18.
    169.聂鹏程,杨燕,刘飞,等.植物叶面积无损测量方法及仪器开发.农业工程学报,2010,26(9):198-202.
    170.欧文浩,苏伟,薛文振,等.基于HJ-1卫星影像的三大农作物估产最佳时相选择.农业工程学报.2010,26(11):176-182.
    171.乔晓军,张馨,王成,等.无线传感器网络在农业中应用.农业工程学报.2005,21(5):232-234.
    172.乔杨,徐熙平,卢常丽,等.机器视觉远距离目标尺寸自动标定测量系统研究.兵工学报.2012,33(6):759-763.
    173.石雪强,程新文,李春福,等.自然环境下苹果彩色图像分割研究.安徽农业科学.2011,39(30):20-25.
    174.谭峰,高艳萍.基于图像的植物叶面积无损测量方法研究.农业工程学报.2008,24(5):170-173.
    175.唐向阳,张勇,李江有,等.机器视觉关键技术的现状及应用展望.昆明理工大学学报.2004,29(2)36-39.
    176.王建,黎绍发.基于苹果着色面积的计算机视觉分级技术研究.计算机工程与设计.2008,29(14):3813-3817.
    177.汪懋华.1999.“精细农业”的实践与农业科技创新.中国软科学.4:21-25.
    178.王荣本,纪寿文,初秀民,等.基于机器视觉的玉米施肥智能机器系统设计概述.农业工程学报.2001,17(2):151-153.
    179.王雅琴,高华.自然环境下水果图像分割与定位研究.计算机工程.2004,30(13):128-129,162.
    180.王忠芝,张金瑞.基于图像处理的叶面积测量方法.农业工程学报.2010,31(5):68-72.
    181.吴长山,项月琴.利用高光谱数据对作物群体叶绿素密度估算的研究.遥感学报.2000,4(3):228-232.
    182.项荣,应义斌,蒋焕煜,等.基于边缘曲率分析的重叠番茄识别.农业机械学报.2012,43(3):157-162.
    183.徐刚,陈天恩,陈立平,等.基于ARIS的农业信息采集平台需求分析方法.农业工程学报.2009,25(8):136-142.
    184.徐贵力,毛罕平,胡永光.基于计算机视觉技术参考物法测量叶片面积.农业工程学报.2002,18(1):154-157.
    185.杨劲峰,陈清,韩晓日,等.数字图像处理技术在蔬菜叶面积测量中的应用.农业工程学报.2002,18(4):155-158.
    186.叶旭君,Kenshi Sakai,何勇.基于机载高光谱成像的柑橘产量预测模型研究.光谱学与光谱分析.2010,30(5):1295-1300.
    187.应义斌,景寒松,马俊福,等.机器视觉技术在黄花梨尺寸和果面缺陷监测中的应用.农业工程学报.1999,01(41):12-18.
    188.应义斌,饶秀勤,马俊富.柑橘成熟度机器视觉无损检测方法研究.农业工程学报.2004,20(2):144-147.
    189.张嘉琪.基于嵌入式系统图像处理平台的万寿菊水分状态检测系统的研究.[硕士学位论文].西南大学.2009.
    190.张利民,罗锡文.差分GPS定位技术在土壤耕作阻力测量中的应用.农业工程学报.1999,18(4):13-18.
    191.张谦,裴海龙,史步海,等.无纺布成品表面污渍机器视觉检测系统的设计.华南理工大学学报(自然科学版).2012,40(3):81-87
    192.张亚静,邓烈,李民赞,等.基于图像处理的柑橘测产方法.农业机械学报.2009,40(9):97-99.
    193.张亚静,李民赞,刘刚,等.基于机器视觉和信息融合的邻接苹果分割算法.农业机械学报.2009,40(11):180-183.
    194.张彦娥,李民赞.基于计算机视觉技术的温室黄瓜叶片营养信息检测.农业工程学报.2005,21(8):102-105.
    195.张艳诚,毛罕平,胡波,等.作物病害图像中重叠病斑分离算法.农业机械学报.2008,39(2):112-115.
    196.章炜.机器视觉技术发展及其工业应用.红外.2006,27(2):11-17
    197.章毓晋.图像分割.北京:科学出版社.2001.
    198.中国果品流通协会.我国水果产业发展状况及柑橘产销形势分析.果农之友.2011,1:3-5.
    199.周俊,姬长英.自主车辆导航系统中的多传感器融合技术.农业机械学报.2002,33(5):113-117.
    200.周俊,刘成良,姬长英.农业机器人视觉导航的预测跟踪控制方法.农业工程学报.2004,20(6):106-110.
    201.周丽娟.基于遗传算法的柑橘图像分割.[硕士学位论文].长沙理工大学.2011.
    202.周水琴,应义斌.颜色模型在农产品颜色检测与分级中的应用.浙江大学学报(农业与生命科学版),2003,29(6):684-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700