用户名: 密码: 验证码:
基于臂式机构的空间望远镜稳像控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间望远镜在轨对目标凝视成像的过程中,平台或载体的轨道运动与姿态变化、其它外部扰动以及系统的控制偏差,都将导致望远镜的光轴指向与成像目标之间产生相对运动,即指向偏差和抖动,从而引起目标像的模糊,导致成像质量的下降。稳像控制的作用就是控制望远镜光轴指向,抑制各种因素对指向的干扰,实现望远镜对期望目标的精确指向和跟踪。
     借鉴目前国际上空间望远镜项目中以类似机械臂的机构作为望远镜一级稳像控制的新构想,本文以永磁同步电机(PMSM)直驱的臂式机构作为空间望远镜的稳像控制,围绕空间望远镜的高精度稳像控制技术,分析了影响稳像系统控制精度的主要因素,对基于臂式机构的稳像系统的运动学特性与稳定机理、单轴系统的动力学特性、抗干扰能力强的控制算法和控制策略等进行了深入的分析和探讨。
     对空间望远镜受平台或载体轨道运动与姿态变化的影响进行分析,给出了望远镜光轴的稳定方程。定义了在进行空间运动的分析时所涉及到的坐标系,分析了臂式机构在补偿外部干扰时的运动特性,建立了臂式机构逆运动学的数学模型,进行了相应的数学仿真分析;针对稳像控制系统惯性稳定的特点,进行了稳像系统的稳定机理分析,推导了基于陀螺稳定的稳像系统数学模型。
     以频域分析方法为基础,推导了单轴稳像控制系统的动力学方程,建立了单轴稳像控制系统的动力学模型。以此理论为基础,建立了稳像控制系统的角速度跟踪数学模型,在MATLAB/SIMULINK中搭建基于PI控制的稳像控制系统的速度跟踪仿真模型,得出了干扰项对控制系统性能的影响。
     针对系统轴系摩擦、电机齿槽力矩波动等控制系统内部扰动,在传统频域分析的基础上,提出了基于参考模型扰动观测器的扰动补偿控制方法和基于扩张状态观测器的控制方法,克服了系统内部摩擦和扰动力矩,提高了系统的控制精度。
     针对驱动电机在实际运行中的内部参数摄动问题,提出了基于自适应反步控制的速度跟踪策略,能够实现系统内部参数完全解耦,有效抑制了参数变化对系统动、静态的影响,实现了快速无超调响应,系统稳态精度高、速度响应平稳光滑,并具有很强的鲁棒性。
     在空间指向跟踪系统的原理样机中,分别对传统频率分析法中滞后校正、积分+超前校正、基于参考模型扰动观测器的积分+超前校正,以及基于扩张状态观测器的线性比例控制等控制方法进行了实验验证,对比几种控制方法的实验结果,对每个控制方法的控制性能进行了评价。
During the staring and imaging process of Space Telescope, relative motionbetween imaging system’s optical axis and the objective target, caused by orbit’smotions and attitude’s change of the platform or carrier, external disturbance, anddeviation of control system, namely optical axis declination and jitter, caused theimage of the target blurred, leads to imaging quality declination. The role of imagingstabilization control is controlling the pointing of the telescope’s optical axis,depressing various disturbances to optical axis, realizing precise pointing andtracking to the expected target.
     Refer to the new idea which is using a similar mechanism like the robotic armas the image stabilization control of the telescope in the project of the internationalspace telescope at present, this dissertation using the arm mechanism which is driveddirectly by the permanent magnet synchronous motor (PMSM), focuses on the highaccuracy of the control technology, the main factors which imply control accuracy ofstabilizing system are analysed, the motive characteristic and the stable characteristicof the imaging stabilization system, the dynamic of the single-axis system and thecontrol algorithm and strategy which have the strong ability of anti disturbance areanalyzed and discussed.
     The factors impacting the control of image stabilization control system is analyzed, the motor characteristics (inverse model) of arm agency compensating forthe disturbance which is bring in by spacecraft attitude stabilization system isanalyzed, the mathematical model is established, and the mathematical simulationanalysis is implied. Meanwhile, for the image stabilization control system inertia andstability characteristics, stable mechanism of image analysis system is carried out,the image stabilization system mathematical model base on gyro-stabilized isdeduced, and the gyro installation under this condition is given.
     The kinetics model of single-axis image stabilization control system isestablished, and the kinetics equation is deduced, then the impact of the disturbancesof spacecraft on optic axis of telescope is obtained. Mathematical model of thewhole single-axis stable image control system is investigated, and its angular speedtracking model is attained. The model for speed tracking of stable image controlsystem with PI control is studied in MATLAB/SIMULINK, and the impact ofdisturbances on the performance of control system is analysed.
     On the reference model of the disturbance compensation control method and thecontrol method based on extended state observer, better to overcome the systeminternal friction and disturbing moment, improve the control precision of the system.
     In view of the drive motor internal parameter perturbation problem in actualoperation, put forward the step of adaptive steppingback control speed trackingstrategy, can realize completely decoupled internal system parameters, andeffectively restrain the influence of parameter change on the system dynamic andstatic, has realized the fast response, no overshoot high steady precision, speedsteady and smooth, make the system have strong robustness.
     Based on the principle prototype to tracking system of space optical imagingsystem, respectively, to the traditional frequency analysis method in lead correctionwith integral, lag correction, disturbance observer based on the reference model oflead correction with integral, and based on the extended state observation of linearcontrol methods, such as proportional control experimental verification, and theseveral control methods of the experimental results are analyzed, the control performance of each control method is evaluated.
引文
[1] D. J. Eaton and L. Abramowicz-Reed. Acquisition, Pointing and TrackingPerformance of the Hubble Space Telescope Fine Guidance Sensors [C] SPIEConference on Acquisition, Tracking, and Pointing VI,1992,1697:236-250
    [2] S. M. Anandakrishnan, C. T. Connor, S. Lee, et al, Hubble Space TelescopeSolarArray Damper for Improving Control System Stability [J]
    [3] P. A. Lightsey,C. Atkinson,M. et al. Clampin. James Webb Space Telescope:large deployable cryogenic telescope in space [J]. SPIE Optical Engineering,2012,51:1-19
    [4] M. Werner, G. Fazio, G. Rieke. First Fruits of the Spitzer Space Telescope:Galactic and Solar System Studies. Annu. Rev. Astro. Astrophys.2006.44:269-321
    [5] P. A. Sabelhaus, D. Campbell, M. Clampin, et al. An Overview of the JamesWebb Space Telescope (JWST) Project [J]. Proceedings of SPIE Vol.5899:1-14
    [6] B. D. Seery. The James Webb Space Telescope (JWST): Hubble's Scientificand Technological Successor [J]. Proceedings of SPIE Vol.4850:170-178
    [7] G. Mosier, M. Femiano, K. Ha. Fine Pointing Control for a Next GenerationSpace Telescope [C]. SPIE Conference on Space Telescopes and InstrumentsV,1998,3356:1070-1077
    [8] M. Clampin. Overview of the James Webb Space Telescope Observatory [J].UV/Optical/IR Space Telescopes and Instruments: Innovative Technologiesand Concepts V. Proc. of SPIE Vol.8146,814605.
    [9] L. Feinberg, L. Cohen, B. Dean, et al. Space telescope design considerations[j]. SPIE. Optical Engineering.201251(1)
    [10]R. Brillhart, K. Napolitano. Aircraft Dynamics and Payload Interaction–SOFIA Telescope.[C]. Advanced Aerospace Applications, ConferenceProceedings of the Society for Experimental Mechanics Series4,2011,159-170
    [11]U. Sch nhoffa, P. Eisentriger, K. Wandner, et al. End-to-end Simulation ofthe Image Stabilityfor the Airborne Telescope SOFIA [C]. AirborneTelescope Systems, Proceedings of SPIE Vol.4014,2000:380-389
    [12]U Lampater, P Kease, R. Brewsterc, et al. Pointing Stability and ImageQuality of the SOFIA Airborne Telescope during Initial Science Missions [C].Integrated Modeling of Complex Optomechanical Systems. Proceedings ofSPIE Vol.8336,833608
    [13]K. Liua, C. Blaurockb, G. E. Mosiera. Pointing Control System Design andPerformance Evaluation of TPF Coronagraph [C]. Modeling and SystemsEngineering forAstronomy. Proceedings. of SPIE Vol.5497:437-448
    [14]M Postman, W B. Sparks, F Liu, et al. Using the ISS as a testbed to preparefor the next generation of space-based telescopes [C]. Space Telescopes andInstrumentation2012: Optical, Infrared, and Millimeter Wave Proceeding ofSPIE, Vol.8442,84421T.
    [15]J. Camp, S. Barthelmy, L. Blackburn, et al. Using ISS telescopes forelectromagnetic follow-up of gravitational wave detections of NS-NS andNS-BH mergers [J]. Springer ExpAstron (2013)36:505–522.
    [16]M. E. Giuliano, R. Rager. Leveraging Planning Tools to Demonstrate theFeasibility of the OpTIIX Public Outreach Mission
    [17]W. R. Oegerlea, L. D. Feinberga, L. R. Purves. ATLAST-9.2m: alarge-aperture deployable space telescope [J]. Space Telescopes andInstrumentation2010: Optical, Infrared, and Millimeter Wave, Proc. ofSPIEVol.7731,77312M
    [18]M Postman, T Brown, K Sembach, et al. Advanced TechnologyLarge-Aperture Space Telescope: science drivers and technologydevelopments [C]. SPIE of Optical Engineering51,011007
    [19]H.A. Talebi, R.V. Pate1, H. Asmer. Dynamic Modeling of Flexible-LinkManipulators using Neural Networks with Application to the SSRMS [C].Roceedings of the1998IEEE/RSJ International. Conference on IntelligentRobots and Systems Victoria, Canada1998:673-678
    [20]E. Freund, K. Hoffmann, J. Rossmann. Application of Automatic ActionPlanning for several work cells to the German ETS-VI1Space Roboticsexperiments [C]. Proceedings of the2000IEEE lntemational Conference onRobotics andAutomation San Francisco,2000:1239-1244
    [21]S Abiko, K Yoshida. On-line Parameter Identification of a Payload Handledby Flexible Based Manipulator [C]. Proceedings of2004IEEWRSJInternational Conference on Intelligent Robots and Systems, Sendal. Japan,2004:2930-2935
    [22]K. Belghith, R. Nkambou, F. Kabanza, et al. An Intelligent Simulator forTelerobotics Training [C]. IEEE TRANSACTIONS ON LEARNINGTECHNOLOGIES,2012,5(1):11-19
    [23]黄猛,张葆,丁亚林.国外机载光电平台的发展[J].航空制造技术,2008(9):70-71.
    [24]熊经武.我国无人机载光电侦察平台现状和发展.中科院长春光机所内部报告.2000
    [25]甄云卉,路平.无人机相关技术与发展趋势[J].兵工自动化,2009,28(1):14-16.
    [26]余常彬,潘得彬,卞洪林.舰用光电跟踪仪的现状和发展方向[J].舰船光学,1997,2:19-23
    [27]R. Kristiansen, P. J. Nicklasson, J. T. Gravdahl. Satellite attitude control byquaternion-based backstepping [J]. IEEE Transactions on Control SystemsTechnology,2009,17(1):227-232
    [28]王凤英.船载电视经纬仪自稳定问题研究[D]:[硕士学位论文],大连:大连海事大学,2005
    [29]冯寒亮,韩锋,张平.美国海军舰载高能激光武器[J].激光与光电子学进展,2006(7):41-45
    [30]马锐,马轶鸥.舰载激光武器的研制计划与发展动向[J].船舶电子工程,2008,28(11):30-3
    [31]王苏.舰载激光武器高精度稳定平台系统研究[D]:[硕士学位论文].哈尔滨:哈尔滨工程大学硕士论文,2008
    [32]C. Chen. The feedforward friction compensation of linear motor using geneticlearning algorithm[J].The International Fedration of Automatic Control. Seoul,Korea,2008:15696-1570
    [33]C. C. Machado, C, P, Gomes, A. L. Bortoli, et al. Adaptive neuro-fuzzyfrietion compensation mechanism to robotic actuators [J]. The SeventhInternational Conference on Intelligent Systems Design and Application,2007:581-586
    [34]L.Mostefai, M.Denai, Y Hori. Friction compensation in servo systems using alocal control design approach [J]. The International Fedration of AutomatieControl. Seoul, Korea,2008:1772-1777
    [35]CRAIG T J, ROBERT D L. Experimental identification of friction and itscompensation in precise, position controlled mechanisms [J]. IEEE Trans. onIndustryApplications,1992,28(6):1392-1398.
    [36]GONZALEZ J J, WIDMANN G R. A new model for nonlinear frictioncompensation in the force control of robot manipulators [C]. IEEEInternational Conference on ControlApplications,1997:201-203
    [37]C.C. de Wit, H.Olsson, K.J.Astrom, et al. A new model for control of systemwith friction [J]. IEEE Transactions on Automatie Control,1995,40(3):419-425
    [38]王忠山,王毅,苏宝库.一种精密转台系统自适应摩擦补偿方法[J].华南理工大学学报(自然科学版),2007,35(9):55-59
    [39]H Kwon, S Oh, J Lee. A modeling of frctional contact for haptic display [J].International Conference on Control, Automation and Systems,2007:1116-1119
    [40]X Zhang, Q Jia, H Sun, et al. Adaptive control of manipulator flexible-jointwith friction compensation using LuGre model [J].3rd IEEE Conference onIndustrial Electronies andApplieations,2008:1234-1239
    [41]C. C. WIT, H. OLSSON, K. J. ASTROM, et al. A new model for control ofsystems with friction [J]. IEEE Trans. On AutomaticControl,1995,40(3):419-424
    [42]H. Du,.S. S. Nair. Modeling and Compensation of Low-Velocity Friction withBounds [J]. IEEE Transaction on Control Systems Technology1999,7(1):110-121
    [43]J. Amin. Implementation of A Frietion Estimation and CompensationTechnique [J]. IEEE Control Systems,1997,8:71-76
    [44]B. Bona, M. Indri. Friction compensation in robotics: an overview[C].Proceedings of the44thIEEE Conference of Decision and Control. Seville,SPain: IEEE,2005:4360-4367
    [45]Y. Zhu. P. Pagilla, Static and dynamic friction compensation in trajectorytraeking control of robots [C]. Proceedings of IEEE International Conferenceon Robotics andAutomation, Washington, IEEE,2002:2644-2649
    [46]M. IWASAKI, T SHIBATA, N MATSUI. Disturbance-observer-basednonlinear friction compensationin table drive system [J]. IEEE Trans.onMechatronics,1999,4(1):3-8.
    [47]克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法[J].哈尔滨工业大学学报,2003,35(5):536-540
    [48]K. Tan, S. HUANG, T. LEE. Robust adaptive numerical compensation forfriction and force ripple impermanent-magnet lineate motors [J], IEEETrans.On Magneties,2002,38(l):221-228
    [49]史永丽,侯朝祯.基于自抗扰控制的伺服系统摩擦补偿研究[J].计算机工程与应用,2007,43(29):201-203
    [50]R. R. SELMIC, F. L. LEWIS. Neural-network approximation of piecewisecontinuous functions: application to friction compensation [J]. IEEE Trans. onNeural Networks,2002,13(3):745-751.
    [51]王永富,柴天佑.一种补偿动态摩擦的自适应模糊控制方法研究[J].中国电机工程学报,2005,25,(2):139-143
    [52]郭立东.舰载激光武器稳定平台控制技术研究[D]:[博士学位论文].哈尔滨:哈尔滨工程大学,2010
    [53]D. Xie, J. Yuan, H.Yang. STABILIZATION OF LINE-OF-SIGHT FORAIRBORNE O-E TRACKING AND IMAGING SYSTEM [A]. SPIE. Vol.3365,1998:191-201
    [54]赵长德,徐力.用于瞄准线稳定和跟踪的计算机控制系统[J].电光与控制,1997,3:20-25
    [55]姬伟,李奇.陀螺稳定平台伺服系统非线性特性补偿控制[J].电气传动,2005,25(7):31-34
    [56]毕永利.多框架光电平台控制技术研究[D]:[博士学位论文].长春:中国科学院长春光学机精密机械与物理研究所,2003
    [57]张智勇.光电稳定伺服机构的关键测控问题研究[D]:[博士学位论文].长沙:国防科技大学,2006
    [58]骆顺奇.光电桅杆瞄准稳定最优控制系统[J].舰船光学,1999,2:1-4
    [59]黄金柱,段宝岩,黄进.LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用.2008,25(6):990-994
    [60]于爽,付庄,闫维新,等.基于干扰观测器的惯性平台摩擦补偿方法[J].哈尔滨工业大学学报,2008,40(11):1830-1833
    [61]王忠山,苏宝库,王毅.基于观测器/滤波器结构的高精度转台自适应摩擦补偿[J].南京航空航天大学学报,2008,25(2):113-120
    [62]王忠山,王毅,苏宝库.精密转台系统非线性动态自适应控制器设计[J].航空精密制造技术,2008,44(2):20-24
    [63]牛建军,付永领,刘和松.高精确度飞行仿真转台内框控制摩擦补偿研究[J].电机与控制学报,2008,12(9):576-579
    [64]王翔,马瑞卿,吉攀攀.基于模糊PI控制的PMSM位置伺服系统仿真[J].微电机,2010,43(3):52-55.
    [65]张池.永磁同步电机模糊控制方法研究[J].武汉工业学院学报,2011,30(1):63-66.
    [66]I.D.朗道.自适应控制[M].北京:国防工业出版社,1985.1-22.
    [67]韩京清.自抗扰控制技术——估计补偿不确定因素的控制技术[M].北京:国防工业出版社
    [68]徐波,沈海峰.含有不确定参数的用词同步电机位置自适应控制[J].电机与控制学报,2006,10(5):482-486.
    [69]王家骐.光学仪器总体设计.长春光机所研究生内部教材.2003
    [70]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学工程.1989,3:1-41
    [71]王毅,苏宝库.高精度伺服系统的非线性校正[J].哈尔滨工业大学学报.2001,33(3):406-409
    [72]J. Hilkert. Inertially stabilized platform technology [J]. IEEE Control SystemsMagazine,2008,28(1):26-46
    [73]J. J. Ortega. Gunfire performance of stabilized electro-optical sights [C]. SPIEConference on Acquisition, Tracking and Pointing XII,1999,3692:74-83
    [74]C. J. Kempf, S. Kobayashi.Disturbance Observer and Feedforward Design forHigh-Speed Direct-Drive Positioning Table. IEEE Transactions on ControlSystems Technology,1999,7:513-526
    [75]J. W. Gilbart, G. C. Winston. Adaptive compensation for an Optical trackingtelescope [J].Automatica,1974,10:125-131
    [76]S.N.Huang, K.K.Tan, T.H.Lee. Adaptive Friction Compensation Using NeuralNetwork Approximations[J]. IEEE TRANSACTIONS ON SYSTEMS, MAN,AND CYBERNETICS,2000,30(4):551-557
    [77]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52
    [78]黄进,邵明贤,段宝岩.大射电望远镜舱索伺服系统的自适应滑模控制[J].控制与决策.2007,22(6):647-651
    [79]周旺平,徐欣圻.大型天文光学望远镜超低速跟踪控制[J].光电工程,2007,34(11):1-4
    [80]汪达兴,杜福嘉.大型天文望远镜摩擦传动系统低速特性的研究[J].光学精密工程,2006,14(2):274-278
    [81]陈娟,张淑梅,黄艳秋,等.电机波动力矩的重复学习控制补偿[J].光学精密工程,2003,11(4):390-393
    [82]闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55
    [83]黄浦,葛文奇,李友一等.航空相机前向像移补偿的线性自抗扰控制[J].光学精密工程,2011,19(4):812-819
    [84]孙凯.自抗扰控制策略在永磁同步电动机伺服系统中的应用研究与实现[D]:[博士学位论文].天津:天津大学,2007
    [85]王新华,陈增强,袁著祉.基于扩张观测器的非线性不确定系统输出跟踪[J].控制与决策,2004,19(10):1113-1116
    [86]胡寿松.自动控制原理(第四版)[M].北京:国防工业出版社,2001
    [87]王家军,赵光宙,齐冬莲.反推式控制在水磁同步电动机速度跟踪控制中的应用.中国电机工程学报,2004,24(8):95-98
    [88]刘金琨.先进PID控制MATLAB仿真[M].第三版.北京:电子工业出版社.
    [89]王广雄,何朕.控制系统设计[M].北京:清华大学出版社,2008
    [90]徐湘元.自适应控制理论[M].北京:电子工业出版社.2007
    [91]George Ellis.控制系统设计指南(第三版)[M].北京:电子工业出版社.2006
    [92]陈伯时.电力拖动自动控制系统(第二版)[M].北京:机械工业出版社.2003
    [93]韩京清.自抗扰控制器及其应用[J].控制与决策,1998,l3(1):19-23.
    [94]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
    [95]陈杰,勒添絮,白永强.基于扩展状态观测器的变结构控制及其应用[J].北京理工大学学报,2009,29(4):318-322
    [96]刘兴堂.现代辨识工程[M].国防工业出版社.2006
    [97]侯媛彬,汪梅,王立琦等.系统辨识及其MATLAB仿真[M].北京,科学出版社,2004.
    [98]Karl J.Astrom, Bjorn Wittenmark.计算机控制系统——原理与设计
    [M].第三版,周兆英等译.北京,电子工业出版社,2001.4.
    [99]陈宗雨,王有庆,李从心.基于模型参考自适应滑模控制的直线电机速度环研究[J].电机与控制学报.2006,10(2):174-178
    [100]张荣辉.自主引导载运工具导航技术与先进控制策略的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2009
    [101]刘立峰.高速机械手非线性自适应逆控制研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2009
    [102]侯利民.永磁同步电机传动系统的几类非线性控制策略研究及其调速系统的实现[D]:[博士学位论文].沈阳:东北大学,2010
    [103]宋彦.伺服系统提高速度平稳度的关键技术研究与实现[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010
    [104]陈娟.伺服系统低速特性和抖动补偿研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2001
    [105]张艳.提高舰载光电设备跟踪精度的关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2013
    [106]董岩.基于神经网络的机载三轴稳定平台控制系统算法应用研究[D]:
    [博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2011
    [107]王建立.光电经纬仪电视跟踪、捕获快速运动目标技术的研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2002
    [108]方强,马杰,毕运波,等.基于扰动观测器的电动负载模拟器控制系统设计[J].浙江大学学报(工学版),2009,43(11):1958-1964
    [109]张志远,罗国富.舰船姿态坐标变换及稳定补偿分析[J].舰船科学技术,2009,31(4):34-40
    [110]罗护,范大鹏,张智勇,等.两轴陀螺稳定系统中陀螺安装的几种方法[J].兵工学报,2005,26(3):426-428
    [111]李嘉全,丁策,孔德杰,等.基于速度信号的扰动观测器及在光电稳定平台的应用[J].光学精密工程,2011,19(5):998-1004
    [112]张彪,赵克定,李阁强.被动力伺服系统摩擦非线性控制[J].吉林大学学报(工学版),2008,38(6):1348-1353
    [113]孔祥臻,王勇,蒋守勇.基于Stribeck模型的摩擦颤振补偿[J].机械工程学报,2010,46(5):68-73
    [114]张锦江,陈兴林,冯汝鹏.基于摩擦自适应补偿的转台变结构控制器设计[J].哈尔滨工业大学学报,2000,32(4):92-95
    [115]刘栋良.永磁同步电机伺服系统非线性控制策略的研究[D]:[博士学位论文].杭州:浙江大学,2005
    [116]关丽荣.基于反推技术的永磁直线同步电机控制策略研究[D]:[博士学位论文].沈阳:沈阳工业大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700