用户名: 密码: 验证码:
视觉感知模型与编码算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉感知与编码是神经计算科学研究的基本问题之一,其主要任务是以神经生理学和认知科学的研究成果为基础,模拟人类视觉信息处理的神经模式,从计算的角度研究新的计算原理和视觉信息处理系统。视觉信息处理机制和计算原理的研究不仅对揭示神经计算原理、建立新型计算模型具有重要的理论意义,而且对推动新型信息技术的发展,如人工视觉系统、失明患者的视觉功能修复、机器认知、新型人机交互模式等也具有重要而积极的作用。另外,在模式识别、身份验证、安全监控、智能的人机交互界面等领域也有广泛的应用前景。
     本文从稀疏编码的思想出发,以自然图像或序列作为训练数据,学习初级视皮层中简单细胞和复杂细胞的时空感受野及其自组织拓扑图,进而在较高级视皮层层次构建视觉感知模型来感知外界图像刺激中的内容信息、平移、旋转、缩放等运动和变换信息。本文的主要贡献和创新点体现在以下几个方面:
     为表征自然图像的统计特性,引入独立分量分析方法,以线性生成模型作为表征模型,从自然图像中学习图像基函数,这些基函数具有局部化、朝向性及带通滤波性,与神经生理实验发现的初级视皮层简单细胞和复杂细胞的感受野特征类似。由此得到的独立分量系数可作为神经元的响应,其概率分布满足稀疏性和超高斯分布,通过引入相邻神经元响应的二阶相关性,推导出基于自然梯度的自组织学习算法NGTICA,从自然图像中学习得到简单细胞感受野的空间拓扑结构。
     针对提取时空特征问题,提出一个基于视皮层不变性表示的时空特征提取模型。对NGTICA学习算法进行扩展,得到适用于该模型的时空基函数学习算法STICA。该模型可从具有时空结构的自然图像序列和视频序列中提取相应的平移、旋转、尺度变化、视角变化等时空特征。进一步研究了以这些时空特征作为复杂细胞感受野时,神经元的响应具有稀疏性和超高斯性。
     为感知外界刺激中的内容和平移运动信息,我们对视觉系统中的what和where通路建模,提出了一个三层的内容与平移运动感知模型,并给出内容感知算法OPA和平移感知算法TPA。初步的实验结果表明,用理想刺激加入不同噪声生成外界刺激,该模型可以感知到其中的朝向信息及平移运动方向和运动速度等。提出的感知模型及感知算法具有良好的鲁棒性。
     提出一个旋转运动感知模型,用于解决刺激序列中的旋转变换信息感知问题。以神经元响应的相关度作为不变性衡量指标,提出了旋转运动感知算法RPA。通过深入研究,我们把该模型提升为一个运动感知的泛化模型。当给定不同的运动时空基函数作为神经元的感受野,该泛化模型就可以特化为感知某种运动信息的模型。
     人脸视角估计是人脸识别任务中的一个重要预处理步骤。为解决人脸视角估计问题,我们从视觉感知机理出发,提出一个全新的基于独立分量分析的人脸视角感知模型。首先将STICA学习算法应用到多视角人脸数据集,得到多视角人脸基函数,作为神经元感受野。应用神经元发放率统计方法,提出人脸视角感知算法,并得到较好的感知实验结果。对神经元的响应进一步分析发现,对不同视角的人脸刺激,神经元的响应在高维空间中具有流形结构。这一结果为感知算法的成功应用奠定了良好的理论基础。考虑到人脸图像受光照、表情、视角、年龄等多种因素的影响,我们用张量分解方法同时提取人脸图像中的多因子表征,进而构建一个基于张量分解的人脸视角感知模型。以张量基空间表征与视角因子的相关性作为度量指标,提出了相应的人脸视角估计算法,得到的结果优于基于独立分量分析的方法。
Visual perception and coding is one of basic problems in the field of computationalneuroscience. Its objective focuses on developing novel principles of neurocomputing andsystems of visual information processing, by using the mechanism of visual cortex basedon the achievements from neurophysiology and cognition science. Study on mechanism ofvisual information processing and computational principle is of theoretical significance innot only revealing neural computing mechanism and developing novel computing models,but also promoting development of new architectures for information technology, such asartificial vision system, vision rehabilitation, machine cognition, and novel human-computerinterface. Moreover, It has a wide range of applications from pattern recognition, identityvalidation, safety surveillance, to intelligent human-computer interfaces.
     Based on sparse coding strategy, this paper investigates general computational frame-work for visual perception, including learning from image sequences the self-organized mapsof receptive fields of simple and complex cells in the primary visual cortex, constructinghierachically perceptual models for perceiving objects in stimuli, transformations such astranslation, rotation, scaling, and motions. Main contributions of this dissertation are listedas follows.
     In order to represent statistical characteristics of natural scenes, we apply independentcomponent analysis (ICA) algorithm on the natural image training data to basis functions,which are localized, oriented, and bandpass, resembling the receptive fileds of simple cells inthe primary visual cortex founded in the neurophysiological experiments. The correspond-ing coefficients of independent components are considered as the neuronal responses thatare consonant with sparse and supergaussian probability distribution. By the second-ordercorrelation between neighboring responses, we derive the self-organized learning algorithmbased on Natural Gradient, called NGTICA, which is able to learn spatio-topological mapsof receptive fields of simple cells from natural scenes.
     To extract spatio-temporal features, we propose a model based on invariance represen-tation in the visual cortex. By extending the NGTICA algorithm, we obtain STICA algo-rithm adapted to the model for extracting spatio-temporal features from image sequences and videos. These features re?ect certain invariance properties, such as translation, rotation,scaling, and view angle. Moreover, we elucidate the sparse and supergauss distribution ofresponses of complex cells when these spatio-temporal features act as the receptive fields ofneurons.
     For perceiving objects and translational motion of stimuli, we model the visual path-ways of’what’and’where’. We propose a three-layer perceptual networks and two cor-responding algorithms, OPA and TPA, are developed for objects and translational motionperception respectively. The computer experiments show that the proposed model and per-ception algorithms are able to perceive objects and translational motions with a high accuracyand strong robustness against additive noise.
     We propose a rotation perception model for perceiving rotational transformation fromsequences of stimuli and an algorithm, called RPA, is developed by taking the correlationbetween responses as an invariant measure. Further, we propose a generalized model whichcan be used to perceive certain type of motion by using the corresponding receptive fields inthe model.
     For the head pose estimation problem, one of important preprocessing in face recogni-tion, we propose a novel ICA-based model inspired by the mechanism of visual perception.The receptive fields of neurons are learned from multi-view facial images by STICA. Wefurther propose a corresponding perception algorithm based on neuronal firing rate. Com-puter experiments are given to verify the performance of the proposed algorithm. Furtherexperiment data analysis shows that responses are described as a manifold in the high-dimensionality subspace spanned by the multi-view bases when neurons are stimulated bydifferent view facial images. This exciting result establishes the reasonable fundamental forthe perception algorithm. Taking into account facial images in?uenced by lighting, expres-sion, view, and age, we apply tensor factorization to extracting multi-factor representationfor faces and propose a TF-based model for facial view estimation and an algorithm with themeasure of correlation between tensor representation and view factor. Computer simulationresults verify that the TF-based model provides better results than the ICA-based one.
引文
[1] M. Abeles. Local cortical Circuits. Berlin: Springer-Verlag, 1982.
    [2] E.D. Adrian. The impulses produced by sensory nerve endings. Journal of Physiology, Part I,61:49–72, 1926.
    [3] M. Alex, O. Vasilescu, and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces.Lecture Notes in Computer Science, 2350:447–460, 2002.
    [4] M. Alex O., Vasilescu, and D. Terzopoulos. Multilinear independent components analysis. IEEEComputer Society Conference on Computer Vision and Pattern Recognition, 1:547–553, 2005.
    [5] S. Amari and J.F. Cardoso. Blind source separation–semi-parametric statistical approach. IEEETransaction on Signal Processing, 45(11):2692–2700, 1997.
    [6] S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276,1998.
    [7] F. Attneave. Some informational aspects of visual perception. Psychological Review, 61:183–193,1954.
    [8] A. Azarbayejani, T. Starner, B. Horowitz, and A. Pentland. Visually controlled graphics. IEEETransactions on PAMI, 15(6):602–605, 1993.
    [9] S. Baluja, M. Sahami, and H.A. Rowley. Efficient face orientation discrimination. InternationalConference on Image Processing, 1.
    [10] H.B. Barlow. Possible principles underlying the transformations of sensory messages. SensoryCommunication, pages 217–234, 1961.
    [11] H.B. Barlow. Single units and sensation: a neuron doctrine for perceptual psychology? Perception,1:371–394, 1972.
    [12] H.B. Barlow. Redundancy reduction revisited. Network: Computation in Neural Systems, 12:241–253, 2001.
    [13] M.F. Bear,B.W. Connors , and M.A. Paradiso. Neuroscience: Exploring the Brain, 2nd. LippincottWilliams & Wilkins, 2001.
    [14] J.A. Bednar and R. Miikkulainen. Learning innate face preferences. Neural Computation,15(7):1525–1557, 2003.
    [15] J.A. Bednar and R. Miikkulainen. Joint maps for orientation, eye, and direction preference in aself-organizing model of v1. Neurocomputing, 69(10-12):1272–1276, 2006.
    [16] A.J. Bell and T.J. Sejnowski. An information maximization approach to blind separation and blinddeconvolution. Neural Computation, 7(6):1129–1159, 1995.
    [17] M.S. Bartlett, Movellan J.R., and T.J. Sejnowski. Face recognition by independent componentanalysis. IEEE Transaction on Neural Networks, 13(6):1450–1464, 2002.
    [18] A.J. Bell and T.J. Sejnowski. The”independent components”of natural scenes are edge filters.Vision Research, 37(23):3327–3338, 1997.
    [19] R Bhatt, G Carpenter, and S. Grossberg. Texture segregation by visual cortex: Perceptual grouping,attention, and learning. Technical Report CAS/CNS-TR-2006-007, Boston University, 2007.
    [20] I. Biederman and E.E. Cooper. Size invariance in visual object priming. Journal of ExperimentalPsychology: Human Perception and Performance, 18(1):121–133, 1992.
    [21] G. Bi and M. Poo. Synaptic modification by corelated activity: Hebb’s postulate revisited. AnnualReview Neuroscience, 24:139–166, 2001.
    [22] R. Bro. Parafac: tutorial and applications. Chemometrics and Intelligent Laboratory Systems,38(2):149–171, 1997.
    [23] J.F. Cardoso and B.H. Laheld. Equivariant adaptive source separation. IEEE transaction on SignalProcessing, 44(12):3017–3030, 1996.
    [24] L. Chen, S. Zhang, and M.V. Srinivasan. Global perception in small brains: Topological patternrecognition in honey bees, volume 100(11). 2003.
    [25] L.B. Chen, L. Zhang, Y.X. Hu, M.J. Li, and H.J. Zhang. Head pose estimation using fisher manifoldlearning. Proceedings of the IEEE International Workshop on Analysis and Modeling of Faces andGestures, pages 203–207, 2003.
    [26] Q. Chen, J. Yao, and W.K. Cham. 3d model-based pose invariant face recognition from multipleviews. IET Computer Vision, pages 25–34, 2007.
    [27] A. Cichocki and S. Amari. Adaptive blind signal and image processing. Wiley, May 2002.
    [28] P. Comon. Independent component analysis-a new concept? Signal Processing, 36(3):287–314,1994.
    [29] T. Cover and J. Thomas. Elements of Inofrmation Theory. John Wiley & Sons, New York, 1991.
    [30] Y. Dan, J.J. Atick, and R.C. Reid. Efficient coding of natural scenes in the lateral geniculatenucleus: experimental test of a computational theory. Journal of Neuroscience, 16:3351–3362,1996.
    [31] J.G Daugman. Entropy reduction and decorrelation in visual coding by oriented neural receptivefields. IEEE transaction on Biomedical Engineering, 36(1):107–114, 1989.
    [32] G.C. DeAngelis, I. Ohzawa, and R.D. Freeman. Spatiotemporal organization of simple-cell recep-tive fields in the cat’s striate cortex. i. general characteristics and postnatal development. Journalof Neurophysiology, 69:1091–1117, 1993.
    [33] R.L. DeValois, D.G. Albrecht, and L.G. Thorell. Spatial frequency selectivity of cells in macaquevisual cortex. Vision Research, 22:545–559, 1982.
    [34] D.W. Dong and J.J. Atick. Statistics of natural time-varying images. Network: Computation inNeural Systems, 6:345–358, 1995.
    [35] T. Feng, S.Z. Li, H.Y. Shum, and H.J. Zhang. Local non-negative matrix factorization as a visualrepresentation. Proceedings of the 2nd International Conference on Development and Learning,pages 178–183, 2002.
    [36] D. Ferster, S. Chung, and H. Wheat. Orientation selectivity of thalamic input to simple cells of catvisual cortex. Nature, 380:249–252, 1996.
    [37] D.J. Field. Relations between the statistics of natural images and the response properties of corticalcells. Journal of Optical Society, A4(12):2379–2394, 1987.
    [38] P. Foldiak. Dynamical cell assembly hypothesis―theoretical possibility of spatio-temporal codingin the cortex. Neural Networks, 9(8):1303–1350, 1996.
    [39] K. Fukushima, S. Miyake, and T. Ito. Neocognitron: A neural network model for mechanism ofvisual pattern recognition. IEEE Trans on Systems, Man, and Cybernetics, pages 526–551, 1983.
    [40] W. Gao, B. Cao, S.G. Shan, D.L. Zhou, X.H. Zhang, and D.B. Zhao. The cas-peal large-scalechinese face database and evaluation protocols. Technical Report No. JDL TR 04 FR 001, JointResearch & Development Laboratory, CAS, 2004.
    [41] C.G. Gross. Genealogy of the’grandmother cell’. Neuroscientist, 8(5):512–518, 2002.
    [42] D.B. Grimes and R.P.N. Rao. Bilinear sparse coding for invariant vision. Neural Computation,17(11):47–73, 2005.
    [43] S. Grossberg and S. Hong. A neural model of surface perception: Lightness, anchoring, and filling-in. Spatial Vision, 19(2-4):263–321, 2006.
    [44] S. Grossberg, L. Kuhlmann, and E. Mingolla. A neural model of 3d shape-from-texture: Multiple-scale filtering, boundary grouping, and surface filling-in. Vision Research, 47(5):634–672, 2007.
    [45] Y. Guo, G. Poulton, J. Li, and M. Hedley. Soft margin adaboost for face pose classification. IEEEInternational Conference on Acoustics, Speech, and Signal Processing, 3:221–224, 2003.
    [46] D.O. Hebb. The organization of behavior neurophysiological theory. New York: Wiley, 1949.
    [47] P.O. Hoyer and A. Hyva¨rinen. A multi-layer sparse coding network learns contour coding fromnatural image. Vision Research, 42(12):1593–1605, 2002.
    [48] J. Huang, X. Shao, and H. Wechsler. Face pose discrimination using support vector machines(svm). Proceedings of Fourteenth International Conference on Pattern Recognition, 1:154–156,1998.
    [49] D.H. Hubel and T.N. Wiesel. Receptive fields of single neurones in the cat’s striate cortex. Ameri-can Journal of Physiology, 148(3):574–591, 1959.
    [50] D.H. Hubel and T.N. Wiesel. Receptive fields, binocular interaction and functional architecture inthe cat’s visual cortex. American Journal of Physiology, 160(1):106–154, 1962.
    [51] D.H. Hubel and T.N. Wiesel. Receptive fields and functional architecture of monkey striate cortex.Journal of Neurophysiology, 195:215–243, 1968.
    [52] M. Hubener, D. Shoham, A. Grinvald, and T. Bonhoeffer. Spatial relationships among three colum-nar systems in cat area 17. Journal of Neuroscience, 17(23):9270–9284, 1997.
    [53] Y.X. Hu, L.B Chen, Y. Zhou, and H.J. Zhang. Estimating face pose by facial asymmetry andgeometry. Proceedings of Automatic Face and Gesture Recognition, pages 651–656, 2004.
    [54] A. Hyva¨rinen and P. Hoyer. Emergence of phase and shift invariant features by decomposition ofnatural images into independent feature subspaces. Neural Computation, 12(7):1705–1720, 2000.
    [55] A. Hyva¨rinen and P. Hoyer. A two-layer sparse coding model learns simple and complex cellreceptive fields and topography from natural images. Vision Research, 41(18):2413–2423, 2001.
    [56] A. Hyva¨rinen, J. Karhunen, and E. Oja. Independent Component Analysis. New York: Wiley,2001.
    [57] A. Hyva¨rinen, P. Hoyer, and Inki. Topographic independent component analysis. Neural Compu-tation, 13:1525–1558, 2001.
    [58] C. Jutten and J. Herault. Independent component analysis versus pca. Proceeding of EuropeanSignal Processing Conference 1988, pages 287–314, 1988.
    [59] D.C. Knill and W. Richards. Perception as Bayesian Inference. Cambridge, UK: CambridgeUniversity Press, 1996.
    [60] T. Kohonen. The adaptive-subspace som (assom) and its use for the implementation of invariantfeature detection. International Conference on Artificial Neural Networks, 1:3–10, 1995.
    [61] V. Kruger and G. Sommer. Efficient head pose estimation with gabor wavelet networks. Image andVision Computing, 20:665–672, 2002.
    [62] S.W. Kuf?er. Discharge patterns and functional organiation of mammalian retina. Journal ofNeurophysiology, 23:37–68, 1953.
    [63] S.Y. Kung, K.I. Diamantaras, and J.S. Taur. Neural Networks for Extracting Pure/ Constrained/Oriented Principal Components. SVD and Signal Processing II, 1991.
    [64] D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative matrix factorization.Nature, 401(6755):788–91, 1999.
    [65] D.D. Lee and H.S. Seung. Algorithms for non-negative matrix factorization. Advances in NeuralInformation Processing Systems(NIPS2000), 13:556–562, 2001.
    [66] M. Lewicki and T. Sejnowski. Coding time-varying signals using sparse, shift-invariant represen-tations. Advances in Neural Information Processing Systems, 11:815–821, 1999.
    [67] M.S. Lewicki and B.A. Olshausen. Probabilistic framework for the adaptation and comparison ofimage codes. Optical Society of America, 16(7):1587–1601, 1999.
    [68] S.Z. Li, Q.D. Fu, L. Gu, B. Scholkopf, Y.M. Cheng, and H.J. Zhang. Kernel machine based learningfor multi-view face detection and pose estimation. International Conference of Computer Vision,2:674–679, 2001.
    [69] S.Z. Li, X.G. Lv, X.W. Hou, X.H. Peng, and Q.S. Cheng. Learning multi-view face subspacesand facial pose estimation using independent component analysis. IEEE Transactions on ImageProcessing, 14(6):705–712, 2005.
    [70] Y. Ma, Y. Konishi, K. Kinoshita, S. Lao, and M. Kawade. Sparse bayesian regression for head poseestimation. ICPR’06, 3:507–510, 2006.
    [71] B.P. Ma, W.C. Zhang, S.G. Shan, X.L. Chen, and W. Gao. Robust head pose estimation using lgbp.Proceeding of International Conference on Pattern Recognition, 2:512–515, 2006.
    [72] D. Marr and H.K. Nishihara. Representation and recognition of the spatial organization of threedimensional structure. Proceedings of the Royal Society of London B, 200:269–294, 1978.
    [73] A.M. Martinez and A.C. Kak. Pca versus lda. IEEE Transactions on Pattern Analysis and MachineIntelligence, 23(2):228–233, 2001.
    [74] S. McKenna and S. Gong. Real time face pose estimation. Real-Time Imaging, 4(5):333–347,1998.
    [75] H. Moon and M. Miller. Estimating facial pose from a sparse representation. International Con-ference on Image Processing, 1:75–78, 2004.
    [76] M. M?rup, L.K. Hansen, J. Parnas, and S.M. Arnfred. Decomposing the time-frequency represen-tation of EEG using non-negative matrix and multi-way factorization. Technical reports, 2006.
    [77] D. Navon. Forest befor trees: The precedence of global features in visual perception. CognitivePsychology, pages 353–383, 1977.
    [78] B.A. Olshausen, C.H. Anderson, and D.C. Van Essen. A neurobiological model of visual attentionand invariant pattern recognition based on dynamic routing of information. Journal of Neuro-science, 13(11):4700–4719, 1993.
    [79] B.A. Olshausen and D.J. Field. Emergence of simple-cell receptive field properties by learning asparse code for natural images. Nature, 381:607–609, 1996.
    [80] B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set: a strategy employedby v1? Vision Research, 37:3311–3325, 1997.
    [81] M.W. Oram, P. Foldiak, D.I. Perrett, and F. Sengpiel. The”ideal homunculus”: decoding neuralpopulation signals. Trends on Neuroscience, 21(6):259–265, 1998.
    [82] M. Osadchy, Y.Le, Cun, M.L. Miller. Synergistic face detection and pose estimation with energy-based models. Journal of Machine Learning Research, 8:1197–1215, 2007.
    [83] S.E. Palmer. Common region: A new principle of perceptual grouping. Cognitive Psychology,24:436–447, 1992.
    [84] J.C. Platt. Fastmap, metricmap, and landmark mds are all nystrom algorithms. pages261–268. Society for Artificial Intelligence and Statistics, 2005. (Available electronically athttp://www.gatsby.ucl.ac.uk/aistats/).
    [85] T. Poggio, V. Torre, and C. Koch. Computational vision and regularization theory. Nature,317:314–319, 1985.
    [86] T. Poggio and E. Bizzi. Generalization in vision and motor control. Nature, 431(7010):768–774,2004.
    [87] E.O. Postma, H.J. Van den Herik, and P.T.W. Hudson. Scan: A scalable neural model of convertattention. Neural Networks, 10(6):993–1015, 1997.
    [88] R. Rae and H. Ritter. Recognition of human head orientation based on artificial neural networks.IEEE transaction on Neural Network, 9(2):257–265, 1998.
    [89] B. Raytchev, I. Yoda, and K. Sakaue. Head pose estimation by nonlinear manifold learning. Inter-national Conference on Pattern Recognition, 4:462–466, 2004.
    [90] M.B. Reid, L. Spirkovska, and E. Ochoa. Simultaneous position, scale, and rotation invariantpattern classification using third-order neural networks. International Journal of Neural Networks-Research & Applications, 1(3):154–159, 1989.
    [91] M. Riesenhuber and T. Poggio. Models of object recognition. Nature Neuroscience, 2:1199–1204,2000.
    [92] Rodieck R.W. and Stone J.J. Analysis of receptive fields of cat retina ganglion cells. Journal ofNeurophysiology, 28:833–849, 1965.
    [93] E.T. Rolls and S.M. Stringer. Invariant global motion recognition in the dorsal visual system: aunifying theory. Neural Computation, 19(1):139–169, 2007.
    [94] E.T. Rolls and M.J. Tovee. Sparseness of the neuronal representation of stimuli in the primatetemporal visual cortex. Journal of Neurophysiology, 73:713–726, 1995.
    [95] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323–2326, 2000.
    [96] K. Sabine and L.G. Ungerleider. Mechanisms of visual attention in the human cortext. AnnualReview of Neuroscience, 23:315–341, 2000.
    [97] E. Salinas and L.F. Abbott. Invariant visual responses from attentional gain fields. Journal ofNeurophysiology, 77(6):3267–3272, 1997.
    [98] P. Sankaran, S. Gundimada, R.C. Tompkins, and V.K. Asari. Pose angle determination by face,eyes, and nose localization. CVPR’05, 3:161–161, 2005.
    [99] L.K. Saul and S.T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensionalmanifolds. Journal of Machine Learning Research, 4:119–155, 2003.
    [100] A. Schaaf and J.H. Hateren. Modelling the power spectra of natural images: statistics and infor-mation. Vision Research, 26(17):2759–2770, 1996.
    [101] T. Serre, L. Wolf, and T. Poggio. Object recognition with features inspired by visual cortex. CVPR2005, 2005.
    [102] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio Robust object recognition withcortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence,29(3):411–426, 2007.
    [103] J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for nonlineardimensionality reduction. Science, 290:2319–2323, 2000.
    [104] M. Turk and A. Pentland Eigenfaces for recognition. 3:71–86, 1991.
    [105] M.A. Turk and A.P. Pentland. Face recognition using eigenfaces. IEEE Computer Society Confer-ence on Computer Vision and Pattern Recognition, pages 586–591, 1991.
    [106] J.H. Van Hateren. Spatiotemporal contrast sensitivity of early vision. Vision Research, 33:257–267,1993.
    [107] J.H. Van Hateren and van der Schaaf. Independent component filters of natural images comparedwith simple cells in primary viusal cortex. Proceedings of the Royal Society of London SeriesB-Biological Sciences, 265:359–366, 1998.
    [108] J.H. Van Hateren and D.L. Ruderman. Independent component analysis of natural image sequencesyields spatio-temporal filters similar to simple cells in primary visual cortex. Proceedings of theRoyal Society of London Series B-Biological Sciences, 265(1412):2315–2320, 1998.
    [109] W.E. Vinje and J.L. Gallant Sparse coding and decorrelation in primary visual cortex during naturalvision. Science, 287:1273–1276, 2000.
    [110] M. Voit, K. Nickel, and R. Stiefelhagen. Multi-view head pose estimation using neural networks.The 2nd Canadian Conference on Computer and Robot Vision, pages 347–352, 2005.
    [111] P. Wang and Q. Ji. Multi-view and eye detection using discriminant features. Computer Vision andImage Understanding, 105:99–111, 2007.
    [112] Y. Wang,Y. Jia , C. Hu, and M. Turk Fisher non-negative matrix factorization for learning localfeatures. Asian Conference on Computer Vision, pages 806–811, 2004.
    [113] M. Weliky, J. Fiser, R.H. Hunt, and D.N. Wagner. Coding of natural scenes in primary visualcortex. Neuron, 37:703–718, 2003.
    [114] B. Willmore and D.J. Tolhurst. Characterizing the sparseness of neural codes. Network, 12:255–270, 2001.
    [115] Z. Yang, H. Ai, and T. Okamoto. Multi-view face pose classification by tree-structured classifier.International Conference on Image Processing, 2:358–361, 2005.
    [116] L. Zhang, A. Cichocki, and S. Amari. Natural gradient algorithm to blind separation of over-determined mixture with additive noises. IEEE Signal Processing Letters, 6(11):293–295, 1999.
    [117] L. Zhang, A. Cichocki, and S. Amari. Self-adaptive blind source separation based on activationfunction adaptation. IEEE Transactions on Neural Networks, 15(2):233–244, 2004.
    [118]田洁,陆惠民.入突触修饰非对称时窗的神经元感受野自组织模型.科学通报, 46(4):305–309, 2001.
    [119]陈岗.整合野对初级视皮层区神经元方位选择性的影响.中国科学院上海生命科学研究院神经科学研究所博士论文, 2005.
    [120]罗四维.视觉感知系统信息处理理论.电子工业出版社, 2006.
    [121] D. Marr.视觉计算理论.北京:科学出版社, 1988.
    [122]梅剑锋,张立明.一种新的视觉皮层简单细胞工作机制的模型.生物物理学报, 19(1):58–62,2003.
    [123] J.G. Nicholls.神经生物学:从神经元到脑.科学出版社,杨雄里译, 2005.
    [124]石志伟,史忠植.时间编码的计算模型.生理物理学报, S(22):110, 2006.
    [125]寿天德.神经信息处理的脑机制.上海科技教育出版社, 1997.
    [126]危辉.视觉初级皮层区超柱结构的自组织适应模型.浙江大学学报(工学版), 35(3):258–263,2001.
    [127]杨谦,齐翔林,汪云九.视觉皮层复杂细胞时空编码特性.生物物理学报, 16(2):280–287,2000.
    [128]杨谦,齐翔林,汪云九.视皮层v1区简单细胞的稀疏编码策略.计算物理, 18(2):143–146,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700