用户名: 密码: 验证码:
具有ICT性质的β-二酮及其金属有机配合物的光致发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们设计合成了具有ICT(Intramolecular Charge Transfer,分子内电荷转移跃迁)性质的β-二酮NDBM、NDP及其铕(Ⅲ)和铱(Ⅲ)配合物,并分别对其光致发光性质进行了研究。为了对比,我们同时还合成并研究了DBM和NBM及其铕(Ⅲ)和铱(Ⅲ)配合物。
     在研究Eu(NDBM)_3·3H_2O和Eu(NDP)_3·3H_2O体系时没有发现有电荷转移激发态参与的敏化稀土中心离子发光的过程,敏化中心离子是由三重态来完成的。我们研究的两个具有电荷转移激发态的分子NDBM和NDP的N原子上的电子容易分散到相邻的苯环上面,因此配体的能级较NBM和DBM有所降低。二甲氨基的引入使得NDBM和NDP的△E(~1ππ~*-~3ππ~*)太低,不利于系间窜越的发生,对提高Eu~(3+)荧光量子产率不利,故而Eu(NDBM)_3·3H_2O和Eu(NDP)_3·3H_2O的Eu~(3+)荧光量子产率很低;同时配体吸收的能量很大一部分被耗散在了CT荧光上。与Gd~(3+)和Eu~(3+)配位之后,NDBM和NDP的CT荧光量子产率显著降低。在溶液中,Eu(NDP)_3Phen·H_2O和Eu(NDBM)_3Phen的Eu~(3+)特征发射也很弱。在固体状态下,Eu(NDBM)_3·3H_2O和Eu(NDP)_3·3H_2O有很弱的Eu~(3+)的特征发射而没有配体的荧光了,Eu(NDBM)_3Phen也只有Eu~(3+)的特征发射,配体的荧光淬灭了。
     为了研究辅助配体分子内电荷转移跃迁和不同能级对于红色磷光铱(Ⅲ)配合物光致发光性能的影响,我们合成了Ir(DBQ)_2(LX)(LX=acac,DBM,NDBM,NBM,NDP)这五种三价铱配合物。通过测试我们发现所用辅助配体的能级均高于Ir(DBQ)_2部分的三重态能级,所以配合物的最低自旋禁阻激发态主要来自于Ir(DBQ)_2部分。在常温除氧的CH_2Cl_2溶液中,Ir(DBQ)_2(LX)(LX=DBM,NDBM,NBM,NDP)与Ir(DBQ)_2(acac)在红光区的最大发射波长620 nm很接近,同属磷光发射,磷光量子产率随着它们的辅助配体与Ir(DBQ)_2部分的三重态能级之差的降低而降低。当配合物受到激发时,辅助配体吸收能量被激发到单重态,由于存在着以铱(Ⅲ)为中心的旋轨耦合作用,使得系间窜越几率大大增加,辅助配体的荧光量子产率大大降低,形成的辅助配体三重态把能量传递给Ir(DBQ)_2部分,这使得在低温条件下也观测不到其磷光发射。
In order to study on PL properties,severalβ-diketone with ICT function and corresponding Eu(Ⅲ),Ir(Ⅲ) complexes have been designed and synthesized. DBM,NBM and their Eu(Ⅲ),Ir(Ⅲ) complexes also been investigated to show contrast.
     Photophysical studies demonstrated that no energy was migrated from the ICT excited state of the ligands to Eu~(3+),and that Eu~(3+) was sensitized by the triplet state. The triplet state energy level of NDBM and NDP decrease as the incorporation of the dimethylamino moiety into DBM and NBM respectively,which cause the conjugation system is enlarged.We concluded that the incorporation of the dimethylamino moiety affect the ISC of CDBM and further impaired the whole sensitization process. Quantum yields of Eu(NDBM)_3·3H_2O and Eu(NDP)_3·3H_2O are less than Eu(DBM)_3·2H_2O and Eu(NBM)_3·2H_2O.The ICT fluorescence quantum yields of NDBM and NDP decrease after coordinating with Gd~(3+) and Eu~(3+).In solution,the emission intensity of Eu~(3+) in Eu(NDP)_3Phen·H_2O and Eu(NDBM)_3Phen is still weak. There is no observable ligand emission in the solid state emission spectra in Eu(NDBM)_3Phen,Eu(NDBM)_3·3H_2O and Eu(NDP)_3·3H_2O,ICT fluorescence have been quenched in the solid state.
     In order to investigate effect of ICT and energy levels of ancillary ligands on red phosphorescent Iridium(Ⅲ) complexes,we synthesize Ir(DBQ)_2(LX)(LX=acac, DBM,NDBM,NBM,NDP).For all of the complexes discussed thus far,the triplet levels of the ligands lie above the energies of the C^N ligand and MLCT excited states.Thus,the luminescence is dominated by C^N and MLCT transitions.In degassed CH_2Cl_2 solution at room temperature,theλ_(max)/nm(emmision) of Ir(DBQ)_2(LX)(LX=DBM,NDBM,NBM,NDP) is about 620 nm.Phosphorescent quantum yields decrease as the triplet energy level differences between Ir(DBQ)_2 andβ-diketone decrease.Strong spin-orbit coupling of the Ir(Ⅲ) leads to efficient intersystem crossing of the singlet excited states to the triplet manifold,so the ICT fluorescence quantum yields of ancillary ligands decrease drastically.The energy transfer from triplet excited states of ancillary ligands to triplet energy level of Ir(DBQ)_2.
引文
[1]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京大学出版社.2001.155-158.
    [2]张若桦.稀土元素化学.天津科学技术出版社.1987.16-28.
    [3]Jean-Claude G.Bunzli and Claude Piguet.Taking advantage of luminescent lanthanide ions.Chem.Soc.Rev.,2005,34,1048-1077.
    [4]S.I.Klink,G.A.Hebbink,L.Grave,et al.Synergistic Complexation of Eu~(3+) by a Polydentate Ligand and a Bidentate Antenna to Obtain Ternary Complexes with High Luminescence Quantum Yields.J.Phys.Chem.A.,2002,106,3681-3689.
    [5]G.E.Buono-core and H.Li.Quenching of excited states by lanthanide ions and chelates in solution.Coord Chem.Rev.,1990,99,55-87.
    [6]F.J.Steemers,W.Verboom,David N.Reinhoudt,et al.New Sensitizer-Modified Calixarenes Enabling Near-UV Excitation of Complexed Luminescent Lanthanide Ions.J.Am.Chem.Soc.,1995,117,9408-9414.
    [7]F.Benetollo,G.Bombieri,K.K.Fonda,et al.Interaction of β-diketones with LaⅢ,EuⅢ and YⅢ complexes of the six-nitrogen-donor macrocyclic ligand C22H26N6 and crystal structure of[Eu(CH3COO){(C6H5CO)2CH}(C22H26N6)](CH3COO)6(H2O).Polyhedron.,1997,16,1907-1919.
    [8]G.F.de Sa,O.L.Malta,C.de Mello Donega,et al.Spectroscopic properties and design of highlyluminescent lanthanide coordination complexes.Coord.Chem.Rev.,2000,196,165-195.
    [9]M.H.V.Werts,R.T.F,Jukes,J.W.Verhoeven.The emission spectrum and the radiative lifetime of Eu~(3+) in luminescent lanthanide complexes.Phys.Chem.Chem.Phys.,2002,4,1542-1548.
    [10]H.K.Kim,N.S.Baek and H.K.Kim.Sensitized Emission of Luminescent Lanthanide Complexes Based on 4-Naphthalen-1-yl-Benzoic Acid Derivatives by a Charge-Transfer Process.ChemPhysChem.,2006,7,213-221.
    [11]Y.F.Yuan,T.Cardinaels,K.Lunstroot,et al.Rare-Earth Complexes of Ferrocene-Containing Ligands:Visible-Light Excitable Luminescent Materials. Inorg.Chem.,2007,46,9438-9449.
    [12]C.Yang,L.M.Fu,Y.Wang,et al.A Highly Luminescent Europium Complex Showing Visible-Light-Sensitized Red Emission:Direct Observation of the Singlet Pathway.Angew.Chem.,2004,116,5120-5123.
    [13]G.A.Crosby,J.N.Demas.The Measurement of Photoluminescence Quantum Yields.J.Phys.Chem.,1971,75,991-1024.
    [14]D.R.James,A.Siemiarczuk,William R.Ware.Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes.Rev.Sci.Instrum.,1992,63,1710-1716.
    [15]房喻,王辉.荧光寿命测定的现代方法与应用.化学通报,2001,10,631-636.
    [16]Z.Q.Bian,K.Z.Wang,L.P.Jin.Syntheses,spectroscopic and crystal structural studies of novel imidazo[4,5-f]1,10-phenanthroline derivatives and their Eu(Ⅲ)ternary complexes with dibenzoylmethane.Polyhedron.,2002,21,313-319.
    [17]F.R.Goncualves e Silva,O.L.Malta,C.Reinhard.Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Energy Transfer Mechanisms in the SmⅢ and YbⅢ Molecular Edifices.J.Phys.Chem.A.,2002,106,1670-1677.
    [18]Y.H.Kim,N.S.Back,H.K.Kim.Sensitized Emission of Luminescent Lanthanide Complexes Based on 4-Naphthalen-1-yl-Benzoic Acid Derivatives by a Charge-Transfer Process.ChemPhysChem.,2006,7,213-221.
    [19]D.B.Nie,Z.Q.Chen,Z.Q.Bian,et al.Energy transfer pathways in the carbazole functionalized β-diketonate europium complexes.New.J.Chem.,2007,31,1639-1646.
    [20]L.Liu,W.L.Li,Z.R.Hong,etal.Europium complexes as emitters in organic electroluminescent devices.Synth.Met.,1997,91,267-269.
    [21]C.J.Liang,D.Zhao,etal.Improved performance of electroluminescent devices based on an europium complex.Appl.Phys.Lett.,2000,76,67-69.
    [22]L.Huang,K.Z.Wang,C.H.Huang,et al.Bright red electroluminescent devices using novel second-ligand-contained europium complexes as emitting layers.J.Mater.Chem.,2001,11,790-793.
    [23] P. P. Sun, J.P. Duan, C. H. Cheng. Synthesis of New Europium Complexes and Their Application in Electroluminescent Devices. Adv. Funct. Mater., 2003, 13, 683-691.
    [24] M. Shi, F. Li , T. Yi, et al. Tuning the Triplet Energy Levels of Pyrazolone Ligands to Match the ~5D_0 Level of Europium(III). Inorg. chem., 2005, 44, 8929-8936.
    [25] J. Yu, L. Zhou, H. Zhang. Efficient Electroluminescence from New Lanthanide (Eu~(3+), Sm~(3+)) Complexes. Inorg. Chem., 2005,44, 1611-1618.
    [26] H. Xu, L.H Wang, W. Huang. Application of Chelate Phosphine Oxide Ligand in Eu~Ⅲ Complex with Mezzo Triplet Energy Level, Highly Efficient Photoluminescent and Electroluminescent Performances. J. Phys. Chem. B., 2006,110,3023-3029.
    [27] R. Hao, M. Li, Y. Wang, et al. A Europium Complex With Excellent Two-Photon-Sensitized Luminescence Properties. Adv. Funct. Mater., 2007, 17, 3663-3669.
    [28] M. S. Lowry and S.Bernhard. Synthetically Tailored Excited States: Phosphorescent, CyclometalatedIridium (III) Complexes and Their Applications. Chem. Eur. J., 2006, 12, 7970-7977.
    [29] F. M. Hwang, H. Y. Chen, P. S. Chen, et al. Iridium(III) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color Inorganic Chemistry. Inorg. Chem., 2005,44,1344-1353.
    [30] S. Sprouse, K. A. King, P. J. Spellane, et al. Photophysical Effects of Metal-Carbon Bonds in Ortho-Metalated Complexes of Ir(III) and Rh(III). J. Am. Chem. Soc., 1984,106, 6647-6653.
    [31] G. Y. Park, Y. S. Kim, Y. Ha, et al. Phosphorescent iridium(III) complexes with hetero (C^N) ligands. Applied Physics., 2007, 7, 390-395.
    [32] Y. You, J. Seo, S. H. Kim, et al. Highly Phosphorescent Iridium Complexes with Chromophoric 2-(2-Hydroxyphenyl)oxazole-Based Ancillary Ligands: Interligand Energy-Harvesting Phosphorescence. Inorg. Chem., 2008,47, 1476-1487.
    
    [33] M. L. Xu, G. Y. Wang, R. Zhou a, et al. Tuning iridium(III) complexes containing 2-benzo[b]thiophen-2-yl-pyridine based ligands in the red region. Inorg. Chim. Acta., 2007, 360, 3149-3154.
    [34] K. A. King, P. J. Spellane, R. J. Watts. Excited-State Properties of a Triply Ortho-Metalated Iridium(III) Complex. J. Am. Chem. Soc., 1985, 107, 1431-1432.
    [35] K. Dedeian, J. M. Shi, N. Shepherd, et al. Morton, Photophysical and Electrochemical Properties of Heteroleptic Tris-Cyclometalated Iridium(III) Complexes. Inorg. Chem., 2005,44, 4445-4447.
    [36] S. Lamansky, P. Djurovich, D. Murphy, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes. J. Am. Chem. Soc, 2001,123,4304-4312.
    [37] C. Adachi, M. A. Baldo, S. R. Forrest, et al. High-efficiency red electroPhospho- rescence devices. Appl. Phys., Lett., 2001, 78,1622-1624.
    [38] A. Tsuboyama, H. Iwawaki, M. Furugori, et al. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode. J. Am. Chem. Soc., 2003,125, 12971-12979.
    [39] J. P. Duan, P. P. Sun, C. H. Cheng. New Iridium complex as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes. Adv. Mater., 2003, 15, 224-228.
    [40] B. Paulose, D. K. Rayabarapu, J. P. Duan, et al. First Examples of Alkenyl Pyridines Organic Ligands for Phosphorescent Iridium Complexes. Adv. Mater., 2004, 16, 2003-2007.
    [41] D. K. Rayabarapu, B. Paulose, J. P. Duan, et al. New Iridiun Complex with Cyclometalated Alkenylquinoline Ligands as Highly Efficient Saturated red-Light Emitters for Organic Light-Emitting Diodes. Adv. Mater., 2005, 17, 349-353.
    
    [42] Wendy Goodall and J. A. Gareth Williams. A new, highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission. Chem. Commun., 2001,23,2514-2515.
    [1]W.H.Melhuish.Quantum Efficiencies of Fluorescence of Organic Substances:Effect of Solvent and Concentration of the Fluorescent Solute.Phys.Chem.,1961,65,229-235.
    [2]G.A.Crosby,J.N.Demas.The Measurement of Photoluminescence Quantum Yields.J.Phys.Chem.,1971,75,991-1024.
    [3]J.K.Yu,Y.M.Cheng,Y.H.Hu,et al.Probing Triplet State Properties of Organic Chromophores via Design and Synthesis of Os(Ⅱ)-Diketonate Complexes:The Triplet State Intramolecular Charge Transfer.J.Phys.Chem.B.,2004,108,19908-19911.
    [4]Wendy Goodall and J.A.Gareth Williams.A new,highly fluorescent terpyridine which responds to zinc ions with a large red-shift in emission.Chem.Commun.,2001,23,2514-2515.
    [5]黄春辉,李富友,黄岩谊.光电功能超薄膜.北京大学出版社.2001.169-171.
    [6]B.L.An,C.W.Hua,H.L.Ma,et al.High-yield luminescence of a novel homonuclear europium complex byexcimer excitation absorption.Journal of Luminescence.,2007,127,297-301.
    [7]M.Dkaki,S.Ait-Lyazidi,and M.Haddad.Concentration Effect on the Absorption and Emission Spectra of the 9-Oxa-2,3,4-methoxybenzobicyclo[4.3.0]non-1(6)-ene -7,8-dione:Self-Associated Dimer and Excimer.J.Phys.Chem.A.,1998,102,5275-5279.
    [8]S.I.Klink,L.Grave,D.N.Reinhoudt,et al.A Systematic Study of the PhotoPhysical Processes in Polydentate Triphenylene-Functionalized Eu~(3+),Tb~(3+),Nd~(3+),Yb~(3+),and Er~(3+) Complexes.J.Phys.Chem.A.,2000,104,5457-5468.
    [9]M.H.V.Werts,R.T.F.Jukes,J.W.Verhoeven.The emission spectrum and the radiative lifetime of Eu~(3+) in luminescent lanthanide complexes.Phys.Chem.Chem.Phys.,2002,4,1542-1548.
    [10]F.R.Goncualves e Silva,O.L.Malta,C.Reinhard.Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Energy Transfer Mechanisms in the SmⅢ and YbⅢ Molecular Edifices.J.Phys.Chem.A.,2002,106,1670-1677.
    [11]C.Yang,L.M.Fu,Y.Wang,et al.A Highly Luminescent Europium Complex Showing Visible-Light-Sensitized Red Emission:Direct Observation of the Singlet Pathway.Angew.Chem.,2004,116,5120-5123.
    [12]D.L.Dexter.J.Chem.Phys.,1953,21,836.
    [13]G.F.d.Sa,O.L.Malta,C.d.M.Donega,et al.Spectroscopic properties and design of highly luminescent lanthanide coordination complexes.Coord.Chem.Rev.,2000,196,165-195.
    [14]Z.R.Grabowski,K.Rotkiewicz,W.Rettig.Structural Changes Accompanying Intramolecular Electron Transfer:Focus on Twisted Intramolecular Charge-Transfer States and Structures.Chem.Rev.,2003,103,3899-4031.
    [15]L.M.Fu,X.F.Wen,X.C.Ai,et al.Efficient Two-Photon-Sensitized Luminescence of a Europium(Ⅲ) Complex.Angew.Chem.,2005,44,747-750.
    [16]D.B.Nie,Z.Q.Chen,Z.Q.Bian,et al.Energy transfer pathways in the carbazole functionalized β-diketonate europium complexes.New.J.Chem.,2007,31,1639-1646.
    [1]J.P.Duan,P.P.Sun,C.H.Cheng.New Iridium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes.Adv.Mater.,2003,15,224-228.
    [2]W.H.Melhuish.Quantum Efficiencies of Fluorescence of Organic Substances:Effect of Solvent and Concentration of the Fluorescent Solute.Phys.Chem.,1961,65,229-235.
    [3]G.A.Crosby,J.N.Demas.The Measurement of Photoluminescence Quantum Yields.J.Phys.Chem.,1971,75,991-1024.
    [4]S.Lamansky,P.Djurovich,D.Murphy,et al.Supramolecular Assemblies Based on Cucurbituril Adducts of Hydrogen-Bonded Cubane-Type Molybdenum-Nickel Sulfide Aqua Complexes.Inorg.Chem.,2001,40,1704-1077.
    [5]Z.W.Liu,M.Guan,Z.Q.Bian,et al.Red Phosphorescent Iridium Complex Containing Carbazole-Functionalized b-Diketonate for Highly Efficient Nondoped Organic Light-Emitting Diodes.Adv.Funct.Mater.,2006,16,1441-1448.
    [6]Z.W.Liu,D.B.Nie,Z.Q.Bian,et al.Photophysical Properties of Heteroleptic Iridium Complexes Containing Carbazole-Functionalized β-Diketonates.ChemPhysChem,2008,9,634-640.
    [7]S.Lamansky,P.Djurovieh,D.Murphy,et al.Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis,Photophysical Characterization,and Use in Organic Light Emitting Diodes.J.Am.Chem.Soc.,2001,123,4304-4312.
    [8]Dorothee Wasserberg,Stefan C.J.Meskers,and Rend A.J.Janssen.Phosphorescent Resonant Energy Transfer between Iridium Complexes.J.Phys.Chem.A.,2007,111,1381-1388.
    [9]J.K.Yu,Y.M.Cheng,Y.H.Hu,et al.Probing Triplet State Properties of Organic Chromophores via Design and Synthesis of Os(Ⅱ)-Diketonate Complexes:The Triplet State Intramolecular Charge Transfer.J.Phys.Chem.B.,2004,108, 19908-19911.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700