用户名: 密码: 验证码:
掺杂在晶体中的镧系和锕系离子的f-d跃迁光谱的理论模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统地分析研究了近年来得到广泛关注的掺杂镧系和锕系离子的远紫外光谱结构。这些光谱结构主要是由于f-d跃迁导致的。首先,总结了计入f电子和d电子及他们之间的各种相互作用(如库仑作用、自旋轨道作用、晶体场作用及组态混合等效过来的作用)的完整唯象哈密顿理论方法,并对一些体系进行了模拟分析(第一部分);接着,回顾了分析晶体中镧系和锕系离子f-d跃迁光谱的简单模型,并把该模型用于实际光谱分析(第二部分);因模型本身未考虑d电子的t_2轨道在旋轨耦合作用下分裂的影响,对此模型进行了(非平庸的)拓展,并用于相应的体系(第三部分):注意到传统的唯象哈密顿理论在应用中的关键缺点是点群理论未得到充分应用(特别是涉及到5d或6d电子的电子构型中),因此在此探讨了点群基在掺杂晶体中镧系和锕系离子的f~N←→f~(N-1)d跃迁中的应用(第四部分)。
     在第一部分中,在总结f-d跃迁的唯象哈密顿理论基础上,采用M.F.Reid教授编写的扩展f-shell程序对Cs_2NaYF_6晶体中Tm~(3+)离子的4f~(12)和4f~(11)5d电子构型的能级进行了详细计算,在此基础上对4f-5d跃迁光谱进行了非常细致的分析和解释:计算给出的4f~(11)5d~1构型的能态涵盖从58318 cm~(-1)到86900 cm~(-1)的范围,它们和在激发光谱上观测到的至少5个结构带的位置和强度相当符合。我们注意到:对于光谱中观测到的跃迁,严格的O_h点群选择定则依然是有效的:仅根据f-d激发谱中振动带的强度而指认第一自旋允许跃迁的能量位置是不可靠的,这是由于4f~(11)5d~1组态中较低能态波函的SLJ混合很厉害,仅仅那些具有合适量子数——满足全部选择定则(△S=0;△L=0,±1;△J=0,±1),注意除了S之外还有LJ——的成分才对跃迁有贡献。d-f发射谱也能用计算结果进行很好的解释,并且大部分强度集中在一个带4f~(11)5d~1(高自旋)→4f~(12)~3H_6上。另外,基于类似的计算,也对Cs_2NaYF_6晶体中Er~(3+)离子的4f-5d激发光谱进行了模型模拟和解释,并且给出了相似的分析和结论。
     在第二部分中,总结回顾了用以分析晶体中镧系和锕系离子f-d跃迁光谱结构的简单模型及其应用的情况。这个模型可基于2-3个参数值来给出各个f-d跃迁带的零声子线的位置,进而基于跃迁初末态的量子数计算相对跃迁线强。作为对此模型的应用的一个补充,在此对尚未采用该模型探讨的f~(11)d和f~(12)d电子构型离子进行了分析,同时得到了可供今后使用的参数化的能量矩阵元。作为一个范例,在此专门对CaF_2晶体中Tm~(3+)的f-d激发光谱进行了分析计算。
     第三部分为对现有简化模型的拓展。现有简单模型不能很好的用于镧系或锕系离子掺杂在正八面体六配位化合物的情况下的f-d光谱,这是因为其中的5d(或6d)轨道中较低能的t_2在旋轨耦合作用下分裂,从而不能忽略其旋轨耦合作用。在此通过对t_2轨道引入有效角动量l=1,用Racah-Wigner代数重新推导了这种情况下f~(N-1)d组态的能级和f~N←→f~(N-1)d跃迁的相对跃迁线强的表达式,对简化模型进行了重要的拓展。此理论结果首先被用于计算分析Cs_2NaYCl_6晶体中Tb~(3+)离子的低温4f-5d吸收光谱。对更为复杂的Cs_2NaYF_6晶体中Er~(3+)和Tm~(3+)离子的4f-5d激发光谱也基于此拓展模型较为详细地进行了分析。结果和第一部分的详细计算具有很好的一致性,并体现出拓展的简化模型的优点。
     第四部分为点群基在掺杂晶体中镧系和锕系离子的f~N -f~(N-1)d跃迁中的应用。基于简化模型(含拓展部分)的分析显示,点群理论的充分运用能简化计算并使计算结果更加清晰,因此,在此把P.H.Butler教授给出点群耦合系数充分地用于晶体中镧系和锕系离子的f~N←→f~(N-1)d跃迁的模拟:表述f~(N-1)d组态的基函数,可以采用多种耦合计划,这些耦合计划可以联系到分析f-d跃迁的简单模型的思想;采用Butler的点群不可约张量耦合技术推导出了f~(N-1)d组态的哈密顿矩阵元以及f~N←→f~(N-1)d跃迁的相对跃迁线强公式。作为一个运用的范例,使用由Butler和其合作者发展的RACAH软件产生的耦合系数,对掺杂在SrCl_2晶体中的Yb~(2+)离子的f-d吸收光谱进行了模拟计算和分析。在此过程中,对各种耦合计划的优势和适用性进行了讨论。此外,也基于Butler的点群基和点群不可约张量耦合技术对第三部分给出的f-d跃迁的相对线强公式进行了进一步的简化。
This thesis presents a theoretical simulation of the f-d transitions of lanthanide and actinide ions doped in crystals,which contains four parts:A)Theoretical study of the f-d transition spectra of Er~(3+)and Tm~(3+)ions doped into the cubic elpasolite Cs_2NaYF_6;B)Review of the simple model for the f-d transition spectra of lanthanide and actinide ions in crystals,and its supplementary applications to two spectra;C) The effective Hamiltonian theory for f-d transition spectra of lanthanide and actinide ions in octahedral crystal field based on the correction due to the spin-orbit interaction of 5d(or 6d)electron(recent advances of the simple model);D)Application of the point group bases to the f~N-f~(N-1)d transitions of lanthanide and actinide ions doped in crystals.
     In part A,a detailed interpretation and analysis of the 4f-5d transition spectra of Tm~(3+)ions in Cs_2NaYF_6 is presented,where energy-level and intensity calculation and spectral simulation are performed by using the extended f-shell programs of Prof.M.F. Reid.The electronic states of the 4f~(11)5d~1 configuration are calculated to span from 58318 cm~(-1)to 86900 cm~(-1).At least 5 structured bands observed in the excitation spectrum and their intensities are fairly well simulated by this calculation.Strict O_h point group selection rules are operative for the transitions observed in the optical spectra.Measurements from the intensities of vibronic bands in the f-d excitation spectrum are not always suitable for the assignment of the energy of the first spin-allowed transition,since the lower 4f~(11)5d~1 states are of mixed SLJ parentage in which only certain components with the proper quantum numbers(not only S,but also LJ)which satisfy the select rules△S=0;△L=0,±1;△J=0,±lcontribute to the studied f-d transitions.The d-f emission spectrum is well-explained by this calculation and most of the intensity is located in one band:4f~(11)5d~1(high spin)→4f~(12)H_6.In addition, the f-d excitation spectrum of Er~(3+)ions in Cs_2NaYF_6 is also simulated and interpreted by the calculation results using the extended f-shell programs.Some similar analyses and conclusions for the electronic states of the 4f~(10)5d~1 configuration are also given.
     In part B,the development and extension of the simple model for the f-d transitions of lanthanide and actinide ions in crystals is reviewed.The model can give the positions of zero-phonon lines for various f-d transition bands based on the values of 2-3 parameters,and calculate relative transition line strengths based on the quantum numbers of the initial and final states of the transitions.Its successful application to f-d transition spectra of rare-earth ions(4f~3-4f~(11))in crystals is sumraarized.As a supplementary study,this model is further applied to the remaining configurations f~(11)d and f~(12)d,where the parameterized energy matrix elements are obtained and tabulated.As an example,the excitation spectrum of Tm~(3+)doped in crystal CaF_2 is well explained.
     In part C,the simple model for f-d transitions is extended to the case where the lanthanide(or actinide)ion substitutes the center ion in the octahedral six-fold coordination compounds,where,for the low-energy tE component of the 5d(or 6d) orbitals,the spin-orbit interaction of the d-electron cannot be neglected due to it induces energy splitting.In this so-called "effective Hamiltonian theory",by introducing a effective orbital angular momentum l=1 for the t_2 orbitals,the expressions of the energy levels for the f~(V-1)d configuration and the relative line strengths for the f~N←→f~(N-1)d transition are rederived in detail based on the Racah-Wigner algebra.The result is firstly applied to the interpretation of the low-temperature 4f-5d absorption spectrum of Cs_2NaYCl_6:Tb~(3+).Applications to the more complicated 4f-5d excitation spectra of Er~(3+)and Tm~(3+)ions in Cs_2NaYF_6 are also explicitly presented.The calculation results and interpretations using this extended theory agree well with those using the extended f-shell programs.
     In the last part,the Butler's point-group coupling coefficients are applied to modeling of f~N←→f~(N-1)d transitions of lanthanide and actinide ions in crystals.There are several possible coupling schemes for the states of the f~(N-1)d configuration,which are related to the simple model for f-d transitions.Formulae for matrix elements of the Hamiltonian for the f~(N-1)d configuration and the relative line strengths for f~N←→f~(N-1)d transitions are derived by using the Butler's point-group irreducible tensor coupling techniques.As an example,the f-d absorption spectrum of the crystal Yb~(2+):SrCl_2 are calculated using these coupling coefficients based on the "RACAH" software developed by Butler and co-workers.The advantages and disadvantages of various coupling schemes are demonstrated.Moreover,the formula of the relative line strengths for the f-d transition in part C is further simplified by utilizing the Butler's point-group bases and irreducible tensor coupling techniques.With this expression,a lot of sums of magnetic quantum numbers in the original form are avoided and the evaluation of the relative line strengths simply depends on the angular momentum quantum numbers of the initial and final states of the transitions.
引文
[1]Szabadvary F.,1988.Handbook on the Physics and Chemistry of Rare Earths[M],eds.Gschneidner K.A.,Eyring Jr.and Eyring L.(Elsevier,Amsterdam),11:33-80.
    [2]Trofast J.,1996.Episodes from the History of the Rare Earth Elements[M],eds.Evans C.H.,the Netherlands:Kluwer Academic Publishers,13-15.
    [3]苏锵,2001.20世纪稀土科技发展的回顾与前瞻[J].稀土信息,2:5-9.
    [4]苏锵,1997.21世纪的新材料--稀土面临的机遇[J].大自然探索,16(59):15-17.
    [5]苏锵,2006.国家中长期科学和技术发展规划纲要中与稀土有关部分的思考--稀土发光材料部分[J].四川稀土,3:2-5.
    [6]Sommerdijk J.L.,Bril A.,deJager A.W.,1974.Two photon luminescence with ultraviolet excitation of trivalent praseodymium[J].J.Lumin.,8(4):341-343.
    [7]Piper W.W.,DeLuca J.A.,Ham F.S.,1974.Cascade fluorescent decay in Pr~(3+)-doped fluorides:Achievement of a quantum yield greater than unity for emission of visible light[J].J.Lumin.,8(4):344-348.
    [8]Wegh R.T.,Donker H.,Oskam K.D.,Meijerink A.,1999.Visible quantum cutting in LiGdF_4:Eu~(3+)through downconversion[J].Science 283:663-666.
    [9]Carnall,W.T.;Goodman,G.L.;Rajnak,K.;Rana,R.S.,1989.A systematic analysis of the spectra of the lanthanides doped into single crystal LaF_3[J].J.Chem.Phys.90:3443-3457.
    [10]Wegh R.T.,Meijerink A.,Lamminmaki R.J.,et al.,2000.Extending Dieke's diagram[J].J.Lumin.,87-89:1002-1004.
    [11]黄世华,由芳田,2002.固体中稀土离子的4f~(N-1)5d组态[J].中国稀土学报,20(6):515-520.
    [12]夏上达,1994.《群论与光谱》[M],北京:科学出版社.
    [13]Wegh R.T.,Meijerink A.,1999.Spin-allowed and spin-forbidden 4f~n←→4f~(n-1)5d transitions for heavy lanthanides in fluoride hosts[J].Phys.Rev.B 60(15):10820-10830.
    [14]Duan C.K.,Reid M.F.,2003.A simple model for f←→d transitions of rare-earth ions in crystals [J].J.Solid State Chem.171:299-303.
    [15]Duan,C.K.,Xia S.D,Reid M.F.,Ruan G.,2005.Study of the f→d transition of heavy lanthanide and actinide ions in crystals using the simple model[J].Phys Stat Sol(b),242:2503-2508.
    [16]Xia S.D.,Duan C.K.,2007.The simple model and its application to interpretation and assignment of 4f-5d transition spectra of rare-earth ions in solids [J]. J. Lumin. 122: 1-4.
    [17] Sugano S., Tanabe Y., Kamimura H., 1970. Multiplets of Transition-Metal Ions in Crystals [M]. New York-London: Academic Press.
    [18] Butler P.H., 1981. Point Group Symmetry Applications, Method and Tables [M]. New York: Plenum Press.
    [1]Cowan R.D.,1981.The Theory of Atomic Structure and Spectra[M],Berkeley Los Angeles London:University of California Press.
    [2]Wybourne B.G.,1965.Spectroscopic Properties of Rare Earths[M].New York London Sydney:Interscience Publishers,a division of John Wiley &Sons,Inc.
    [3]Dieke G.H.,1968.Spectra and Energy Levels of Rare Earth ions in Crystals[M].New York London Sydney:Interscience Publishers,a division of John Wiley &Sons,Inc.
    [4]Judd B.R.,1963.Operator Techniques in Atomic Spectroscopy[M].New York:McGraw-Hill Book Company.
    [5]夏上达,1994.《群论与光谱》[M],北京:科学出版社.
    [6]Racah G.,1941-1943.Theory of Complex Spectra Ⅰ,Ⅱ,Ⅲ[J].Phys.Rev.:61,186-197;62,438-462;63,357-382.
    [7]Rotenberg M.R.,Biyins M.,Metropolis N.,and Wooten J.K.,1959.The 3-jand 6-j symbols [M].Cambridge,Massachusetts:M.I.T.Press.
    [8]Nelson C.W.,Koster G..F.,1963.Spectroscopic Coefficients for the p~n,d~n,f~n Configurations [M].Cambridge,Massachusetts:M.I.T.Press.
    [9]Butler P.H.,1981.Point Group Symmetry Applications,Method and Tables[M].New York:Plenum Press.
    [10]唐敖庆等,1979.配位场理论方法[M].北京:科学出版社.
    [11]Gorller-Walrand C,Binnemans K.,1996.Handbook on the Physics and Chemistry of Rare Earths[M],eds.Gschneidner K A,Eyring J.R.and L.(Elsevier,Amsterdam),23:Chapter 155.
    [12]van Vleck J.H.,1937.The Puzzle of Rare-Earth Spectra in Solids[J].Jour.Phys.Chem.,41:67-80.
    [13]Judd B.R.,1962.Optical Absorption Intensities of Rare-Earth Ions[J].Phys.Rev.127(4):750-761.
    [14]Ofelt G.S.,1962.Intensities of Crystal spectra of Rare-Earth Ions[J].J.chem.Phys.37:511-520.
    [15]Axe J.D.,1964.Two-Photon Processes in Complex Atoms[J].Phys.Rev.136:A42-A45.
    [16]Judd B R.and Pooler D.R.,1982.Two-Photon absorption in gadolinium ions[J].Jour.Phys.C15:591-598.
    [1]Sytsma J.,Piehler D.,Edelstein N.M.,Boatner L.A.,Abraham M.M.,1993.Two-photon excitation of the 4f~1→5d~1 transitions of Ce~(3+)in LuPO_4 and YPO_4[J].Phys.Rev.B 47:14786-14794.
    [2]Combes C.M.,Dorenbos P.,et al.,1997.Optical and scintillation properties of Ce~(3+)doped LiYF_4 and LiLuF_4 crystals[J].J.Lumin.71:65-70.
    [3]Marsman M.,Andriessen J.,van Eijk C.W.E.,2000.Structure,optical absorption,and luminescence energy calculations of Ce~(3+)defects in LiBaF_3[J].Phys.Rev.B 61:16477-16490.
    [4]Loh E.,1968.4f~n→4f~(n-1)5d Spectra of Rare-Earth Ions in Crystals[J].Phys.Rev.175:533-536.
    [5]Weakliem H.A.,1972.Electronic Interactions in the 4f~6 5d Configuration of Eu~(2+)in Crystals[J].Phys.Rev.B 6:2743-2748.
    [6]Reid M.F.,van Pieterson L.,Wegh R.T.,Meijerink A.,2000.Spectroscopy and calculations for 4f~N→4f~(N-1)5d transitions of lanthanide ions in LiYF_4[J].Phys Rev B 62:art.no.014749.
    [7]van Pieterson L.,Reid M.F.,Wegh R.T.,Soverna S,Meijerink A.,2002.4f~N→4f~(N-1)5d transitions of the light lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045113.
    [8]van Pieterson L,Reid M.F.,Burdick G.W.,Meijerink,A.,2002.4f~N→4f~(N-1)5d transitions of the heavy lanthanides:Experiment and theory[J].Phys.Rev.B 65:art.no.045114.
    [9]Ogasawara K.,Watanabe S.,Toyoshima H.,Ishii T.,Brik M.G.,Ikeno H.,Tanaka I.,2005.Optical spectra of trivalent lanthanides in LiYF_4 crystal[J].J.Solid State Chem.178(6):412;erratum,2175.
    [10]Ogsawara K.,Brik M.G.,Ishii T.,2007.Handbook on the Physics and Chemistry of the Rare Earths[M],eds.Gschneidner K.A.,Bunzli J.C.,Percharsky V.K.,North Holland,Amsterdam:in press.
    [11]夏上达,2007.稀土发光和光谱理论的研究进展[J].发光学报28(4):465-478.
    [12]Ning L.X.,Jiang Y.,Xia S.D.,Tanner P.A.,2003.Theoretical analysis and intensity calculation for the f→d absorption spectrum of U~(3+)in the LiYF_4 crystal[J].J.Phys.:Condens.Matter 15:7337-7350.
    [13]Cowan R.D.,1981.The Theory of Atomic Structure and Spectra[M],Berkeley Los Angeles London:University of California Press.
    [14]Reid M.F.,van Pieterson L.,Meijerink A.,2002.Trends in parameters for the 4f~((N))<->4f~((N-1))5d spectra of lanthanide ions in crystals[J].J.Alloys Comp.344:240-245.
    [15]Nelson C.W.,Koster G..F.,1963.Spectroscopic Coefficients for the p~n,d~n,f~n Configurations [M].Cambridge,Massachusetts:M.I.T.Press.
    [16]Rotenberg M.R.,Biyins M.,Metropolis N.,and Wooten J.K.,1959.The 3-j and 6-j symbols [M].Cambridge,Massachusetts:M.I.T.Press.
    [17]夏上达,1994.《群论与光谱》[M],北京:科学出版社.
    [1] Sarantopoulou E., Kobe S., Kollia Z., Podmiljsak B., McGuiness P.J., Drazic G., Cefalas A.C., 2003. Magnetic and optical properties of single 4f~(n) and mixed 4f~((n)-(1))5d electronic configurations of trivalent rare earth ions in wide band gap dielectric crystals [J]. J. Magnetism Magnetic Mater. 267: 182-190.
    [2] Kirikova N.Y., Kirm M., Krupa J.C., Makhov V.N., Negodin E., Gesland J.Y., 2004. Low-temperature high-resolution VUV spectroscopy of Ce~(3+) doped LiYF_4, LiLuF_4 and LuF_3 crystals [J]. J. Lumin. 110: 135-145.
    [3] Chen Y., Kirm M., Negodin E., True M., Vielhauer S., Zimmerer G., 2003. Zero-phonon lines in the d—f luminescence of LiYF_4: Er~(3+) [J]. Phys. Stat. Solidi (b) 240: R1-R3.
    [4] Makhov V.N., Khaidukov N.M., Lo D., Kirm M., Zimmerer G., 2003. Spectroscopic properties of Pr~(3+) luminescence in complex fluoride crystals [J]. J. Lumin. 102-103: 638-643.
    [5] You F., Huang S., Liu S., Tao Y, 2004. VUV excited luminescence of MGdF_4:Eu~(3+) (M=Na, K, NH_4)[J].J. Lumin. 110:95-99.
    [6] Krupa J.C., Queffelec M., 1997. UV and VUV optical excitations in wide band gap materials doped with rare earth ions: 4f-5d transitions [J]. J. Alloys Compds. 250: 287-292.
    [7] Wegh R.T., Donker H., Meijerink A., Lamminmaki R.J., Holsa J., 1997. Vacuum-ultraviolet spectroscopy and quantum cutting for Gd~(3+) in LiYF_4 [J]. Phys. Rev. B 56: 13841-13848.
    [8] Peijzel P.S., Vergeer P., Meijerink A., Reid M.F., Boatner L.A., Burdick G.W., 2005. 4f~(n-1)5d→4f~n emission of Ce~(3+), Pr~(3+), Nd~(3+), Er~(3+), and Tm~(3+) in LiYF_4 and YPO_4 [J]. Phys. Rev. B 71: art. no.045116.
    [9] Ning L.X., Mak C.S.K., Tanner P.A., 2005. High-spin and low-spin f-d transitions of Tb~(3+) in elpasolite hosts [J]. Phys. Rev. B., 72: art. no. 085127.
    [10] Tanner P.A., Mak. C.S.K., Faucher M.D., Kwok.W.M., Phillips D.L., Mikhailik V., 2003. 4f-5d transitions of Pr~(3+) in elpasolite lattices [J]. Phys. Rev. B 67: art. no. 115102.
    [11] Makhov V.N., Khaidukov N.M., Lo D., Krupa J.C., Kirm M., Negodin E., 2005. Spectroscopy of cubic elpasolite Cs_2NaYF_6 crystals singly doped with Er~(3+) and Tm~(3+) under selective VUVexcitation [J]. Opt. Mater., 27:1131-1137.
    [12] Reid M.F., van Pieterson L., Wegh R.T., Meijerink A.,2000. Spectroscopy and calculations for 4f~N→4f~(N-1)5d transitions of lanthanide ions in LiYF_4[J]. Phys. Rev. B 62: art. no. 014749.
    [13] Tanner P.A., Kumar V.V.R.K., Jayasankar C.K., Reid M.F., 1994. Analysis of spectral data and comparative energy level parametrizations for Ln~(3+)in cubic elpasolite crystals[J].J.Alloys Compds.215:349-370.
    [14]van Pieterson L.,Reid M.F.,Burdick G.W.,Meijerink,A.,2002.4f~N→4f~(N-1)5d transitions of the heavy lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045114.
    [15]Wegh R.T.,Meijerink A.,1999.Spin-allowed and spin-forbidden 4f~n←→4f~(n-1)5d transitions for heavy lanthanides in fluoride hosts[J].Phys.Rev.B 60(15):10820-10830.
    [1]van Eijk C.W.E.,1996.Fast Lanthanide-doped Inorganic Scintillators[J].Proc.SPIE 2706:158-167.
    [2]Wegh R.T.,Donker H.,Oskam K.D.,Meijerink A.,1999.Visible quantum cutting in LiGdF_4:Eu~(3+)through downconversion[J].Science 283:663-666.
    [3]Wegh R.T.,Meijerink A.,1999.Spin-allowed and spin-forbidden 4f~n←→4f~(n-1)5d transitions for heavy lanthanides in fluoride hosts[J].Phys.Rev.B 60:10820-10830.
    [4]Marsman M.,Andriessen J.,van Eijk C.W.E.,2000.Structure,optical absorption,and luminescence energy calculations of Ce~(3+)defects in LiBaF_3[J].Phys.Rev.B 61:16477-16490.
    [5]Reid M.F.,van Pieterson L.,Wegh R.T.,Meijerink A.,2000.Spectroscopy and calculations for 4f~N→ 4f~(N-1)5d transitions of lanthanide ions in LiYF_4[J].Phys.Rev.B 62:art.no.014749.
    [6]van Pieterson L.,Reid M.F.,Meijerink A.,2002.Reappearance of Fine Structure as a Probe of Lifetime Broadening Mechanisms in the 4f~N → 4f~(N-1)5d Excitation Spectra of Tb~(3+),Er~(3+),and Tm~(3+)in CaF_2 and LiYF_4[J].Phys.Rev.Lett.88:art.no.067405.
    [7]van Pieterson L.,Reid M.F.,Wegh R.T.,Soverna S,Meijerink A.,2002.4f~N → 4f~(N-1)5d transitions of the light lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045113.
    [8]van Pieterson L.,Reid M.F.,Burdick G.W.,Meijerink,A.,2002.4f~N→4f~(N-1)5d transitions of the heavy lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045114.
    [9]Duan C.K.,Reid M.F.,2003.A simple model for f←→d transitions of rare-earth ions in crystals[J].J.Solid State Chem.,171:299-303.
    [10]Ning L.X.,Duan C.K.,Xia S.D.,Reid M.F.,Tanner,P.A.,2004.A model analysis of 4f~N-4f~(N-1)5d transitions of rare-earth ions in crystals[J].J.Alloys.Comp.,366:34-40.
    [11]Xia S.D.,Duan C.K.,Deng Q.,Ruan G.,2005.Assignment of 4f→5d excitation spectra of Nd~(3+)in crystals using the simple model[J].J.Solid State Chem.,178:2643-2646.
    [12]Xia S.D.,Chen T.,Duan C.K.,2006.Interpretation of the 4f-5d excitation spectra of Eu~(3+)and Tb~(3+)doped in crystals[J].J.Rare Earth,24:400-407.
    [13]Duan,C.K.,Xia S.D.,Reid M.F.,Ruan G.,2005.Study of the f→d transition of heavy lanthanide and actinide ions in crystals using the simple model[J].Phys.Stat.Sol.(b),242: 2503-2508.
    [14]Duan C.K.,Reid M.F.,Ruan G,2006.A simple model for the f-d transition of actinide and heavy lanthanide ions in crystals[J].Curr.Appi.Phys.,6:359-362.
    [15]Xia S.D.,Duan C.K.,2005.Extension of a simple model for f-d transition and applications to reassignment of excitation spectra of Ho~(3+)-doped crystals[J].Chin.Phys.Lett.,22:2680-2683.
    [16]Xia S.D.,Duan C.K.,2006 Two representations of the simple model and its application to 4f-5d excitation spectra of Dy~(3+)dopants in crystals[J].Phys Stat Sol(b),2006,243:2839-2846.
    [17]Xia S.D.,Duan C.K.,2007.The simple model and its application to interpretation and assignment of 4f-5d transition spectra of rare-earth ions in solids[J].J.Lumin.,122:1-4.
    [18]Ma C.G.,Wu Y.T.,Xia S.D.,Yin M.,2008.Analysis of 4f-5d excitation spectra of Tm~(3+)doped in crystals based on the extended simple model for f-d transition and correction caused by the spin-orbit interaction of 5d electron.Submitted to Physica Status Solidi B-Basic Solid State Physics,in review.
    [19]Yanase A.,Kasuya T.,1970.Magneto-Optical Effect due to Eu~(2+)Ion[J].Prog.Theo.Phys.Suppl.46:388-410.
    [20]Nelson C.W.,Koster G..F.,1963.Spectroscopic Coefficients for the p~n,d~n,f~n Configurations [M].Cambridge,Massachusetts:M.I.T.Press.
    [21]Rotenberg M.R.,Biyins M.,Metropolis N.,and Wooten J.K.,1959.The 3-j and 6-j symbols [M].Cambridge,Massachusetts:M.I.T.Press.
    [22]夏上达,段昌奎,2006.分析指认固体中稀土离子4f-5d跃迁光谱的简单模型[J].发光学报,02期:16-20.
    [23]Szczurek T.,Schlesinger M.,1985.Rare Earth spectroscopy[M],eds.Jezowska-Trzebiatowska B.,Legendziewicz J.,Strek W.Singapore:World scientific.
    [24]Grimm J.,Wenger O.S.,Kramer K.W.,Gudel H.U.,2007.4f-4f and 4f-5d excited states and luminescence properties of Tm~(2+)- doped CaF_2,CaCl_2,SrCl_2 and BaCl_2[J].J.Lumin.126:590-596.
    [25]Wang,D.J.,Wang,J.,Chen,T.,Ma,C.G.,Xia,S.D.,Yin,M.,2008.Application of the simple model for f-d transition to assignment of 4f-5d excitation spectra of Yb~(3+)doped in crystals[J].submitted to J.Rare earths(accepted).
    [1]Duan C.K.,Reid M.F.,2003.A simple model for f←→d transitions of rare-earth ions in crystals [J].J.Solid State Chem.,171:299-303.
    [2]Ning L.X.,Duan C.K.,Xia S.D.,Reid M.F.,Tanner,P.A.,2004.A model analysis of 4f~N-4f~(N-1)5d transitions of rare-earth ions in crystals[J].J.Alloys.Comp.,366:34-40.
    [3]Duan,C.K.,Xia S.D.,Reid M.F.,Ruan G.,2005.Study of the f→d transition of heavy lanthanide and actinide ions in crystals using the simple model[J].Phys.Stat.Sol.(b),242:2503-2508.
    [4]Xia S.D.,Duan C.K.,Deng Q.,Ruan G.,2005.Assignment of 4f→5d excitation spectra of Nd~(3+)in crystals using the simple model[J].J.Solid State Chem.,178:2643-2646.
    [5]Xia S.D.,Duan C.K.,2005.Extension of a simple model for f-d transition and applications to reassignment of excitation spectra of Ho~(3+)-doped crystals[J].Chin.Phys.Lett.,22:2680-2683.
    [6]Duan C.K.,Reid M.F.,Ruan G.,2006.A simple model for the f-d transition of actinide and heavy lanthanide ions in crystals[J].Curr.Appl.Phys.,6:359-362.
    [7]Xia S.D.,Chen T.,Duan C.K.,2006.Interpretation of the 4f-5d excitation spectra of Eu~(3+)and Tb~(3+)doped in crystals[J].J.Rare Earth,24:400-407.
    [8]Xia S.D.,Duan C.K.,2006 Two representations of the simple model and its application to 4f-5d excitation spectra of Dy~(3+)dopants in crystals[J].Phys Stat Sol(b),2006,243:2839-2846.
    [9]Xia S.D.,Duan C.K.,2007.The simple model and its application to interpretation and assignment of 4f-5d transition spectra of rare-earth ions in solids[J].J.Lumin.,122:1-4.
    [10]Makhov V.N.,Khaidukov N.M.,Lo D.,Krupa J.C.,Kirm M.,Negodin E.,2005.Spectroscopy of cubic elpasolite Cs_2NaYF_6 crystals singly doped with Er~(3+)and Tm~(3+)under selective VUV excitation[J].Opt.Mater.,27:1131-1137.
    [11]Schwartz R.W.and Schatz P.N.,1973.Absorption and Magnetic-Circular-Dichroism Spectra of Octahedral Ce~(3+)in Cs_2NaYCl_6[J].Phys.Rev.B 8:3229-3236.
    [12]Ma C.G.,Reid M.F.,Duan C.K.,Xia S.D.,Yin M.,2007.Recent Advances in the Simple Model for 4f-5d Transitions of Lanthanide Ions in Solids[J].J.Rare Earths,25(Sp.Iss.SI):262-267.
    [13]Ma C.G.,Duan C.K.,Reid M.F.,Xia S.D.,Yin M.,2008.Further development of the simple model and its application to f-d transition spectra of lanthanide ions in octahedral crystal field. Submitted to Spectroscopy Letters, in review.
    
    [14] Ma C.G., Wu Y.T., Xia S.D., Yin M., 2008. Analysis of 4f-5d excitation spectra of Tm~(3+) doped in crystals based on the extended simple model for f-d transition and correction caused by the spin-orbit interaction of 5d electron. Submitted to Physica Status Solidi B-Basic Solid State Physics, in review.
    
    [15] Sugano S., Tanabe Y., and H. Kamimura, 1970. Multiplets of Transition-Metal Ions in Crystals [M], New York-London: Academic Press.
    [16] Ballhauson C.J., 1962. Introduction to Ligand Field Theory [M]. London-New York: McGraw-Hill Book Company.
    [17] Cowan R.D., 1981. The Theory of Atomic Structure and Spectra [M], Berkeley: University of California Press.
    [18] Rotenberg M. R., Biyins M., Metropolis N., and Wooten J.K., 1959. The 3-j and 6-j symbols [M]. Cambridge, Massachusetts: M.I.T. Press.
    [19] Griffith J.S., 1961. The Theory of Transition-Metal Ions [M], London-New York: Cambridge University Press.
    [20] Ning L.X., Mak C.S.K., Tanner P.A., 2005. High-spin and low-spin f-d transitions of Tb~(3+) in elpasolite hosts [J]. Phys. Rev. B., 72: art. no. 085127.
    [21] Aull B. F., Jenssen H.P., 1986. Impact of ion-host interactions on the 5d-to-4f spectra of lanthanide rare-earth-metal ions. II. The Ce-doped elpasolites [J]. Phys. Rev. B, 34: 6647-6655.
    [22] van Pieterson L., Reid M.F., Burdick G.W., Meijerink, A., 2002. 4f~N→4f~(N-1)5d transitions of the heavy Ianthanides: Experiment and theory [J]. Phys Rev B 65: art. no. 045114.
    [23] Ma C.G., Tanner P.A., Xia S.D., Yin M., 2007. Analysis of VUV and optical spectra of Cs_2NaYF_6 crystals doped with Tm~(3+) [J]. Opt. Mater., 29:1620-1624.
    [1]Racah G,1941-1943.Theory of Complex Spectra Ⅰ,Ⅱ,Ⅲ[J].Phys.Rev.:61,186-197;62,438-462:63,357-382.
    [2]Sugano S.,Tanabe Y.,and H.Kamimura,1970.Multiplets of Transition-Metal Ions in Crystals [M],New York-London:Academic Press.
    [3]Griffith J.S.,1961.The Theory of Transition-Metal Ions[M],London-New York:Cambridge University Press.
    [4]Griffith J.S.,1962.The Irreducible Tensor Method for Molecular Symmetry Groups[M],New Jersey:Prentice-Hall,Englewood Cliffs.
    [5]Wybourne B.G.,1965.Spectroscopic Properties of Rare Earths[M],New York:Interscience Publishers,John Wiley & Sons,Inc..
    [6]Judd B.R.,1962.Optical Absorption Intensities of Rare-Earth Ions[J].Phys.Rev.127:750-761.
    [7]Ofelt G.S.,1962.Intensities of Crystal Spectra of Rare-Earth Ions[J].J.Chem.Phys.37:511-520.
    [8]Grenet G.and Kibler M.,1980.Spectrum of Sm~(2+):SrCIF[J].Phys.Rev.B 22:5052-5067.
    [9]Reid M.F.and Butler P.H.,1982.The point group crystal field and the superposition model for Re~(3+)ions in CaF_2 and SrF_2[J].J.Phys.C,Solid State Phys.15:4103-4116.
    [10]Reid M F,van Pieterson L,Wegh R.T.,Meijerink A.,2000.Spectroscopy and calculations for 4f~N→4f~(N-1)5d transitions of lanthanide ions in LiYF_4[J].Phys Rev B 62:art.no.014749.
    [11]van Pieterson L.,Reid M.F.,Wegh R.T.,Soverna S,Meijerink A.,2002.4f~N→4f~(N-1)5d transitions of the light lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045113.
    [12]van Pieterson L.,Reid M.F.,Burdick G.W.,Meijerink,A.,2002.4f~N→4f~(N-1)5d transitions of the heavy lanthanides:Experiment and theory[J].Phys Rev B 65:art.no.045114.
    [13]Ning L.X.,Jiang Y.,Xia S.D.,Tanner P.A.,2003.Theoretical analysis and intensity calculation for the f→d absorption spectrum of U~(3+)in the LiYF_4 crystal[J].J.Phys.:Condens.Matter 15:7337-7350.
    [14]Schwartz R.W.and Schatz P.N.,1973.Absorption and Magnetic-Circular-Diehroism Spectra of Octahedral Ce~(3+)in Cs_2NaYCl_6[J].Phys.Rev.B 8:3229-3236.
    [15]Gacon J.C.,2003.Crystal field interactions within the Pr~(3+)4f~1 5d~1 configuration[J].Opt.Mat.24:2209-214
    [16] Duan C.K., Reid M.F., 2003. A simple model for f←→d (?)ansitions of rare-earth ions in crystals [J]. J. Solid State Chem. 171: 299-303.
    [17] Xia S.D., Duan C.K., 2007. The simple model and its application to interpretation and assignment of 4f-5d transition spectra of rare-earth ions in solids [J]. J. Lumin. 122: 1-4.
    [18] Butler P.H., 1981. Point Group Symmetry Applications, Method and Tables [M], New York: Plenum Press.
    [19] Ross H.J., McAven L.F., Shinagawa K., and Butler P. H., 1996. Calculating Spin-Orbit Matrix Elements with RACAH [J]. J. Comput. Phys. 128: 331-340.
    [20] Shinagawa K., McAven L.F., Ross H. J. and Butler P.H., 1999. A note on the Faraday rotation in Bi~(3+)-substituted magnetic garnets [J]. IEEE Trans. Magn. 35: 3136-3138.
    [21] Joyce W.P., 2001. Diagram projection rules for recoupling diagrams in the Racah-Wigner category [J]. J. Math. Phys., 42: 1346-1363.
    [22] Joyce W.P., Butler P.H., and Ross H.J., 2002. The Racah-Wigner category [J]. Can. J. Phys., 80:613-632.
    [23] Butler P.H., Joyce W.P., McAven L.F., and Searls B.G., 2003. Recursive calculation of nonprimitive coupling and recoupling brakets. Can. J. Phys. 81: 1051-1066.
    [24] Cowan R.D., 1981. The Theory of Atomic Structure and Spectra [M], Berkeley: University of California Press.
    [25] Nelson C. W., Koster G..F.,1963. Spectroscopic Coefficients for the p~n,d~n, f~n Configurations [M]. Cambridge, Massachusetts: M.I.T. Press.
    [26] Piper T.S., Brown J.P., McClure D.S., 1967.fd and f~(13)d Configurations in a Crystal Field, and the Spectrum of Yb ~(+ +) in Cubic Crystals [J]. J. Chem. Phys., 46: 1353-1358.
    [27] Pan Z.F., Duan C.K. and Tanner P.A.. 2008. Electronic spectra and crystal field analysis of Yb~(2+) in SrCl_2 [J]. Phys. Rev. B 77: art. no. 085114.
    [28] Chen T., Duan C.K., and Xia S.D., 2007. A many-body perturbation calculation of 4f~(N)_4f~((N)-(1))5d electric dipole moments for lanthanide ions [J]. J. Allys Comp. 439: 363-366.
    
    [29] Wei L.Q., Dalgarno A., 2004. Universal factorization of 3n-j (j > 2) symbols of the first and second kinds for SU(2) group and their direct and exact calculation and tabulation [J]. J. Phys. A: Math. Gen. 37:3259-3269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700