用户名: 密码: 验证码:
太湖地区稻田氮磷养分径流流失及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据研究,湖泊、河流富营养化的氮磷养分分别有50%和60%来源于农田地表径流水,其中稻田随地表径流发生的氮磷养分流失占有较大的比例。在稻田面积所占比例较大的太湖地区,由于水稻主要生育期的降雨多以暴雨形式出现,这使得稻田土壤氮素、磷素流失量增加,成为太湖地区农业面源污染的重要来源。因此,明确太湖地区稻田氮磷养分径流流失特点和流失风险,研究能够控制或减少稻田氮磷养分径流流失的措施和技术已成为当前急需解决的问题。
     为明确太湖地区稻田氮磷养分的径流流失特征,寻求适宜的田间管理措施,本文通过问卷调查、资料收集、模拟试验、田间控制试验及大田监测试验等方式,研究了该地区稻田肥料投入及养分平衡情况和稻田田面水氮磷养分浓度动态变化特征,以及不同耕作方式及秸秆还田下稻田氮磷养分径流流失特点,并以溧阳市为例,评估了不同耕作方式和秸秆还田下该地区稻田氮磷养分径流流失风险;另外,为减少或控制稻田排放水体对外河水体的污染,本文还研究了水葫芦对不同氮磷养分浓度的稻田排放水体的净化效果,通过构建稻田—水塘水循环系统,研究了该系统对稻田氮磷等养分径流流失的控制作用,从而为控制太湖地区稻田氮磷养分径流流失,减轻太湖水体富营养化提供技术支撑。主要结论如下:
     1)被调查的太湖地区的溧阳市、宜兴市与苏州市吴中区稻麦、稻油两种种植模式下周年氮肥平均投入量分别达到了558.5和493.3kg/hm2,盈余率分别为100.2%和62.5%,稻季氮肥平均投入量为298.0kg/hm2,明显高于麦季的229.1kg/hm2和油菜季的218.9kg/hm2;两种种植模式下的周年磷肥投入量分别为117.6和116.7kg/hm2,盈余率较低,仅为9.0%和-7.4%;周年钾肥投入量最少,分别为107.3kg/hm2和105.3kg/hm2,且都存在超过50%的亏缺。两种稻田种植模式下,氮肥投入量显著高于磷肥与钾肥,导致大量氮素盈余,磷肥投入较为合理,养分基本达到平衡状态,投入量最少的钾肥则存在严重的养分亏缺。
     2)稻田田面水氮磷养分大田动态监测试验表明,太湖地区溧阳和宜兴两试验点基肥及追肥后田面水总氮浓度都是在施肥后当日即达到峰值,随后随着时间推移逐渐下降,并在一定时间后达到稳定水平。其中,基肥施用后田面水总氮浓度基本在7~8天后达到稳定,追肥施用后5天左右达到稳定;不论是基肥,还是追肥,两试验点基肥及追肥施用后稻田田面水总氮浓度y和时间t均可用一级反应方程(y=Co×e-kt)进行拟合,且拟合结果均达极显著水平。在磷素动态特征方面,两试验点稻田田面水总磷浓度均在施肥后迅速增加,并在第1天达到最高峰,且随时间的推移田面水总磷浓度呈逐渐下降趋势,8-9天后基本达到稳定,但是10天后至稻田落干前的很长一段时间内却出现了多次微小的波动。
     3)不论秸秆还田还是不还田,不同耕作方式下的稻田径流水量均为翻耕小于旋耕,旋耕小于免耕,但径流水中的氮磷养分浓度则和此正好相反;相同耕作方式下,秸秆不还田的径流量高于秸秆还田,但径流水中的氮磷养分浓度却低于秸秆还田。无秸秆还田时,翻耕、旋耕、免耕总氮径流流失量分别为6.78、8.50和11.09kg/hm2,秸秆还田时,分别为4.82、6.44和8.87kg/hm2;无秸秆还田时,翻耕、旋耕、免耕径流过程总磷流失量为0.50、0.63和0.78kg/hm2,秸秆还田时,则分别为0.39、0.51和0.70kg/hm2。各处理中翻耕加秸秆还田稻季氮磷养分径流流失总量均为最低。从控制氮磷养分径流流失的角度看,秸秆还田与翻耕结合更能有效地减少氮磷养分径流浓度和径流流失量,对农田有着显著的保肥作用。
     4)利用PRNSM模型,依据太湖地区溧阳市20年降雨数据,对不同耕作方式及秸秆还田下稻季氮磷养分径流流失评估结果表明:所有处理下,20年平均氮素径流流失率在1.66-2.15%之间,20年中,最大氮素径流流失率在2.87-3.76%之间,最小氮素径流流失率在0.75-1.06%之间;20年平均磷素径流流失率在0.59-0.82%之间,最大磷素径流流失率在1.45-1.90%之间,最小磷素径流流失率在0.10-0.14%之间。无论是秸秆还田还是秸秆不还田,免耕条件下的氮磷养分径流流失量要稍高于旋耕,旋耕又要高于翻耕;相同耕作方式下,秸秆还田的氮磷养分径流流失量明显要低于秸秆不还田。某一处理下氮磷养分径流流失量较多的年份,其他处理的流失量也较多,流失量较少的年份,其他处理下的流失量也较小。一般情况下,降雨量越大,氮磷养分径流流失量也越大,但有时会产生一定的偏差。
     5)水葫芦对3种不同浓度的稻田排放水总氮的去除率分别为62.04%,76.75%,88.46%;对总磷的去除率分别为93.52%,88.46%,78.57%,其对水体中氮磷养分的净化效果与水体中氮磷养分浓度具有显著的相关性,对氮的去除率是随着水体氮素浓度的升高而降低,但对磷的去除率则随着水体中总磷浓度的升高而不断上升。构建的水塘-水田水循环系统,在整个水稻生育期内,水田产生了2592.42m3/hm2的田面水径流,由于水塘的调蓄作用,水田-水塘系统对系统外径流排放量为0;水稻生育期内稻田灌溉总量为6750.55m3/hm2,从系统外部向水田一水塘系统加入水量为3594.32m3/hm2,减少了从外部输入水量3156.23m3/hm2;系统在整个水稻季共拦蓄雨水5228.44m3/hm2,拦截雨水中氮磷的能力分别达1.49kg/hm2和0.03kg/hm2。
It is reported that there are50%nitrogen and60%phosphorus runoff from cropland into rivers and lakes resulted in eutrophication, and most of them are from paddy fields. In Tai Lake region, the paddy fields which accounts a large proportion of total cropland has become an important source of agricultural non-point pollution because of the large amount of rainfall in rice growth season, resulting in increased nitrogen and phosphorus runoff loss. As consequence, recognizing the characteristic and risk of nutrient runoff loss from the paddy fields in Tai Lake region, and find out good technologies and measures to control or reduce the nutrient runoff loss from paddy fields is an urgent problem to solve at present.
     In order to clarify the characteristic and risk of nitrogen and phosphorus runoff loss from the paddy fields in Tai Lake region, and find proper agricultural management practices, the fertilization and nutrient balance in Tai Lake region were analyzed, and the characteristic of the dynamic changes of nitrogen and phosphorus in the surface water and runoff loss under different farming practices with straw return in paddy fields were studied through questionnaire survey, data collection> simulation experiment, field control experiment and field monitoring experiment. Taking Liyang city as an example, we assessed the risk of nitrogen and phosphorus runoff loss from paddy under different farming practices with straw return in the region. In addition, in order to control and reduce the pollution runoff from paddy fields to external water, the purification effect of water hyacinth on removal ability of nitrogen and phosphorus from differently concentration paddy discharge water were comparatively studied. Based on the paddy-pond system with water cycling constructed, we studied the effects of the system on controlling the nitrogen and phosphorus runoff loss, so as to provide the technical supports relieve the eutrophication of Tai Lake for. The main conclusions are as follows:
     1. The annual average application of nitrogen in two cropping patterns in Taihu Lake region including Liyang, Yixing and Suzhou Wuzhong are556.2and488.0493.3kg/hm2respectively, and the surplus rates are100.2%and62.5%. In addition, the average application of nitrogen of rice in two cropping patterns is298.0kg/hm2, which is higher than wheat at229.1kg/hm2and rape at218. kg/hm2.Furthermore, the deficit rate of phosphorus in wheat-rice cropping pattern is9.0%, and it is-7.4%in rape-rice cropping pattern, with annual application being117.6and116.7kg/hm2, respectively. Meanwhile, there is more than50.0%deficit of potassium in both two cropping patterns, and the least annual application of potassium is107.3and105.3kg/hm2. In the two rice cropping patterns, the application of nitrogen had largest surplus resulting in eutrophication, however, the least application of potassium contributed to critical nutrient deficit, while the phosphorus was reasonable for nutrient balance.
     2. The dynamics of TN and TP concentrations of surface water in paddy field was monitored after fertilizing on the experiment plots in Liyang and Yixing in Taihu Region. Concerning on the TN concentrations in surface water, they both reached its highest level at the first day after fertilizer application. Then they descended after a few days, and then maintained at a constant level. It took7-8days to be constant after base fertilizer application, and took about5days after tilling fertilizer application. Either after base or tilling fertilizer application, it could be observed that Y (TN concentration of surface water of paddy field) and t (time after fertilizing) could be fitting by the linear equation (y=CO×e-kt) in both two experiment plots, and the fitting were highly significant. Concerning on the TP concentrations in surface water, they both raised rapidly after fertilizer applied in the two experiment plots. They reached the peak on the first day and then descended gradually to a constant level within8-9days. While there were a few tiny drifts in the following days until the paddy got out of drowning.
     3. Whether straw return or not, the runoff volume from different tillage mothods were sequenced as plough treatment     4. The nitrogen and phosphorus runoff loss in rice season were evaluated under different tillage methods and straw return, based on the precipitation data(1991-2010) in Liyang in Tai lake region through model. The results show that during last two decades, the average rate of nitrogen runoff loss under different treatments are from1.66%to2.15%, while the largest rate are from2.87%to3.76%, and the least rate are from0.75%to1.06%. The average rate of phosphorus runoff loss which is lower than nitrogen are from0.59%to0.82%, and the largest rate are from1.45%to1.90%, while the least rate are from0.10%to0.14%. Whether straw returns or not, the nitrogen and phosphorus loss rates are higher under no-tillage than those under rotary tillage and rotary are higher than plowing. The nitrogen and phosphorus runoff loss are significantly lower with straw return compared to those without it under the same tillage method. The nitrogen and phosphorus runoffloss are high or low under one treatment in certain year is similar to those under other treatments obviously. In addition, higher precipitation results in higher nutrient loss, however, mistakes could exist to sometimes.
     5. The removal rates of TN by water hyacinth from different concentration paddy discharge water were62.04%,76.75%and88.46%, respectively, while the removal rates of TP were93.52%,88.46%and78.57%. There was a significant correlation between the concentration of nitrogen and phosphorus in the paddy water and purification by water hyacinth. The average removal rate of TN by water hyacinth dropped with the increase of initial concentration of TN, while the average removal rate of TP increased with the increase of initial concentration of TP. In the paddy-pond circulation system, there was2592.42m3/hm2paddy runoff during the rice growth period, however, outward runoff emissions was0because of storage by pond; the irrigation in the system was6750.55m3/hm2, the added irrigation water from outside was3594.32m3/hm2, and reduced the water from outside was3156.23m3/hm2; Rainwater impounded by pond was5228.44m3/hm2during the whole growth season, which contained TN and TP of1.49and0.03kg/hm2, respectively.
引文
[1]Ahuja L R. Release of a soluble chemical from soil to runoff [J]. Thran.ASAE,1982,25:948-956.
    [2]Ahuja L R. The extent and nature of rainfall-soil interaction in the release of soluble chemicals to runoff [J]. Environ.Qual,1983,12:34-40.
    [3]Ahuja L R, Sharply A N. The depth of rainfall-runoff-soil interaction as determined by 32P[J]. Water Resour Res,1981,17:967-974.
    [4]Andraski T W, Bundy L G Relationships between phosphorus levels in soil and in runoff from corn production systems[J]. Journal of Environmental Quality,2003,32:310-316.
    [5]Atmaram M, A K Ghorai, Sita R S. Rainwater, soil and nutrient conservation in rainfed rice lands in Eastern India[J]. Agricultural Water Management,1998,38:45-57.
    [6]Caprenter S R, Caareo N F, Correll D L, et al.. NonPoint pollution of suracfe waters with phosphours and nitorgen[J]. Eeol.Appl:1998,8,559-568.
    [7]Caruso B S. Integrated assessment of Phosphorus in the Lake Hayes catchment,South Islandt,New Zealand[J]. Journal of Hydrology,2000,229:168-189.
    [8]Charles A C, Robert P B. A comparison of hydrologic characteristics of natural and created mainstream floodplain wetlands in pennsylvania[J]. Ecol.Eng,2000,14:221-231.
    [9]Chen Y W, Fan C X, Teubner K, et al. Changes of nutrients and phytoplankton Chlorophyll-a in a large shallow lake, Taihu [J]. China:an 8-year investigation.Hydrobiologia,2003,506/509:273-279.
    [10]Choudhary M A, Lal R,Dick W A. Long-term tillage effects on runoff and soil erosion under simulate rainfall for a central Ohio soil[J]. Soil&Tillage Research,1997,42 (3):175-184.
    [II]Chung S O, Kim H S, Kim J S. Model development for nutrient loading from paddy rice fields[J]. Agricultural Water Management,200362:1-17.
    [12]Cox F R, Hendricks S E. Soil test phosphorus and clay content effects on runoff water quality[J]. Journal of Environmental quality,2000,29:1582-1586.
    [13]Drewry J J, Newham L T H, Croke B F W. Suspended sediment,nitrogen and phosphorus concentrations and exports during stormevents to the Tuross estuary,Australi[J]. Journal of Environmental Management,2009,90:879-887.
    [14]Dzikiewicz M. Activities in non-Point Pollution control in rural areas of Poland[J]. Ecological Engineering,2000,14:429-434.
    [15]European Environment Agency. Europe's water quality general improving but agriculture stil 1 the main challenge. EEA Briefing,2003.
    [16]Foy R H, Whithers P J A. The contribution of agricultural phosphorus to eutrophication[J]. Proceedings No.365 of the Fertiliser society, England:Peterborough,1995.
    [17]Gascho G L, Wauchope J G, Davis J G, et al. Nitrate-nitrogen,soluble,and bioavaliable phosphorus runoff from simulated rainfall after fertilizer application[J]. Soil Science Society of America Journal, 1998,62:1711-1718.
    [18]Haith D A. A mathematical model for estimating losses in run off[J]. J.Environ.Qual,1980,9(3): 428-433.
    [19]Harris B L, Nipp T L, Waggoner D K, et al.Agricultural water quality program policy consideration[J]. J Environ Qual,1995,24:405-411.
    [20]Hart M R, Quin B F, Nguyen M L. Phosphorus runoff from agricultural land and directfertilizer effects:areview[J]. Journal of Environmental Quality,2004,33:1954-1972.
    [21]Haygarth P M, Jarvis S C. Soil derived phosphorus in surface runoff from grazed grassland lysimeters[J]. Water Re-search,1999,13:140-148.
    [22]Hesketh N, Brookes P C. Development of indicator for risk of phosphorus leaching[J]. Journal of Environmental Quality,2000,29(1):105-110.
    [23]Holtan H N. Procedures manual for sediment, phosphorus and nitrogen transport[M]. Computation with USDAHL. Report No. MP 943. Maryland Agricultural Experimental Station. University of Maryland, CollegePark, MD,1979.
    [24]Huber W C, Heaney J P, Nix S J. Storm water management model[M]. User's manual version III. Department of Environment Engineering and Science, University of Florida, FL,1981.
    [25]Iserman K. Share of agriculture in nitrogen and phosphorus emissions into the surface waters of western.Europe against the background of their eutrophication[J]. Fertilizer Research,1990,26: 253-269.
    [26]Jeon J H, Yoon C G, Ham J H, et al.. Model development for nutrient loading estimates from paddy rice fields in Korea[J]. Journal of Environmental Science and Health-Part B:Pesticides, Food Contaminants, and Agricultural Wastes,2004 B39 (5-6):845-860.
    [27]Jon E S, Karl W J, Williard, et al. Nutrient in agricultural surface runoff by riparian buffer zones in southern Illinois USA[J]. Agroforestry Syetems,2005,64:169-180.
    [28]Kenimer A L. PLIERS:Pesticide losses in erosion and run off simulator[J].Trans.ASAE,1989,32: 127~136.
    [29]Khoshmanesh A, Hart B T. Biotic uptake and release of phosphorus by a wetland sediment[J]. Environmental TechnoLogy,1998,20:85-91.
    [30]Kleinman P J, Sharpley A N, Veith T L, et al. Evaluation of phosphorus transport in surface runoff from packed soil boxes[J]. Environmental Quality,2004,33:1413-1423.
    [31]Kumar R, Ambasht R S, Srivastava A, et al.. Reduction of nitrogen losses through erosion by Leonotis nepetaefolia and sida acuta in simulated rain intensities[J]. Ecological Engineering,1997, 8(3):233-239.
    [32]Lai D Y F, Lam K C.Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water runoff[J]. Ecological Engineering,2009,35:735-743.
    [33]Loro J P. Intensity and duration of genitrification following application of manure and fertilizer to soil [J]. Environ.Qual,1997,26:706-713.
    [34]Lowrance R, Mclntyre S, Lance C. Erosion and deposition in a field/forest system estimated using cesium-137 activity[J]. Journal of Soil and Water Conservation,1988,43:195-199.
    [35]Mao J Q, Chen Q W, Chen Y C. Three-dimensional eutrophication model and application to Taihu Lake.china [J]. Journal of Environmental Sciences,2008, (20):278-284.
    [36]McDowel R W, Sharpley A N. Variation of phosphorus leached from Pennsy lvanian so ils amend edw ithm anu res, com posts or inorgan icfertilizer[J]. A gric. E cosyst. En viron.,2004,102:17-27.
    [37]Mitchell R D, Harrison R, Russell K J, et al.. The effect of crop residue incorporation date on soil inorganic nitrogen, nitrate leaching and nitrogen loss in three agriculturally influenced Latvian watersheds[J]. European Journal of Agronomy,2003,20(1-2):173-179.
    [38]Moller H E, Djurhuus J. Nitrate leaching as influenced by soil tillage and catch crop[J]. Soil& Till Res,1997,41(3/4):203-219.
    [39]Nguyen L M, Cooke J G, Mcbride G B. Phosphorus retention and release characteristics of sewage impacted wetland sediment[J]. Waster Air and Soil Pollution 1997,100(2):163-179.
    [40]Pote D H, Daniel T C, et al.. Relating extractable soil phosphorus to phosphorus losses in runoff [J]. Environ. Qual.,1996,60:855-859.
    [41]Pote D H, Daniel T C, Niehols D J, et al. Relationship between PhoSPhorus levels in three ultisols and PhoSPhorus concentrations in runoff[J]. Environ.Qusl.,1999,28:170-175.
    [42]Randall L D, Hailin Z, Jaekie L S, et al.Soll charaeteristics and PhosPhorus level effect on Phosphorus loss in run off[J]. Eviron.Qual,2(X)5(34):1640-1650.
    [43]Reddy K R, Kadlec R H, et al. Phosphorus retention in streams and wetlands[J]. Critical Reviews in Environmental Science and Technology,1999,29No.l:83-146.
    [44]Rolnkens M J M, Nelson D W. Phosphorus relationships in runoff from fertilized[J]. Eneiron.Qual, 1974,3:10-13.
    [45]Rousseau A, Dickinson W T, Rudra R P. A phosphorus transport model for small agricultral watershed[M]. ASAE Paper No.85~2526. American Society of Agricultral Engineers, Chicago, I, 1985.
    [46]Schab A P, Kulyingong S.Changes in phosphorus activities and availability indexes with depth after40 years of fertilization[J]. Soil Science,1989,147(3):179-186.
    [47]Schlesinger W H, Abrahmas A D, Parsons A J,et al. Nutrient losses in runoff from grassland and shrub land habits in Southern New Mexico:I.Rainfall simulation experiments[J]. Biogeochemistry, 1999,45:21-34.
    [48]Sharpley AN, The enrichment of soil phosphorus in runoff sediments. Environ Qual.1983, (9):521-526.
    [49]Sharpley AN. Dependenc of runoff Phosphorus on extraetable soil PhosPhorus[J].Environ.QuaL, 1995,24:920-926.
    [50]Sharpley A N, Chapra S C, Wedepohl R, et al. Managing agricultural phosphorus forprotection of surface waters:Issues and options[J]. Journal of Environmental Quality,1994,23:437-451.
    [51]Sharpley A N, Daniel T C, Edwards D R. Phosphorus movement in the landscape[J]. Journal of Production Agriculture,1993,6:492-500.
    [52]Sigua G C, Setward J S, Tweedale W A. Water quality monitoring and biological integrity assessment in the Indian River Lagoon. Florida:status, trends, and loadings(l988-1994) [J]. Journal of Environmental Management,2000,25,199-209.
    [53]Song Z W, Zheng Z P, Li J, et al. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China[J]. Ecological Engineering,2006,26:272-282.
    [54]Tapia-Vargas M, Tiscareo-Lpez M, Stone J J, et al. Tillage system effects on runoff and sediment yield in hillslope agriculture[J]. Field Crops Research,2001,69(2):173-182.
    [55]Torbert H A, Daniel T C, Lemunyon J L.Relationship of soil test phosphorus and sampling depth to runoff phosphorus in calcareous and nonealeareous soils[J]. Journal of Environmental Quality,2002, 31:1380-1387.
    [56]Troiano J. Influence of amount and method of irrigation water application on leaching of Atrazine[J]. Environ.Qual,1993,22:290-298.
    [57]US Enviormnenatl Poretetion Agency[M]. National management measures to control nonpoint source Pollution from agriculture.2000.
    [58]Vassilis Z A.Simulation of water and nitrogen dynamics in soils during waste water applications by using a finite-element model[J], Water Resources Management,2003,7:237-251.
    [59]Vighi M, Chiaudani G. Eutrophication in Europe,the role of agricultural activities[J]. In:HodgsonE.Reviews of Environmental Toxicology.Amsterdam:Elsevier,1987:213-257.
    [60]Wendi R C, Albert SEE. Estimating labile and dissolved in organie PhosPhate coneentrations insurface runoff[J]. J.Environ.Qual,1984,13:613-618.
    [61]William F, Ritter A S. Agricultural nonpoint source Pollutionwatershed management and hydrology [M].2001 by CRC Press LLC,Printed in the United states of America.
    [62]William Y B, Chang. Major Enviromental Changes since 1950 and the onset of accelerated eutrophication in Taihu lake, china. [J].Acta Palaentologica Sinica,1996,35(2):155-174.
    [63]Xiao E Y, Xiang W, Hu L H, et al. Mechanisms and assessment of water entrophication [J]. Yang et al./J zhejiangUnir Sci B,2008,9 (3):197-209.
    [64]Yulianti J S, Lence B J, Johnson G V, et al. Non-point source water quality management under input information uncertainty [J]. Journal of Environmental Management,1999,55:199-217.
    [65]Yu T, Meng W, Edwin O. Long-term variations and causal factors in nitrogen and phosphorus transport in the Yellow River[J]. China.Estuarine, Coastal and Shelf Science,2009:1-7.
    [66]Zeng S C, Su Z Y, Chen B G, et al. Nitrogen and Phosphorus runoff losses from orchard soils in south China as affected by fertilization depths and rates[J]. Pedosphere,2008,18(1):45-53.
    [67]Zhou H P, Gao C. Identifying critical source areas for non-point phosphorus loss in Chaohu watershed[J]. Environmental Science,2008,29(10):2696-2702 (in Chinese).
    [68]艾应伟,范志金.N肥施肥深度对小麦吸收利用N的影响[J].土壤学报,1997,34(2):146-151.
    [69]卞立平,焦隽,李慧,等.南京地区水稻田N素径流流失模拟模型[J].生态与农村环境学报,2008,24(3):89-93.
    [70]曹林奎,朱江,陈国军,等.黄浦江上游蔬菜田氮素流失规律测坑研究[J].环境污染与防治,2005,27(1):34-38.
    [71]曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能:I.稻田土壤磷素径流迁移流失的特征[J].土壤学报,2005,42(5):799-804.
    [72]柴超.长江口水域富营养化现状与特征研究[D].青岛:中国科学院海洋研究所,2006:1-8.
    [73]崔力拓,李志伟.洋河流域典型旱坡地土壤磷素淋失风险研究[J].农业环境科学学报,2008,27(6):2419-2422.
    [74]陈斌,胥学新,代运全.城市郊区畜牧场的污染与被污染[J].家畜生态,1997,18(2):31-34.
    [75]陈火君,卫泽斌,吴启堂,,等.薄膜覆盖减少化肥养分流失研究[J].环境科学,2010,31(3):775-780.
    [76]陈琨,赵小蓉,王昌全,等.成都平原不同施肥水平下稻田地表径流氮、磷流失初探.西南农业学报,2009,22(3):685-689.
    [77]陈利顶,傅伯杰.农田生态系统管理与非点源污染控制[J].环境科学,2000,21(3):98-100.
    [78]陈西平.三峡库区农田径流污染情势分析及对策[J].环境污染与防治,1992,14(5):31-34.
    [79]陈欣,姜曙千,张克中,等.红壤坡地磷素流失规律及其影响因素[J].水土保持学报,1999, 5(3):38-41.
    [80]程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染控制[J].农业环境科学学报,2005,24(增刊):1]8-124.
    [81]成芳,凌去非,徐海,等.太湖水质现状与主要污染物成分分析[J].上海海洋大学学报,2010,19(1):105-110.
    [82]程文娟,史静,夏运生,等.滇池流域农田土壤氮磷流失分析研究[J].水土保持学,2008,22(5): 52-55.
    [83]崔远来,李远华,吕国安,等.不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展,2004,15(3):280-285.
    [84]丁孟,杨仁斌,冯国禄,等.微区模拟控排水条件下田面水氮磷流失特征及其减排效能研究[J].江西农业学报,2010,22(5):122-124.
    [85]窦培谦,王晓燕,王丽华.非点源污染中氮磷迁移转化机理研究进展[J].首都师范大学学报,2006,27(2):93-98.
    [86]段亮,段增强,常江.地表管理与施肥方式对太湖流域旱地氮素流失的影响[J].农业环境科学学报,2007,26(3):813-818.
    [87]段永惠,张乃明,张玉娟.农田径流氮磷污染负荷的田间施肥控制效应[J].水土保持学报,2004,18(3):130-132.
    [88]段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输山的影响研究[J].土壤,2005,37(1):48-51.
    [89]范成新,相崎守弘.好氧和厌氧条件对霞浦湖沉积物一水界面氨磷交换的影响[J].湖泊科学,1997,9(4):337-342.
    [90]范成新,羊向东,史龙新,等.江苏湖泊营养化特征、成因及解决途径[J].长江流域资源与环境,2005,14(2):218-222.
    [91]丰江帆,滕学伟.基于GIS的太湖蓝藻预警系统研究[J].环境科学与技术,2006,29(9):60-611.
    [92]冯绍元.排水条件下饱和土壤中氮肥转化与运移模拟[J].水利学报,1995,221(6):29~33.
    [93]冯太国,万新南.富营养化对湖泊的危害及修复技术探讨[J].水土保持研究,2006,13(2)145-146/161.
    [94]付时丰,罗雪梅,杜立字,等.沈阳市农业污染现状的初步调查[J].环境保护科学,2002,28: 31-33.
    [95]傅涛,倪九派,魏朝富,等.雨强对三峡库区黄色石灰士养分流失的影响[J].水土保持学报,2002,16(2):33-35.
    [96]傅涛,倪九派,魏朝富,等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-74.
    [97]高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学,2001,22(4):67-72.
    [98]高超,朱继业,朱建国.不同土地利用方式下的地表径流磷输出及其季节性分布特征[J].环境科学学报,2005,25(11):1543-1549.
    [99]关君蔚.水土保持原理[M/OL].北京:中国林业出版社,1996.
    [100]郭春霞,沈根祥,黄丽华,等.精确滴灌施肥技术对大棚土壤盐渍化和氮磷流失控制的研究[J].农业环境科学学报,2009,28(2):287-291.
    [101]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展,2002,2(5):500-506.
    [102]郭相平,张展羽,殷国玺.稻田控制排水对减少氮磷损失的影响[J].上海交通大学学报,2006,24(3):307-310.
    [103]郭旭东,陈利顶,傅伯杰. 土地利用/土地覆盖变化对区域生态环境的影响[J].环境污染治理技术与设备,1999,7(6):66-75.
    [104]郝红艳,单爱琴,纪振,等.徐州市云龙湖富营养化特征分析及评价[J].资源开发与市场,2006,22(2):121-122.
    [105]贺宝根,周乃晟,胡雪峰,等.农田降雨径流污染模型探讨-以上海郊区农田氮素污染模型为例[J].长江流域资源与环境,2001,10(2):159~165.
    [106]贺丽虹,沈颂东.水葫芦对水体中氮磷的清除作用[J].淡水渔业,2005,35(3):7-9.
    [107]洪林,李瑞鸿.南方典型灌区农田地表径流氮磷流失特性[J].地理研究,2011,30(1):115-123.
    [108]黄建,杜少文.人工湿地技术及其在我国北方地区的研究进展[J].中国海洋大学学报,2010,40(11):79-84.
    [109]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境,2001,10(1):6-10.
    [110]黄沈发,陆贻通,沈根祥,等.上海郊区旱作农田氮素流失研究[J].农村生态环境,2005,21(2):50-53.
    [111]黄沈发,沈根祥,唐浩,等.上海郊区稻田氮素流失研究[J].环境污染与防治,2005,27(9):651-654.
    [112]黄涛,荣湘民,刘强,等.不同施肥模式对春玉米产量、品质与氮肥利用及玉米地氮流失的影响[J].土壤,2010,42(6):915-919.
    [113]黄宗楚.上海旱地农田氮磷流失过程及环境效应研究[D].上海:华东师范大学,2005.
    [114]蒋锐,朱波,唐家良等.紫色丘陵区小流域典型降雨径流氮磷流失特征[J]. 农业环境科学学报,2008,27(4):1353-1358.
    [115]江苏省环境监测协会.江苏省环境状况公报[EB/OL].江苏省环保厅,1997-2010.
    [116]焦荔.USLE模型及营养物流失方程在西湖非点源污染调查中的应用[J].环境污染与防治,1991,13(6):5-8/17.
    [117]焦平金,许迪,王少丽.汛期不同作物种植模式下地表径流氮磷流失研究[J].水土保持学报,2009,23(2):15-20.
    [118]金相灿等.中国湖泊富营养化[M].北京:中国环境科学出版社,1992.
    [119]雷秋良.上海水网地区平方公里尺度卜农田氮磷流失特征研究[D].北京:中国农业科学研究院,2007.
    [120]李慧.基于田面水总氮变化特点和“水-氮耦合”机制的稻田氮素径流流失模型研究[D].南京:南京农业大学,2008.
    [121]李荣刚,夏源陵,吴安之,等.江苏太湖地区水污染物及其向水体中的排放量[J].湖泊科学,2000,12(2):147-153.
    [122]李荣刚,夏源陵,吴安之,等.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29(2):21-25.
    [123]李晓霞,白洋.浅谈河套灌区农田氮磷流失量及对乌梁素海输入量的估算[J].内蒙古环境科学,2009,21(3):44-49.
    [124]李世清,李生秀.半干旱地区农田生态系统中的硝态氮的淋失[J].应用生态学报,2000,11(2): 240-242.
    [125]李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响[J].应用生态学报,2002,13(11):1421-1424.
    [126]梁新强,田光明,李华,等.天然降雨条件下水稻田氮磷径流流失特征研究[J].水土保持学报,2005,19(1):59-63.
    [127]刘秉正,吴发启.渭北高原水土流失对土壤肥力与生产力影响的初步研究[J].西北水土保持研究所集刊,1990:104-113.
    [128]刘经荣,张德远.不同肥料结构对稻田水流中养分平衡的影响[J].江西农业大学学报,1994,16(1):328-332.
    [129]刘兰岚.上海市中心城区土地利用变化对径流的影响及其水环境效应研究[D].上海:华东师范大学,2007.
    [130]刘立岩,吕兴娜.用水葫芦净化水质中氮、磷污染物的研究分析[J].丹东纺专学报,2005,12(46):40-41.
    [131]刘平乐,农业面源污染及其防治[J].甘肃科技,2011,27(3):147-150.
    [132]龙天渝,李继承,刘腊美.嘉陵江流域吸附态非点源污染负荷研究[J].环境科学,2008,29(7):1811-1817
    [133]鲁如坤.土壤-植物营养学:原理和施肥[M].北京:化学工业出版社,1998.
    [134]鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究[J].土壤通报,1996,27(4):45-51.
    [135]罗春燕.我国东南水网平原地区不同土地利用方式氮磷流失特征[D].北京:中国农业科学院,2008.
    [136]罗艺,吴福忠,杨万勤,等. 四川盆地紫色丘陵区不同种植模式下氮流失特征[J]. 环境科学学报,2010,30(11):2221-2228.
    [137]吕唤春,陈英旭,方志发,等.千岛湖流域坡地利用结构对径流氮、磷流失量的影响[J].水土保持学报,2002,16(2):91-92.
    [138]吕家珑,FortuneS, Brookes PC.土壤磷淋溶状况及其Olsen磷“突变点”研究[J].农业环境科学学报,2003,22(2):142-146.
    [139]马军花,任理,龚元石,等.冬小麦生长条件下土壤氮素运移动态的数值模拟.水利学报,2004,(3):103~110.
    [140]马继侠,袁旭音,徐海波.浅谈农田面源污染的生态控制技术[J].浙江水利科技,2009,162(2):1-3.
    [141]马立珊,汪祖强,张水铭,等.苏州水网城市暴雨径流污染的研究[J].环境科学,1986,7(6):2-6.
    [142]马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [143]马现,王兆粤,陈欣,等.不同雨强条件下红壤坡地养分流失特征研究[J].水土保持学报,2002,16(3):16-19.
    [144]马永生,张淑英,邓兰萍.氮、磷在农田沟渠湿地系统中的迁移转化机理及其模型研究进展[J].甘肃科技,2005,21(2).
    [145]孟伟,于涛,郑丙辉,等. 黄河流域氮磷营养盐动态特征及主要影响因素[J]. 环境科学学报,2007,27(12):2046-2051
    [146]潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学,2003,24(3):91-95.
    [147]彭畅,朱平,牛红红,等.农田氮磷流失与农业非点源污染及其防治[J].土壤通报2010,41(2):508-512.
    [148]钱益春,何平.1998-2006年太湖水质变化分析[J].江西农业大学学报,2009,30(1):370-374.
    [149]邱多生,沈生元,柳敏,等.水稻生长期间氮磷流失形态的研究[J].上海农业科技,2009(2):21-23.
    [150]邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究[J].农业环境科学 学报,2004,23(4):740-744.
    [151]单保庆,白颖.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37.
    [152]石丽红,纪雄辉,李洪顺等.湖南双季稻田不同氮磷施用量的径流损失.中国农业气象,2010,31(4):551-557.
    [153]世界资源研究所、联合国环境规划署、联合国开发计划署编.世界资源报告(1992-1993)[M].北京:中国环境科学出版社,1993.
    [154]司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化[J].土壤,2000,(4):188-193.
    [155]宋关玲.生物修复技术在水体富营养化治理过程中的应用[J].安徽农业科学,2007,35(27):8597-8598.
    [156]汤秋香,任天志,翟丽梅,等.洱海北部地区不同轮作农田氮、磷流失特性研究[J].植物营养与肥料学报,2011,7(3):608~615.
    [157]王桂苓,马友华,孙兴旺,等.巢湖流域麦稻轮作农田径流氮磷流失研究[J].水土保持学报,2010,24(2):6-10.
    [158]王静,熙盛,允青.秸秆覆盖与平衡施肥对巢湖流域农田氮素流失的影响研究[J].土壤通报,2011,42(2):331-335.
    [159]王珂,朱荫湄,王人潮.土壤耕作与农业面源污染[J].耕作与栽培,1996,(2):15-17.
    [160]王庆仁,李继云.论合理施肥与土壤环境的可持续性发展[J].环境科学进展,1999,7(2):116-123.
    [161]王全九.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报,1998,4(2):41-46.
    [162]王全九,沉晋,王文焰,等.降雨条件下黄土坡面溶质随地表迁移试验研究[J].水土保持学报,1993,7(1):11-17.
    [163]王淑芬.水体富营养化及其防治[J].环境科学与管理,2005,30(6):63-65.
    [164]汪涛,朱波,等.不同施肥制度下紫色土坡耕地氮素流失特征[J].水土保持学报,2005,19(5):65-68.
    [165]王莹,彭世彰,焦健,等.不同水肥条件下水稻全生育期稻田氮素浓度变化规律[J].节水灌溉,2009,9:12-16.
    [166]王宗明,张柏,宋开山,等.农业非点源污染国内外研究进展[J].农业资源与环境科学,2007,23,468-472.
    [167]吴春艳,庄舜尧,杨浩,等.土壤磷在农业生态系统中的迁移[J].东北农业大学学报,2003,34(2):210-218.
    [168]邬伦,李佩武.降雨——产流过程与氮、磷流失特征研究[J].环科学学报,1996,6(1):111-115.
    [169]吴生才,陈伟明.水体富营养化的渐进性和灾害性[J].灾害学,2004,19(2):13-17.
    [170]吴岳.灌溉条件下氮磷钾随水流失污染水体的试验初报[J].农业环境保护,1986,5(5):42-43.
    [171]肖顺勇,唐建初,刘钦云,等.湖南省农业面源污染分析及其防治策略[J].农业质量标准,2006,5:23-25.
    [172]肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究[D].沈阳:沈阳农业大学硕士论文,2004.
    [173]肖强,张维理,王秋兵,等.太湖流域麦田土壤氮素流失过程的模拟研究[J].植物营养与肥料学报,2005,11(6):731-736.
    [174]谢红梅,朱波.农田非点源氮污染研究进展[J].生态环境,2003,12(3):349-352.
    [175]谢学俭,陈晶中,宋玉芝,等.磷肥施用量对稻麦轮作土壤中麦季磷素及氮素径流损失的影响[J].农业环境科学学报,2007,26(6):2156-2161.
    [176]徐琪,杨林章,董元华,等.中国稻田生态系统[M].北京:中国农业出版社,1998.
    [177]徐谦.我国化肥和农药非点源污染状况综述仁[J].农村生态环境,1996,12(2):39-43.
    [178]薛旭初,宁波市农业面源污染现状及对策研究,2006.
    [179]衙龙元,幕启铭,秦伯强,等.太湖梅粱湾沉积物水界面氮迁移特征初步研究[J].湖泊科学,1998,10(4):41-47.
    [180]杨丽霞,杨桂山,苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响[J].中国环境科学,2007,27(4):518-23.
    [181]杨林章,周小平,王建国,等. 用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J].生态学杂志,2005,24(11):1371-1374
    [182]杨蓓蓓,刘敏,张丽佳,等.稻麦轮作农田系统中磷素流失研究[J].华东师范大学学报(自然学科版),2009,11(6):56-63.
    [183]叶文瑾.太湖富营养化水体和底泥中微生物群落的分子生态学研究[D].上海:上海交通大学,2009:1-3.
    [184]于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,2002,21(5):424-427.
    [185]袁从祎,赵强基,吴宗云.“三水”作物在农田生态系统物质循环中的潜力[J].江苏农业科学,1983(9):27-29.
    [186]袁夫臣.水体富营养化及其防治[J].现代农业科学,2008,15(4):42-44.
    [187]曾阿妍,郝芳华,张嘉勋,等.内蒙古农业灌区夏、秋浇的氮磷流失变化[J].环境科学学报,2008,28(5):838-844.
    [188]张大弟,陈佩青,支月娥.上海市郊4种地表径流及稻田水中的污染物浓度[J].上海环境科学,1997,169:4-6.
    [189]张刚,王德建,陈效民.太湖地区稻田缓冲带在减少养分流失中的作用[J].土壤学报,2007,44(5):873-877.
    [190]张光生,王明星,叶亚新,等.太湖富营养化现状及其生态防治对策[J].中国农学通报,2004,20(3):235-237.
    [191]张继宗.太湖平原地区稻麦轮作方式下农田径流氮磷流失研究[D].沈阳农业大学,2003.
    [192]张继宗.太湖水网地区不同类型农田氮磷流失特征[D].北京:中国农业科学院博士学位论文,2006.
    [193]张继宗,雷秋良,左强,等.模拟降雨条件下太湖地区稻田氮素径流流失特征[J].湖北农业科学,4(11):2688-2692.
    [194]张建华,赵京,林超文,等.川中丘陵区坡地耕作水土保持与农业生产的发展[J].水土保持学报,2001,15(1):81-84.
    [195]张思聪,吕贤弼,黄永刚.灌溉施肥条件下氮素在土壤中迁移转化的研究[J].水利水电技术,1999,30(5):6-8.
    [196]章明奎,郑顺安,王丽平.粪肥添加明矾对降低农田磷和重金属流失的作用[J].水土保持学报,2007,21(1):65-67.
    [197]张宁红,黎刚,郁建桥,等.太湖蓝藻水花暴发主要特征除析[J].中国环境监测,2009,25(1):71-73.
    [198]张认连.模拟降雨研究水网地区农田氮磷的流失[D].北京:中国农业科学院,2004.
    [199]张世贤.三张图表说喜忧一中国面临的严峻挑战与机遇[J].中国农村,1996,(5):6-9.
    [200]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策I:21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.
    [201]张兴昌.耕作及轮作对土壤氮素径流流失的影响[J].农业工程学报,2002,18(1):70-73.
    [202]张兴昌,郑剑英,吴瑞俊,等.氮磷配合对土壤氮素径流流失的影响[J].土壤通报,2001,32(3): 110-112.
    [203]张亚丽,张兴昌,邵明安,等.秸秆覆盖对黄土坡面矿质氮素径流流失的影响[J].水土保持学报,2004,18(1):85-88.
    [204]张毅敏,张永春,左玉辉.前置库技术在太湖流域面源污染控制中的应用探讨[J].环境污染与防治,2003,12(6):342-344.
    [205]张振克.太湖流域水环境问题、成因与对策[J].长江流域资源与环境,1999,8(1):81-87.
    [206]张志剑,王光火,王柯,等.模拟水田的土壤磷素溶解特征及其流失机制[J].土壤学报,2001,38(1):139-143.
    [207]郑建初,常志州,陈留根,等.水葫芦治理太湖流域水体氮磷污染的可行性研究[J].江苏农业科学,2008(3):247-250.
    [208]郑世宗,陈雪,张志剑.水稻薄露灌溉对水体环境质量影响的研究[J].中国农村水利电,2005,3:7-8/11.
    [209]赵金香,王兆林,刘艳青.浅析水体富营养化[J].环境科学动态,2003,(1):58-59.
    [210]赵林萍.施用有机肥农田氮磷流失模拟研究[D].武汉:华中农业大学,2009.
    [211]钟勇.美国水土保持中的缓冲带技术[J].中国水利,2004,(10):63-65.
    [212]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学,2008,29(10):2696-2702.
    [213]朱继业,高超,朱建国,等.不同农地利用方式下地表径流中氮的输出特征[J].南京大学学报(自然科学版),2006,42(6):621-626.
    [214]朱广伟.太湖富营养化现状及原因分析[J].J.LakeSci.(湖泊科学),2008,20(1):21-26.
    [215]朱铁群.我国水环境农业非点源污染防治研究简述[J].农村生态环境,2000,16(3):55-57.
    [216]朱新开,盛海君,夏小燕,等.稻麦轮作田氮素径流流失特征初步研究[J].生态与农村环境学报,2(X)6,22(1):38-166.
    [217]朱兆良.关于土壤氮素研究中的几个问题[J].迈向21世纪的土壤科学,南京中国土壤学会编,1999,58-61.
    [218]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [219]朱钟麟,陈一兵,林超文.土壤侵蚀与平衡施肥[J].西南农业学报,1999,12(专辑)
    [1]Steven W W, Sarah E F, Gary R L, et al.. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu (Lake Tai), China. Harmful Algae,2011,10(2):207-215.
    [2]Tian Y H, Yin B, Yang L Z, et al.. Nitrogen Runoff and Leaching Losses During Rice-Wheat Rotations in Taihu Lake Rgion, China. Pedosphere,2007,17(4):445-456.
    [3]Zuo Q, Lu C A and Zhang W L. Preliminary study of phosphorus runoff and drainge from paddy field in the Taihu Basin. Chemosphere,2003,50(6):689-694.
    [4]曹志洪.施肥与水体环境质量——论施肥对环境的影响(2)[J].土壤,2003,35(5)353-363.
    [5]陈浮,濮励杰,曹慧,等.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报,2002,39(2):237-245.
    [6]程波,张泽.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报,2005,24(增刊):118-124.
    [7]高利伟,马林,张卫峰,等.中国作物秸秆养分资源数量估算及其利用状况[J].农业工程学报,2009,25(7):173-175.
    [8]郭红岩,王晓蓉,朱建国,等.太湖流域非点源污染对水质影响的定量化研究[J].农业环境科学学报,2003,22(2):150-153.
    [9]冀宏杰,张认连,武淑霞,等.太湖流域农田肥料投入与养分平衡状况分析[J].中国土壤与肥料,2008,(5):70-75.
    [10]江苏省统计局.江苏省农村统计年鉴[M].北京:中国统计出版社,2000-2009.
    [11]李荣刚,杨林章,皮家欢.苏南地区稻田土壤肥力演变,养分平衡和合理施肥[J].应用生态学报,2003,14(2):1889-1892.
    [12]刘庄,郑刚,张永春,等.社会经济活动对太湖流域的生态影响分析[J].生态与农村环境学报,2009,25(1):27-31.
    [13]鲁如坤.土壤-植物营养学原理与施肥[M].北京:化学工业出版社,1998,6:16-19.
    [14]秦伯强,吴庆农,高俊峰,等.太湖地区的水资源与水环境[J].自然资源学报,2002,17(2):221-228.
    [15]王绪奎,张林钱,芮雯奕,等.近20年江苏省环太湖稻田土壤碳氮及速效磷钾含量的动态特征[J].江苏农业科学,2007,6:287-293.
    [16]沃飞,陈效民,吴华山,陈力.太湖地区农田水环境中氮和磷时空变异的研究[J].中国生态农业学报,2007,15(6):30-34.
    [17]夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境,2003,12(1):45-49.
    [18]薛峰,颜延梅,乔俊,等.太湖地区稻田减量施肥的环境效益和经济效益分析[J].生态与农村环境学报,2009,25(4):26-31,51.
    [19]薛利红,俞映惊,杨林章.太湖流域稻田不同氮肥管理模式下的氮素平衡特征及环境效应评价[J].环境科学,2011,32(4):1133-1138.
    [20]晏娟,沈其容,尹斌,等.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤,2009,41(3):372-376.
    [1]Carpenter S R, Caraco N F, Correll D L, et al.. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecological Application,1998,8 (3):559-568.
    [2]Daniel J C, Hans W P, Robert W H, et al.. Controlling Eutrophication:Nitrogen and Phosphorus[J]. Science,2009,323(20):1014-1015.
    [3]Goulding K W T, Matchett L S, Heckrath G, et al.. Nitrogen and phosphorus flows from agricultural hillslopes[M]. Advance in Hillslope Processes, Volume 1. Edited by Anderson M Gand Brooks S M,1998.213-227.
    [4]Parry R. Agricultural phosphorus and water quality:An U. S. Environment al Protection Agency perspective[J]. J. Environ.Qual.,1998,27:258-261.
    [5]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [6]陈志良,程炯,刘平,等.暴雨径流对流域不同土地利用土壤氮磷流失的影响[J].水土保持学报,2008,22(5):30-33.
    [7]程文娟,史静,夏运生,等.滇池流域农田土壤氮磷流失分析研究[J].水土保持学报,2008,22(5):52-55.
    [8]范成新,羊向东,史龙新,等.江苏湖泊富营养化特征成因及解决途径[J].长江流域资源与环境,2005,14(2):218-223.
    [9]高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学,2001,22(4):67-72.
    [10]高忠江,施树良,李钰,等.SPSS方差分析在生物统计的应用[J].现代生物医学进展,2008,8(11):2116-2120.
    [11]金洁,杨京平,施洪鑫,等.水稻田面水中氮磷素的动态特征研究[J].农业环境科学学报,2005,24(2):357-361.
    [12]金相灿主编.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [13]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,1999.
    [14]马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [15]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [16]王桂苓,马友华,石润圭,等.巢湖流域种植业面源污染现状与防治对策[J].中国农学通报,2008,24(增刊):242-245.
    [17]谢学俭,陈晶中,肖琼,等.不同磷水平处理对水稻田面水中磷氮浓度动态变化的影响[J].安徽农业科学,2007,35(27):8568-8570.
    [18]杨育红,阎百兴.降雨-土壤-径流系统中氮磷的迁移[J].水土保持学报,2010,24(5):27-30.
    [19]张志剑,王珂,朱荫湄,等.水稻田表水磷素的动态特征及其潜在环境效应的研究[J].中国水稻科学,2000,14(1):55-57.
    [20]朱利群,田一丹,李慧,等.不同农艺措施条件下稻田田面水总氮动态变化特征研究[J].水土保持学报,2009,23(6):85-89.
    [1]Gao C, Sun B, Zhang T L. Sustainable nutrient management in Chinese ag-riculture:Challenges and perspect ive[J].Pedosphere,2006,16(2):253-263.
    [2]Royer T, David M, Gentry L. Timing of riverine export of nitrate and phosphorus from agricultural watersheds in Illinois:implications for reducing nutrient loading to the Mississippi River [J]. Environmental Science and Technology,2006,40 (13):4126-4131.
    [3]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [4]范成新.太湖非点源污染负荷与对策研究[J].河海大学学报,1996,24(专辑):64-69.
    [5]冯国禄,杨仁斌.耕作模式和滞水时间对稻田中氮磷动态变化的影响研究[J].农业环境科学学报,2011,30(5):917-924.
    [6]高忠江,施树良,李钰,等.SPSS方差分析在生物统计的应用[J].现代生物医学进展,2008,8(11):2016-2120.
    [7]郭相平,张展羽,殷国玺.稻田控制排水对减少氮磷损失的影响[J].上海交通大学学报,2006,24(3):307-310.
    [8]郭智,肖敏,陈留根,郑建初.稻麦两熟农田稻季养分径流流失特征[J].生态环境学报,2010,19(7):1622-1627.
    [9]黄化刚,张锡洲,李廷轩,等.典型设施栽培地区养分平衡及其环境风险[J].农业环境科学学报.2007,26(2),676-682.
    [10]黄锦法,俞慧明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响[J].浙江农业科学,1997,11(5):226-228.
    [11]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636.
    [12]冀宏杰,张认连,武淑霞,等.太湖流域农田肥料投入与养分平衡状况分析[J].冀宏杰,张认连,武淑霞.2008(5).
    [13]江永红,宇振荣,马永良.秸秆还田对农业生态系统和作物生长的影响[J].土壤通报,2001,32(5):209-213.
    [14]金洁,杨京平,施洪鑫,等.水稻田面水中氮磷素的动态特征研究[J].农业环境科学学报,2005,24(2):357-361.
    [15]刘巽浩.耕作学[M].北京:中国农业出版社,1994:210-247.
    [16]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [17]索东让,韩顺斌.河西农田养分投入产出平衡的长期定位研究[J].水土保持通报.2008,28(3), 53-76.
    [18]汪军,王德建,张刚.秸秆还田下氮肥用量对稻田养分淋洗的影响[J].中国生态农业学报,2010,18(2):316-321.
    [19]谢德体,魏朝富,杨剑虹.自然免耕下的稻田生态系统[J].应用生态学报,1994,5(4):415-421.
    [20]张锡洲,刘岱,李廷轩,等.资中县农田养分平衡与土壤养分变化初探[J].西南农业学报.2001,14,21-25.
    [21]张锡洲,周建新,李廷轩,等.川中丘陵区农田养分变化与可持续发展研究[J].水土保持学报.2004,18(2),84-132.
    [22]张志剑,董亮,朱荫湄.水稻田面水氮素的动态特征、模式表征及排水流失研究[J].环境科学学报,2001a,21(4):475-480.
    [23]张志剑,王光火,王珂,等.模拟水田的土壤磷素溶解特征及其流失机制[J].土壤学报,2001b,38(1):139-143.
    [24]郑世宗,陈雪,张志剑.水稻薄露灌溉对水体环境质量影响的研究[J].中国农村水利水电,2005,(3):7-8,11.
    [25]朱普平,常志州,孙丽,等.麦草还田及耕作方式对稻田水氮、磷浓度和水稻产量的影响[J].江苏农业科学,2004,(6):151-153.
    [26]秦祖平,徐琪.水循环对太湖地区稻田生态系统中养分平衡的影响[J].农村生态环境,1989,(2):22-25.
    [27]马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究[J].应用生态学报,1992,3(4):346-354.
    [28]张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.
    [29]张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版),2004,28(5):6-10.
    [1]Carpenter S R, Caraco N F, Correll D L, et al.. Nonpoint Pollution of Surface Water with Phosphorus and Nitrogen[J]. Ecological Application,1998,8(3):559-568.
    [2]Kothyari B P, Verma P K, Joshi B K, Kothyarim U C. Rainfall-run off-soil and nutrient loss relationships for plot size areas of bhetagad watershed in Central Himalaya India[J]. Journal of hydrology,2004,293(1-4):137-150.
    [3]Schilling K E, Libra R D. The relationship of nitrate concentration in streams to row crop land use in Iowa[J]. J Environ Qual,2000,29:1846-1851.
    [4]Smith D R, Owens P R, Leytem A B et al.. Nutrient losses from manure and fertilizer applications as impacted by time to first run off event[J]. Environmental Pollution,2007,147(1):131-137.
    [5]Timmons D.R, Holtr F, Latterell J. Leaching of Crop Residues as a Source of Nutrients in Surface Run off Water. Water Resources Research,1970,6(5):1367-1375.
    [6]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [7]卞立平,焦隽,李慧,等.南京地区水稻田N素径流流失模拟模型[J].生态与农村环境学报2008,24(3):89-93.
    [8]黄锦法,俞慧明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响[J].浙江农业科学,1997,11(5):226-228.
    [9]黄云凤,张珞平,洪华生,等.小流域氮流失特征及其影响因素[J].水利学报,2006,37(7):801-806.
    [10]金洁,杨京平,施洪鑫,陈俊,郑洪福.水稻田面水中N磷素的动态特征研究[J].农业环境科学学报,2004,24(2):357-361.
    [11]李贵宝,尹澄清,周怀东.中国“三潮”的水环境问题和防治对策与管理[J].水问题论坛,2001,(3):36-39.
    [12]梁新强,田光明,李华,陈英旭,朱松.天然降雨条件下水稻田N磷径流流失特征研究[J].水土保持学报,2005.19(1):59-63.
    [13]刘培斌,张瑜芳.稻田中N素流失的田间试验与数值模拟研究[J].农业环境保护,1999,18(6):241-245.
    [14]刘润堂,许建中,冯绍元,等.农业面源污染对湖泊水质影响的初步分析[J].中国水利,2002,(6):54-56.
    [15]鲁如坤.土壤农业化学分析方法[M].中国农业科技出版社,1999.
    [16]司友斌,王慎强,陈怀满.农田N、P的流失与水体富营养化[J].土壤,2000,32(4):188-193.
    [17]王强,杨京平,沈建国,等.稻田田面水中三氮浓度的动态变化特征研究[J].水土保持学报,2003, 17(3):51-54.
    [18]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施[J].生态学报,2002,22(3):291-299.
    [19]谢德体,魏朝富,杨剑虹.自然免耕下的稻田生态系统[J].应用生态学报,1994,5(4):415-421.
    [20]杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制途径[J].中国水利,2004,(20):29-30.
    [1]Chapin F S, Brain H W, Richard J H. Biotic control over the function of ecosysterms[J]. Science, 1997,(277):500-504.
    [2]Charles A C, Robert P B. A comparison of the hydrologic characteristics of natural and created main stream flood plain wetlands in Pennsyvania[J]. Ecol, Eng,2000,14:221-231.
    [3]Fu B J, Chen L D, Ma K M, et al. The relationships between land use and soil conditions in the hilly area of the losses plateau in northern Shanxi, China[J]. Catena,2000,39:69-78.
    [4]Sharply A N, Chapra S C, Wedepohl R, et al.. Managing agricultural phosphorus for protection of surface waters:Issues and options[J]. Journal of Environmental Quality,1994,23:437~451.
    [5]Matsumura Y. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan[J]. Energy Conversion and Management.2002(43):1301-1310.
    [6]Parveen S, Feroza B, Hossa N M, et al. Production of biogas from cow dung by adding water hyacinth and mud[J]. Banggladesh J Sci Ind Res,1998,33(3):369-372.
    [7]Tufford D L, Mckellar H N,. Hussey J R. In-stream nonpoint source prediction with land-use proximity and seasonality[J]. J Environ Qual,1998,27:100-111.
    [8]Vendsen S M, Kronvang B. Retention of nitrogen and phosphorus in a Danish lowland river system: implications for the export from the watershed[J]. Hydrobiogia,1993,251:123-135.
    [9]陈利顶,付博杰,张淑荣,等.异质景观中非电源污染动态变化研究[J].生态学报,2002,22(6):808-816.
    [10]陈锡涛,叶春芳,杉辛野,王伟.水生维管束植物自屏对水质净化资源化效应的研究[J].环境科学与技术,1994,65(2):1-4.
    [11]贾宏宇,张颖,郭伟,等.农村水塘系统对非点源水污染的调控作用研究[J].环境科学与技术,2004,27(3):7-9.
    [12]刘国峰,张志勇,严少华.大水面放养水葫芦对太湖竺山湖水环境净化效果的影响[J].环境科学,2011,32(5):1299-1304.
    [13]潘根兴,焦少俊,李恋卿,等.低施磷水平下不同施肥对太湖地区黄泥土磷迁移性的影响[J].环境科学,2003,24(3):91-95.
    [14]濮培民,李正魁,王国祥.提高水体净化能力控制湖泊富营养化[J].生态学报,2005,25(10):2757-2562.
    [15]石井猛.水葫芦的有效利用[J].水处理技术,1998,39(9):17-22.
    [16]司友斌,包军杰,曹德菊,等.香草根对富营养化水体净化效果研究[J].应用生态学报,2003, 14(2):277-279.
    [17]唐涛,蔡庆华,刘健康.河流生态系统健康及其评价[J].应用生态学报,2002,13(9):1191-1194.
    [18]严国安,任南,李益健.环境因素对凤眼莲生长及净化作用的影响[J].环境科学与技术,1994(1):25-27.
    [19]袁桂良,刘鹰.凤眼莲对集约化甲鱼养殖污水的静态净化研究[J].农业环境保护,2001,20(5):322-325.
    [20]张平远.水生植物满江红处理污水效果好[J].农业环境保护,1990,8(6):25-27.
    [21]张振克.太湖流域水环境问题、成因与对策[J].长江流域资源与环境,1999,8(1):81-87.
    [22]张运强.水葫芦净化富营养化水体及资源化利用[J].安徽农业大学硕士学位论文,2008:10-30.
    [23]张志勇,刘海琴,严少华,等.水葫芦去除不同富营养化水体中氮、磷能力的比较[J].江苏农业学报,2009,25(5):1036-1046.
    [24]周晓红,王国祥,郭长城,等.江滩湿地水生植物对水体氮、磷污染物去除效果分析[J].水土保持研究,2007,14(4):137-140.
    [1]S Beuschold E. Entwicklungszendenzen der wasserbeschaffenheit in den ostharztalsperren. Wiss ZeitschrKarl-Marx-Univ Leipzig Math-Nat Reihe,1966,15:853-869.
    [2]Carpenter S R, Caraco N F, Correll D L, et al.. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecological Application,1998,8 (3):559-568.
    [3]Choudhary M A, Lal R, Dick W A. Long-term tillage effects on runoff and soil erosion under simulate rainfall for a central Ohio soil [J]. Soil & Tillage Research,1997,42(3):175-184.
    [4]Daniel J C, Hans W P, Robert W H, et al.. Controlling Eutrophication:Nitrogen and Phosphorus[J]. Science,2009,323 (20):1014-1015.
    [5]Drewry J J, Newham L T H, Croke B F W. Suspended sediment,nitrogen and phosphorus concentrations and exports during stormevents to the Tuross estuary,Australi[J]. Journal of Environmental Management,2009,90:879-887.
    [6]Fiala L, Vasata P. Phosphorus reduction in a man-made lake by means of a small reservoir in the inflow.Archives of Hydrobiology,1982,94:24-37.
    [7]Goulding KW T, Matchett L S, Heckrath G, et al.. Nitrogen and phosphorus flows from agricultural hillslopes[M]. Advance in Hillslope Processes, Volume 1. Edited by Anderson M Gand Brooks S M, 1998.213-227.
    [8]Jon E S, Karl W J, Williard, et al. Nutrient in agricultural surface runoff by riparian buffer zones in southern Illinois USA[J]. Agroforestry Syetems,2005,64:169-180.
    [9]Kleinman P J, Sharpley A N, Veith T L, et al. Evaluation of phosphorus transport in surface runoff from packed soil boxes[J]. Environmental Quality,2004,33:1413-1423.
    [10]Klapper H. Biologische untersuchungen an den einlaufen und vorbeckender saidenbachtalsperre(Erzgeb). Wiss Zeitschr Karl-Marx-Univ Leipzig Math-Nat Reihe,1957, 7:11-47.
    [11]Lai D Y F, Lam K C.Phosphorus sorption by sediments in a subtropical constructed wetland receiving storm water runoff[J]. Ecological Engineering,2009,35:735-743.
    [12]Lowrance R, Mcntyre S, Lance C. Erosion and deposition in a field/forest system estimated using cesium-137 activity[J]. Journal of Soil and Water Conservation,1988,43:195-199.
    [13]Nyholm N, Sorensen P. E, Olrik K. Restoration of lake nakskov indrefjord denmark, using algal ponds to remove nutri ents from inflowing river water.Progress in Water Technology, 1978,10:881-892.
    [14]Parry R. Agricultural phosphorus and water quality:An U.S. Environment al Protection Agency per spective[J]. J. Environ.Qual,1998,27:258-261.
    [15]Steven W W, Sarah E F, Gary R. Lecleir, et al.. The relationships between nutrients, cyanobacterial toxins and the microbial community in Taihu(Lake Tai),China. Harmful Algae,2011, 10(2):207-215.
    [16]Tapia-Vargas M, Tiscareo-Lpez M, Stone J J, et al. Tillage system effects on runoff and sediment yield in hillslope agriculture[J]. Field Crops Research,2001,69(2):173-182.
    [17]Vassilis Z A.Simulation of water and nitrogen dynamics in soils during waste water applications by using a finite-element model [J]. Water Resources Management,2003,7:237-251.
    [18]Wilhelmus B, Bernhardt H, Neumann D. Vergleichende untersuchungen uber die phosphor-eliminierung yon vorsperren. DVGW-Schriftenreihe Wasser Nr,1978,16:140-176.
    [15]曹志洪.施肥与水体环境质量—论施肥对环境的影响(2)[J].土壤,2003,35(5)353-363.
    [16]陈浮,濮励杰,曹慧,等.近20年太湖流域典型区土壤养分时空变化及驱动机理[J].土壤学报,2002,39(2):237-245.
    [17]郭智,肖敏,陈留根,郑建初. 稻麦两熟农田稻季养分径流流失特征[J]. 生态环境学报,2010,19(7):1622-1627.
    [18]黄锦法,俞慧明,陆建贤,等.稻田免耕直播对土壤肥力性状与水稻生长的影响[J].浙江农业科学,1997,11(5):226-228.
    [19]冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面18、源污染控制中存在问题分析[J].中国农业科学,2004,37(7):1026-1033.冀宏杰,张认连,武淑霞,等.太湖流域农田肥料投入与养分平衡状况分析[J].中国土壤与肥料,2008,(5):70-75.
    [20]金洁,杨京平,施洪鑫,等.水稻田面水中氮磷素的动态特征研究[J].农业环境科学学报,2005,24(2):357-361.
    [21]李荣刚,杨林章,皮家欢.苏南地区稻田土壤肥力演变,养分平衡和合理施肥[J].应用生态学报,2003,14(2):1889-1892.
    [22]刘培斌,张瑜芳.稻田中N素流失的田间试验与数值模拟研究[J].农业环境保护,1999,18(6):241-245.
    [23]刘巽浩.耕作学[M].北京:中国农业出版社,1994:210-247.
    [24]刘庄,郑刚,张永春,等.社会经济活动对太湖流域的生态影响分析[J].生态与农村环境学报,2009,25(1):27-31.
    [25]鲁如坤.土壤-植物营养学原理与施肥[M].北京:化学工业出版社,1998,6:16-19.
    [26]马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究[J].应用生态学报,1992,3(4):346-354.
    [27]秦伯强,吴庆农,高俊峰,等.太湖地区的水资源与水环境[J].自然资源学报,2002,17(2):221-228.
    [28]秦祖平,徐琪.水循环对太湖地区稻田生态系统中养分平衡的影响[J].农村生态环境,1989,(2):22-25.
    [29]王绪奎,张林钱,芮雯奕,等.近20年江苏省环太湖稻田土壤碳氮及速效磷钾含量的动态特征[J].江苏农业科学,2007,6:287-293.
    [30]沃飞,陈效民,吴华山,陈力.太湖地区农田水环境中氮和磷时空变异的研究[J].中国生态农业学报,2007,15(6):30-34.
    [31]谢德体,魏朝富,杨剑虹.自然免耕下的稻田生态系统[J].应用生态学报,1994,5(4):415-421.
    [32]谢学俭,陈晶中,肖琼,等.不同磷水平处理对水稻田面水中磷氮浓度动态变化的影响[J].安徽农业科学,2007,35(27):8568-8570.
    [33]严国安,任南,李益健.环境因素对凤眼莲生长及净化作用的影响[J].环境科学与技术,1994(1):25-27.
    [34]晏娟,沈其容,尹斌,等.太湖地区稻麦轮作系统下施氮量对作物产量及氮肥利用率影响的研究[J].土壤,2009,41(3):372-376.
    [35]杨林章,周小平,王建国,等.用于农田非点源污染控制的生态拦截型沟渠系统及其效果[J].生态学杂志,2005,24(11):1371-1374.
    [36]杨育红,阎百兴.降雨-土壤-径流系统中氮磷的迁移[J].水土保持学报,2010,24(5):27-30.
    [37]张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”[J].南京林业大学学报(自然科学版),2004,28(5):6-10.
    [38]张继宗,雷秋良,左强等.模拟降雨条件下太湖地区稻田氮素径流流失特征[J].湖北农业科学,2009,48(11):2688-2692.
    [39]张平远.水生植物满江红处理污水效果好[J].农业环境保护,1990,8(6):25-27.张维理,徐爱国,
    [40]张运强.水葫芦净化富营养化水体及资源化利用[J].安徽农业大学硕士学位论文,2008:10-30.
    [41]张志剑,王珂,朱荫湄,等.水稻田表水磷素的动态特征及其潜在环境效应的研究[J].中国水稻科学,2000,14(1):55-57.
    [42]张振克.太湖流域水环境问题、成因与对策[J].长江流域资源与环境,1999,8(1):81-87.
    [43]张志勇,刘海琴,严少华,等.水葫芦去除不同富营养化水体中氮、磷能力的比较[J].江苏农业学报,2009,25(5):1036-1046.
    [44]赵其国.现代生态农业与农业安全[J].科技与经济,2004,17(1):58-64.
    [45]周晓红,王国祥,郭长城,等.江滩湿地水生植物对水体氮、磷污染物去除效果分析明.水土保持研究,2007,14(4):137-140.
    [46]朱利群,田一丹,李慧,等.不同农艺措施条件下稻田田面水总氮动态变化特征研究[J].水土保持学报,2009,23(6):85-89.
    [47]朱普平,常志州,孙丽,等.麦草还田及耕作方式对稻田水氮、磷浓度和水稻产量的影响[J].江苏农业科学,2004,6:151-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700