用户名: 密码: 验证码:
长江中华绒螯蟹亲体和早期发育阶段对盐度的生理与行为响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华绒螯蟹(Eriocheir sinensis)在我国俗称河蟹,隶属于甲壳纲(Crustacea),十足目(Decapoda),方蟹科(Crapsida),绒螯蟹属(Eriocheir),是甲壳类中少有的洄游性种类。在淡水河流、湖泊中完成生殖蜕壳后的中华绒螯蟹需向河口区域进行生殖洄游,在河口完成交配、抱卵、胚胎及幼体的发育。长江口是中华绒螯蟹最大、最优质的繁殖场。盐度是河口时空变化最为剧烈的因子之一,近年来长江口盐度变化加剧,盐水入侵严重,这可能对中华绒螯蟹的洄游、繁育造成重要的影响。
     为全面评估河口盐度变动对中华绒螯蟹繁育的潜在影响,本研究以中华绒螯蟹亲体、后期胚胎及早期幼体为研究对象,从血淋巴渗透、代谢、免疫调节与肝胰腺消化酶调节以及行为方面研究了中华绒螯蟹亲体在洄游过程中对盐度的适应策略及耐盐阂值;以孵化率与初孵蚤状幼体的存活率为评价指标获得中华绒螯蟹胚胎及早期幼体发育的最适盐度范围,在此基础上分析了盐度胁迫后胚胎对能源物质的分解与利用特征、Na+、K+-ATPase的响应以及胰高血糖素(CHH)可能的神经内分泌调控作用;通过研究大眼幼体的盐度选择行为,不同盐度下的生态蜕壳及Na+/K+-ATPase活性对盐度的响应,探讨大眼幼体趋江洄游的行为与生理基础,初步阐明了不同生命阶段的中华绒螯蟹对盐度的生理与行为响应机制。本研究成果为全面评估河口盐度变动对中华绒螯蟹繁育的影响提供重要理论依据,对中华绒螯蟹野生资源的保护、利用和人工繁殖均具有重要意义,同时也丰富了甲壳类洄游生理学与渗透调节生理、行为研究的资料。主要研究结果如下:
     1.中华绒螯蟹亲体在不同盐度下的行为反应
     采用视频记录分析法比较研究了雌性中华绒螯蟹亲体适应了淡水、半咸水(盐度18)后以及在高盐(盐度18→30)、低盐(盐度18→0)胁迫下的行为反应。结果表明:在不同盐度下,蟹口器的活动性与其个体的运动活力呈现一致的反应模式,与淡水组相比,适应盐度18后蟹的运动活力和口器的活动性均增强(P<0.05);低盐胁迫引起蟹运动活力和口器活动(P<0.05)增强,而高盐胁迫后蟹运动活力显著减弱(P<0.05),且口器的活动性也降低,且在低盐胁迫后蟹的运动活力和口器的活动性均显著强于淡水组(P<0.05);第一触角回缩行为和封闭反应行为几乎仅出现在盐度18组以及高盐胁迫组(P<0.05),第一触角回缩至壳槽内的时间随着试验时间的延长而增加;第二触角抖动次数随着试验盐度的升高而逐渐降低,低盐胁迫后蟹的第二触角抖动次数显著高于其它三个试验组(P<0.05);高、低盐胁迫均引起蟹的眼柄活动性增强,而适应盐度18后眼柄的活动性降低;盐度18组蟹清洁触角的频率显著高于淡水组(P<0.05),高、低盐胁迫均引起蟹的触角清洁频率显著降低(P<0.05);腹部开合行为仅出现在低盐胁迫后。综合以上结果显示,从淡水适应半咸水后会刺激中华绒螯蟹亲体的运动活力及其它相关行为增强,蟹在低盐胁迫后出现腹部开合行为是其在低渗环境下通过暴露尾肠从而吸收水中离子的一种行为策略,蟹在高盐胁迫后表现出的封闭反应则有助于减少机体在高渗环境下对水分的吸收及盐分的被动扩散丢失。
     2.中华绒螯蟹亲体的盐度选择行为
     利用室内可控的六分室盐度选择装置结合视频监控系统,研究了洄游期的雌、雄中华绒螯蟹对盐度的选择行为。结果显示:雄蟹对盐度并未表现出显著的偏好行为,但其在盐度28分室中出现的次数最少,而在盐度35分室中出现最多,在21与35盐度分室中停留的时间略长于其它盐度分室;在盐度0-21范围内,雌蟹在各盐度分室中出现的次数随着盐度的升高而增加,在21盐度分室中达到最高,在28盐度分室中最低,雌蟹在35盐度分室中出现的次数接近盐度21分室的水平。在盐度7-28范围内,雌蟹在各盐度分室中停留的时间随着盐度的升高逐渐降低,而在35盐度分室中停留时间最长,且显著高于其在28盐度分室中停留时间(P<0.05)。本试验同时发现,在试验时间内,雄蟹的运动活力显著高于雌蟹,在提供可选择的盐度环境后,雌、雄蟹的运动活力均降低。结果提示,盐度在中华绒螯蟹生殖洄游寻找产卵场的过程中虽然发挥着一定的导向作用,但其它栖息地环境因子如水深、底质可能也是影响中华绒螯蟹在河口分布位置的重要因子。
     3.盐度升高对中华绒螯蟹亲体渗透压、离子及离子调节酶的影响
     通过逐步增盐法研究了中华绒螯蟹亲体盐度适应过程中血淋巴渗透压、离子含量以及后鳃Na+/K+-ATPase和碳酸酐酶(CA)活性的变化。结果显示:在0-21的盐度范围内,雌、雄中华绒螯蟹均显著调高其血淋巴渗透压(P<0.05),而在盐度达到35时略调低其血淋巴渗透压,雌、雄中华绒螯蟹的等渗点接近盐度28;随着环境水体盐度的增加和血淋巴渗透压的升高,中华绒螯蟹血淋巴Na+和Cl-含量升高,而Ca2+和K+含量呈现降低的趋势;盐度升高引起中华绒螯蟹后鳃Na+/K+-ATPase和CA活性降低,酶活性的降低是后鳃主动吸收Na+减少的直接生理反应;比较雌、雄中华绒螯蟹各检测指标可见,雌蟹血淋巴Ca2+和K+含量和鳃CA活性在一些盐度水平下显著高于雄蟹(P<0.05),而其它测定指标之间无显著的性别差异。研究结果表明,中华绒螯蟹亲体具有较强的高渗调节能力,但其低渗调节能力较弱。盐度升高后,中华绒螯蟹亲体主要通过调节血淋巴Na+和Cl-含量而调节血淋巴渗透浓度,Na+/K+-ATPase和CA在离子调节过程中发挥重要作用,雌、雄蟹的渗透调节能力不存在显著的差异。
     4.盐度升高对中华绒螯蟹亲体血淋巴代谢、免疫指标及肝胰腺消化酶活性的影响
     通过逐步增盐法,研究了从淡水逐步升高到盐度7、14、21、28、35后,雌、雄中华绒螯蟹血淋巴代谢指标(总蛋白蛋白、氧合血蓝蛋白、葡萄糖、甘油三酯、胆固醇、尿酸、尿素、肌酐)的含量、免疫酶(碱性磷酸酶、超氧化物歧化酶、酚氧化酶)和消化酶(淀粉酶、纤维素酶、胃蛋白酶、胰蛋白酶、脂肪酶)活性的变化。结果显示:随着盐度的增加,雌、雄中华绒螯蟹血淋巴总蛋白、氧合血蓝蛋白含量降低;雄蟹血淋巴甘油三酯、胆固醇、尿素、肌酐含量与雌蟹血淋巴甘油三酯、尿酸含量均随着盐度的升高先显著降低(P<0.05),在盐度升高到21时达到最低值,而后显著升高(P<0.05);雄蟹血淋巴尿酸含量在0-21的盐度范围内呈现显著降低的趋势(P<0.05),盐度高于21时维持在稳定水平;雌蟹血淋巴尿素含量在盐度升高到21达到最低值(P>0.05),盐度高于21时显著升高(P<0.05);盐度增加对雌蟹血淋巴肌酐、胆固醇含量无显著影响;雌、雄蟹血糖含量均在盐度升高到21时达到最高水平;雌蟹血淋巴多种代谢指标均高于雄蟹。
     随着盐度的升高,雄蟹血淋巴酚氧化酶活力逐渐降低,雌蟹血淋巴酚氧化酶活力先降低,当盐度高于21后维持稳定水平;雌、雄蟹血淋巴碱性磷酸酶活性呈现先略升高而后逐渐降低的趋势;雌、雄蟹血淋巴超氧化物歧化酶活性先略降低,盐度高于21时被激活,且在盐度升高到35时酶活性显著高于盐度21时的水平(P<0.05)。除超氧化物歧化酶外,雌蟹血淋巴其它两种免疫酶活性均高于雄蟹。
     雌、雄中华绒螯蟹肝胰腺淀粉酶活性最高,脂肪酶活性极低(P<0.05);雌蟹肝胰腺淀粉酶、胃蛋白酶、胰蛋白酶活性均在盐度达到及高于28时显著降低(P<0.05),而纤维素酶活性在盐度升高到35时显著降低(P<0.05);除脂肪酶外,雄蟹的肝胰腺消化酶活性均在盐度升高到14时显著升高(P<0.05),盐度升高到21时显著降低(P<0.05),之后维持稳定水平或进一步降低;除脂肪酶外,雄蟹肝胰腺消化酶活性在不同盐度水平(盐度21除外)下均显著高于雌蟹(P<0.05)。
     综合上述研究结果显示:中华绒螯蟹亲体从淡水逐步适应海水的过程中多种血淋巴代谢指标均在盐度增加到21时达到最低点,这一盐度下机体可能用于渗透调节的能量最低,从而可以节约更多的能量用于繁殖。当水体盐度接近或超过28时中华绒螯蟹的免疫防御能力和消化能力均显著降低,最终可能对中华绒螯蟹的繁殖造成潜在的不利影响。在不同盐度下,雌蟹血淋巴代谢指标和免疫指标稍高于雄蟹,表明雌蟹的代谢水平和免疫防御能力相对较高。引起雄蟹肝胰腺消化酶活性降低的起始盐度值低于雌蟹,这从消化生化的角度表明雌蟹对盐度增加的适应能力强于雄蟹。
     5.盐度对中华绒螯蟹胚胎及幼体发育的影响
     研究了盐度对不同发育时期中华绒螯蟹离体胚胎发育、蚤状幼体存活的影响,结果显示:从眼点期开始盐度暴露其胚胎孵化率与幼体存活率均低于从原肠期和出膜前期开始暴露胚胎的孵化率,原肠期和出膜前期胚胎在盐度1-20范围内呈现较高的孵化率和较快的发育速度,且各盐度组间无显著差异(P>0.05);盐度降低(盐度1、5)在一定程度上促进了胚胎的发育并提高了胚胎孵化率,且在眼点期表现出显著性(P<0.05);盐度达到及高于25导致胚胎发育减缓、孵化率显著降低(P<0.05),其中原肠期和出膜前期胚胎孵化率在盐度达到35时几乎为零,而眼点期胚胎孵化率在盐度达到25时已低于10%;从原肠期和出膜前期开始盐度暴露其初孵蚤状幼体在盐度5-25的范围内具有较高的存活率,且各盐度组之间无显著差异,超出此盐度范围后初孵蚤状幼体的存活率急剧降低(P<0.05),盐度达到35时初孵蚤状幼体无法存活。眼点期开始盐度暴露后其初孵蚤状幼体存活率在15、20盐度下最高,在盐度10中略降低,盐度高于20或低于10均导致初孵蚤状幼体存活率显著降低(P<0.05),在盐度1、30、35中几乎无初孵蚤状幼体存活。
     Ⅰ期蚤状幼体在1、40的盐度下暴露24h后全部死亡,盐度5组蚤状幼体死亡率从暴露后48h开始显著上升,到192h时接近100%,盐度25、30、35组蚤状幼体死亡率在盐度暴露后96h仍较低,之后开始显著升高,到192h时几乎全部死亡,盐度10、15、20组蚤状幼体在盐度暴露后120h死亡率仍较低,从144h开始逐渐升高,在192h死亡率达到60%,但仍显著低于其它各盐度组(P<0.05)。
     综合上述研究结果表明,中华绒螯蟹原肠期和出膜前期胚胎发育及孵化的适宜盐度范围为5-20,眼点期胚胎发育的适宜盐度范围为10-20,Ⅰ期蚤状幼体发育的适宜盐度范围为10-20,超出上述盐度范围将显著影响中华绒螯蟹胚胎与早期幼体的发育,进而可能对其种群的繁衍造成潜在影响。
     6.渗透胁迫对中华绒螯蟹胚胎生化成分含量与消化酶活性的影响
     研究了渗透胁迫对不同发育期中华绒螯蟹胚胎中生化成分(蛋白、总脂、碳水化合物、水份)含量、胚胎体积(胚胎直径)以及消化酶(淀粉酶、胃蛋白酶、胰蛋白酶、脂肪酶)活性的影响。结果显示:随着胚胎的发育,对照组(盐度15)胚胎体积增加、水份含量升高(P<0.05)、蛋白含量降低(P<0.05)、胰蛋白酶与胃蛋白酶活性升高(P>0.05),脂类含量和脂肪酶活性均降低(P>0.05),碳水化合物含量和淀粉酶活性均在眼点期升高(P<0.05)而在出膜前又降低(P<0.05);高、低渗胁迫均引起胚胎水份含量降低,其中高渗胁迫对三个发育时期胚胎水份含量的影响均具有显著性(P<0.05),而低渗胁迫的影响仅在眼点期表现出显著性(P<0.05);低渗胁迫引起胚胎蛋白含量降低(P<0.05),而高渗胁迫导致胚胎蛋白含量升高(P<0.05);高渗胁迫对胚胎脂类含量无显著影响(P>0.05),而低渗胁迫引起出膜前期胚胎脂类含量显著降低(P<0.05);高、低渗胁迫对胚胎碳水化合物含量均无显著影响(P>0.05);高、低渗胁迫均导致原肠期胚胎体积减小(P>0.05),而对眼点期胚胎体积无显著影响,高渗胁迫引起出膜前期胚胎体积减小(P>0.05);除高、低渗胁迫均显著降低眼点期胚胎淀粉酶活性(P<0.05)而引起出膜前期胚胎胰蛋白酶活性略降低(P>0.05)外,低渗胁迫导致不同发育时期胚胎消化酶活性升高,而高渗胁迫导致酶活性降低;除脂肪酶外,渗透胁迫对原肠期胚胎消化酶活性的影响均具有显著性(P<0.05)。研究结果表明,主要能源物质在胚胎发育过程中被利用并重新合成,高渗胁迫抑制胚胎消化酶的活性,进而抑制胚胎对卵黄物质的分解、利用,导致胚胎中卵黄物质积累,从而影响胚胎的发育;低渗胁迫引起胚胎消化酶活性升高,加速胚胎对卵黄物质的分解与利用,在一定程度上促进胚胎的发育。
     7.渗透胁迫对中华绒螯蟹胚胎CHH和Na+/K+-ATPase a-亚基nRNA表达及酶活性的影响
     研究了渗透胁迫对中华绒螯蟹不同发育期胚胎Na+/K+-ATPase活性、a-亚基mRNA表达、CHH基因mRNA表达的影响。结果显示:对照组(盐度15)胚胎中Na+/K+-ATPase a-亚基mRNA表达量从原肠期到出膜前期升高了1.77倍(P<0.05),Na+/K+-ATPase活性升高了6.53倍(P<0.05);与对照组相比,低渗胁迫诱导出膜前期胚胎Na+/K+-ATPase a-亚基表达显著增强(P<0.05),而对原肠期和眼点期胚胎无显著影响;低渗胁迫引起原肠期与眼点期胚胎Na+/K+-ATPase活性显著降低(P<0.05);高渗胁迫诱导原肠期与眼点期胚胎Na+/K+-ATPase a-亚基的表达显著增强(P<0.05),同时引起原肠期、出膜前期Na+/K+-ATPase活性显著升高(P<0.05),而导致眼点期Na+/K+-ATPase活性显著降低(P<0.05);从眼点期到出膜前期胚胎CHH mRNA表达显著增强,低渗胁迫导致CHH mRNA表达下调且对眼点期胚胎具有显著影响(P<0.05),高渗胁迫诱导CHH上调且对出膜前期胚胎具有显著影响(P<0.05)。研究结果显示,随着胚胎的发育,CHH表达增强、Na+/K+-ATPase mRNA转录、蛋白合成增加,CHH可能在胚胎应对渗透胁迫时发挥着重要的神经内分泌调控作用,对渗透胁迫后Na+/K+-ATPase的转录、蛋白合成起到调节作用。
     8.中华绒螯蟹大眼幼体的盐度选择行为
     利用七分室盐度选择装置研究了中华绒螯蟹大眼幼体对盐度的选择行为,结果显示:大眼幼体对低盐表现出明显的偏好行为(P<0.05),且这种行为在上午表现更为显著,上午(9:00-12:00)进行的两个重复组中3h内大眼幼体在淡水分室中的平均分布率最高,分别为60%-89%和69%-80%,分布率次高的为盐度5分室;下午(14:00-17:00)进行的两个重复组中大眼幼体在淡水分室中的分布率分别为29%-60%和31%-57%。上、下午的试验结果均显示,随着盐度的升高,大眼幼体在盐度分室中的分布率呈现降低的趋势。结果表明,中华绒螯蟹大眼幼体具有明显的偏好淡水、低盐的行为,且这种偏好程度可能受到光照强度的影响,中华绒螯蟹大眼幼体的低盐偏好行为与其在自然环境下的向岸洄游生态相吻合。本试验结果提示,大眼幼体趋淡水、低盐的行为可能是一种遗传行为而不受栖息环境的影响。
     9.盐度对中华绒螯蟹大眼幼体蜕壳及Na+/K+-ATPase活性的影响
     研究了不同盐度(0、5、10、15、20、25、30、35、40)对中华绒螯蟹蜕壳的影响,并测定了高、低渗胁迫后大眼幼体Na+/K+-ATPase活性的变化。结果显示:各盐度组大眼幼体在盐度暴露后第二天开始出现蜕壳现象,之后随着试验时间的延长,大眼幼体蜕壳率急剧升高(P<0.05),到试验的第5天所有盐度组大眼幼体几乎全部蜕壳为Ⅰ期仔蟹,且不同盐度组大眼幼体的蜕壳率无显著差异(P>0.05),但盐度达到40时大眼幼体在前期的蜕壳速度明显减缓;高、低盐胁迫均显著诱导大眼幼体Na+/K+-ATPase活性升高(P<0.05)。结果表明,大眼幼体已具有较强的高、低渗调节能力,可以耐受较广范围的盐度,并在此盐度环境下完成蜕壳,Na+/K+-ATPase在其高、低渗调节过程中均发挥重要作用。
Chinese mitten crab Eriocheir sinensis H. Milne Edwards,1853(Decapoda, Brachyura) is a diadromous freshwater crab. Adult crabs spend most of their lives growing in rivers and lakes but must migrate downstream towards the estuary or sea for reproduction after their puberty molt, where they reach maturity, complete mating and embryonic development as well as planktonic larvae release. Estuary features drastically temporal and spatial variation in salinity. Yangtze River estuary is the biggest and vital breeding ground of E. sinensis in China. Recently, saltwater intrudes the Yangtze River estuary more and more frequently, and it has become the focus of researches. Remarkable salinity change might exert a negatively potential effect on the reproduction and development of E. sinensis.
     To evaluate the possible adverse implications of salinity change to E. sinensis comprehensively, we monitored the salinity preference behavior and the behavioral response of Chinese mitten crab E. sinensis broodstock in different salinities, and low salinity preference behavior of megalopas. We investigated the osmotic and ionic regulation, variation of ion-transporting enzymes activities, haemolymph metabolic and immune parameters and variation of digestive enzyme activities in both females and males, when crabs were exposed to freshwater and acclimated to step-wise salinities medium ranging from7to35ppt. We also studied the effect of salinity on E. sinensis embryo and larva development, and determined the developmental changes of energy source, digestive enzymes and Na+/K7-ATPase activity, and CHH and Na+/K+-ATPase a-subunit expression in the eggs of E. sinensis under salinity stress. Results obtained from this study will enhance our comprehension of the ontogeny of crustaceas'osmoregulation, especially during embryo stage and reproductive stage. Furthermore, this information is also great important to protect natural resources and to propagate of Chinese mitten crab E. sinensis artificially. These results will also provide theoretical basis for evaluating the potential effect of salinity change on E. sinensis.
     1. Behavioral responses of female Chinese mitten crab Eriocheir sinensis broodstock to salinities
     Behavioral response of female E. sinensis broodstock were monitored after acclimating crabs to freshwater (0ppt) and brackish water (18ppt) and hyper-osmotic (increased salinity from18to30ppt) or hypo-osmotic (decreased salinity from18to 0ppt) environment abruptly, by the method of video recording analysis. Locomotor activity and the frequency of mouthparts movements increased after acclimating crabs to brackish water (P<0.05) and hypo-osmotic environment. However, the two kinds of behaviors decreased after hyper-osmotic stress. Behaviors that the antennules retracted into the carapace for periods of time and the mouthparts closed were discovered only in the control group of18ppt and hyper-osmotic stress group (P<0.05). There was a decrease of the times of antennae flicking with the increase of environmental salinity. Behavior of the antennae flicking frequently showed up after hypo-osmotic stress (P<0.05). Behavior of eyestalk movement decreased after acclimating crabs to brackish water and increased after salinity stress. E. sinensis cleaned the antennae and antennules with the palps of the third maxillipeds. This behavior increased after gradual increase of environmental salinity, comparing with the response of crabs maintained in freshwater (P<0.05). Behavior of cleaning the antennae and antennules decreased after hypo-hyper osmotic stress (P<0.05). The abdomen extension behavior was observed only after hypo-osmotic stress. The results suggested that the increase of salinity induced the locomotor activity and other related behaviors of E. sinensis broodstock. Abdomen extension under hypo-osmotic stress could directly expose the hindgut to the water, and function as an additional means of ion uptake in lower salinity. Behavior of closure reaction under hyper-osmotic stress could help the reduction of water absorption and salt loss in high salinity environment.
     2. Salinity preference behavior of Chinese mitten crab Eriocheir sinensis broodstock
     Preference chambers are widely used to measure the responses of aquatic organisms to different environmental gradients, such as salinity, temperature and pollutants. A six-chambered device was designed to investigate the salinity preference of downstream-migrating Chinese mitten crab, Eriocheir sinensis. Occurrence numbers and retention time within6h are as indicators for evaluating the preference of E. sinensis to salinity. Males did not show preference for salinity. However, the occurrence number was the least at28ppt salinity chamber while was the most at35ppt salinity chamber. Males spend slightly more time in the chambers of21ppt and35ppt than others salinity chambers. Females occurred in the salinity chambers more and more frequently with the increase of salinity at a range0-21ppt. Occurrence number of females in chamber with21ppt was highest while lowest with28ppt. Females spends less and less time in salinity chambers with the increase of salinity at a range of0-28ppt. However, they retained in35ppt salinity chamber for the longest time. Males changed their positions more frequently than females (P<0.05). After offering different salinities in six chambers, locomotor activities of the crabs were weakening. Different salinity preference behaviors presented between females and males might be related to the asynchronism in gonadal development and the effect of salinity to their gonadal development. It is indicated that other factors such as water depth, substrate could be also vital to control their distribution in estuary.
     3. Osmotic and ionic regulation and Na+/K+-ATPase, carbonic anhydrase activities in Chinese mitten crab Eriocheir sinensis broodstck exposed to different salinities
     Chinese mitten crabs broodstock, are exposed to brackish water or seawater as an obligatory part of their reproductive migration. We investigated the changes in haemolymph osmolality, haemolymph Na+, Cl-, Ca2+and K+concentrations, as well as gill Na+/K+-ATPase (NKA) and carbonic anhydrase (CA) activity in both females and males, when in freshwater (0ppt,8mOsm (kg H2O)-1) and after step-wise acclimation to salinities ranging from7to35ppt (175-1044mOsm (kg H2O)-1). Both females and males strongly hyper-regulated their haemolymph osmolality over salinity range of0-21ppt, the isosmotic point approaching28ppt, and slightly hypo-regulated at35ppt. Haemolymph Na+and Cl-levels correlated positively with haemolymph osmolality. Ca2+and K+levels, however, were maintained at a relatively narrow range and showed a contrary trend in their response to salinity. This indicated that Na+and Cl-are the main contributors to increasing haemolymph osmolality. Reduced Na+/K+-ATPase and carbonic anhydrase activity in the posterior gills at elevated salinity suggest a direct physiological response to a decrease of Na+intake. No sexual differences existed for all parameters except for significantly higher haemolymph Ca2+and K+levels and CA activity in females than in males at some salinity levels. It is suggested that Eriocheir sinensis broodstock is a strong hyperosmoregulator but a weak hypo-osmoregulator. No sexual differences appeared to exist in osmotic and ionic regulation of Eriocheir sinensis broodstock exposed to different salinities.
     4. Metabolic, immune and digestive response of Chinese mitten crab Eriocheir sinensis broodstock exposed to different salinities
     To understand the metabolic, immune and digestive adjustments of Chinese mitten crab broodstock, Eriocheir sinensis, during their reproductive migration from freshwater to seawater, concentrations haemolymph metabolic variations (protein, glucose, triglycerides, cholesterol, urea, uric acid and creatinine) and activities of immune enzyme (alkaline phosphatase, superoxide dismutase and phenoloxidase) and digestive enzyme were determined after gradual acclimating of females and males from freshwater (0ppt) to different salinities (7,14,21,28,35ppt) medium. The results showed that increasing salinities caused a gradual decrease of hemolymph total protein and oxyhemocyanin contents of females and males. Some haemolymph metabolic variables reached a minimum at21ppt, and increased with both increase and decrease of the medium salinity (triglycerides, cholesterol, urea, creatinine in males and triglycerides, uric acid in females), or elevated either with the increase (urea in females) or decrease (uric acid in males) of medium salinities. Responses of haemolymph metabolic variations to salinity slightly differ between females and males. Hemolymph alkaline phosphatase activity increased slightly in7ppt; thereafter it dropped slowly until the end of experiment. Hemolymph phenoloxidase activity of females and males decreased gradually with the increase of environmental salinity. However, it maintained a stable level when the salinities were above21ppt in females. Hemolymph superoxide dismutase activity of males decreased with the increase of the medium salinity until21ppt and increased when the medium salinity above21ppt. All tested immune parameters except for SOD of females were significantly higher than those of males. Digestive enzyme activity except lipase of males were significantly higher than those of females at some salinities (P<0.05). Amylase, pepsin and trypsin activities of females reduced significantly when the salinity reached28ppt (P<0.05). Cellulase activity decreased when increasing the salinity to35(P<0.05). Remarkable decrease of males'digestive enzyme activities except lipase occurred at21and higher salinity, and an increase was shown in14ppt. The present results indicated that salinity of21ppt was the turning point of several biochemical parameters in E. sinensis broodstock. This salinity could be more'profitable'for E. sinensis broodstock from the energy-saving point of view. Immune and digestive enzyme activities of E. sinensis broodstock will be affected when the salinity was near to or above28ppt, which could exert a negative effect on reproduction. Metabolic and immune parameters in the haemolymph of females were slightly higher than those of males at some salinity levels, this suggestes higher metabolic level and greater immunity. The initial salinity that induced the decrease of digestive enzyme activity in males was lower than that in females; this result indicated that females were more tolerant elevated salinities than males in the digestive ability. This study might help understand some aspects of the metabolic, digestive and immune adjustments in euryhaline crabs related to osmoregulation.
     5. Survival and development of Chinese mitten crab, Eriocheir sinensis embryo and Zoea in different salinities
     Embryo and larval development of Chinese mitten crab. Eriocheir sinensis, is completed in the estuary, where they are often exposed to extreme salinity conditions. To test whether these salinity conditions have negative impacts on early development of embryo and zoea or not, we determined hatching rate, development time and survival rate when E. sinensis embryo for the gastrula, eyespot and pre-hatching stage were exposed to a salinity range of1-35ppt, and we also detected the survival rate of E. sinensis zoea I within192h later exposing them to different salinities. Reduced salinities (1and5ppt) accelerated embryonic development and increased hatching rate of eyespot and pre-hatching stage, but reduced salinities did not exert any effects on the gastrula stage development. Hatching rate significantly declined when the medium salinity reached at and above25ppt. No zoea I were hatched when eyespot stages embryos were exposed to30ppt and three stages embryos were exposed to35ppt. Higher survival rate of initial zoea I were presented when eyespot and pre-hatching stage embryos were exposed to salinity ranges of5-25ppt. However, survival rate of initial zoea I significantly declined when embryos were exposed to1and30ppt. All zoeas hardly survived at35ppt. Nearly40%zoeas I still survived until192h later during the range10-20ppt of salinity. However, all zoea I died24h later after exposure to salinity1and40ppt while died192h later at salinity range25-35and5ppt. The results showed that optimal salinity range was5-20ppt, when embryos began to be exposed to different salinities from gastrula stage and pre-hatching stage, while the salinity range became narrower (10-20ppt) for eyepot satge. The optimal salinity range was10-20ppt for zoea development. Out of above salinity ranges, will influence the development of embryo and larva, and then affect the wild population' reproduction.
     6. Developmental changes of biochemical composition and digestive enzyme activity in the eggs of Chinese mitten crab, Eriocheir sinensis, under osmotic stress
     Biochemical compositions (total carbohydrate, soluble protein, lipid and water content) contents, digestive enzymes (amylase, lipase, pepsin and trypsin) activity and embryo volume (egg diameter) have been determined in three developmental stages (gastrula, eyespot and pre-hatching stage) of E. sinensis eggs under hyper or hypo-osmotic stress. Increase of water contents (P<0.05), eggs diameter and pepsin and trypsin activities and decrease of soluble protein (P<0.05) and lipid contents and lipase activity (P<0.05) in eggs were noticed during the development of embryo. Total carbohydrate content and amylase activity increased at the eyespot stage (P<0.05), whereas they reduced during the prehatching stages (P<0.05). Hyper-osmotic (P<0.05) and hypo-osmotic stress reduced water content of eggs at each developmental stage. Although hyper-osmotic stress reduced the water content of eggs, significant effect presented only at eyespot stage (P<0.05). Soluble protein content of three developmental stages eggs decreased under hyper-osmotic stress while increased under hypo-osmotic stress (P<0.05). Total lipid content was unaffected by hyper-osmotic stress at any developmental stage, whereas it reduced significantly at pre-hatching stages under hypo-osmotic stress (P<0.05). Total carbohydrate contents did not show any significant variation after osmotic stress. Both hypo-osmotic and hyper-osmotic stress induced the decrease of egg diameters during the gastrula stage (P<0.05), however, no significant effect on eyespot stage. Egg diameter decreased before hatching, only under the hyper-osmotic stress (P<0.05). Among the four digestive enzymes assayed, amylase activities were the highest while lipase activities were the lowest. Hyper-osmotic stress reduced enzymes activities of the three developmental stage eggs, while hypo-osmotic stress enhanced the activities of digestive enzymes with the exception of reducing the amylase activities in eyespot stage (P<0.05) and trypsin activities in pre-hatching stage (P>0.05). Effect of salinity change on digestive enzymes is statically significant only during gastrula stage (P<0.05) except for lipase. It is suggested that salinity stress changed the activity of digestive enzymes which further affectes the utilizing of yolk substances, consequently, affects embryonic development. Dramatical variation of salinity in estuary ought to be having potential effect on embryonic development, especially induced by salt water encroachment.
     7. Developmental changes of mRNA expression and activity of Na+/K+-ATPase, and expression of crustacean hyperglycemic hormone (CHH) gene in Chinese mitten crab Eriocheir sinensis eggs under osmotic stress
     We examined ontogenetic and salinity-induced changes of Na+/K+-ATPase activity and mRNA expression of the a-subunit. We also detected the expression of crustacean hyperglycemic hormone (CHH) neuropeptides. which involved directly or indirectly in ionic and osmotic regulation, in the eyespot stage and pre-hatching stage. All activities and mRNA expression were determined24h later after directly exposeing embryos to1,15(control group), and35ppt. NKA activities were low in gastrula stage, and the enzyme activity increased6.53times in pre-hatching stage. Na+/K+-ATPase activity significantly decreased in gastrula and eyespot stages (P<0.05), and slightly reduced in pre-hatching stage at1ppt compared with15ppt, whereas the activity in the embryo of gastrula and pre-hatching stages was increased at salinity30ppt than at15and1ppt. However, increasing salinity reduced the enzyme activity (P<0.05) at eyespot stage, compared with the control group. The Na+/K+-ATPase a-subunit gene was expressed and elevated1.17times from gastrula stage to pre-hatching stage. There was no significant difference of Na+/K+-ATPase a-subunit gene expression between gastrula and eyespot stages, but expression increased remarkably before hatching (P<0.05). The expression of Na+/K+-ATPase a-subunit gene increased at30and1ppt compared with15ppt, but significant difference occurred only at eyepot stage under hyper salinity stress (P<0.05). Expression of CHH gene significantly increased with the development of embryo from eyespot stage to pre-hatching stage at all salinities (P<0.05), the expression remarkably elevated before hatching under hyper salinity stress while significantly decreased at eyespot stage under hypo salinity stress. It is suggested that although transcription and protein synthesis of Na+/K+-ATPase increased with the development of embryo, no consistent pattern between them under salinity stress. Neuroendocrine hormone CHH might be play important regulatory function in osmoregulation of embryo under osmotic stress.
     8. Low salinity preference behavior of Chinese mitten crab Eriocheir sinensis megalopae
     Up-estuary migration of crab larvae to adult habitats is thought to be started after molt to megalopae. However, the mechanisms used by crab megalopae for reinvasion of the estuary are unclear. We investigated the salinity preference behavior of E. sinensis megalopae in a seven choice-chambers device, to determine whether they showed preference behavior for the low salinity of the water or not. If low-salinity preference exists, this might be one of the bebavioral mechanisms for reinvasion estuary. Notable salinity gradients can be available in the seven choice-chambers device. Results revealed that most megalopa (60%-89%and69%-80%in two replicates, respectively) selected nominal0ppt as their final preference during9:00-12:00am. However, this behavioral weaken slightly (29%-60%and31%-57%megalopa prefer to nominal0ppt in two replicates, respectively) during14:00-17:00pm. Our findings reveal that E. sinensis megapolas obviously prefer low salinities, which associated with their strong osmoregulatory ability. Low-salinity preference behavior might be an important mechanism for megalopa's up-estuary migration. However, the extent of preference behavioral seems to be influenced by light. We speculated that the low-salinity preference behavior of megalopa is a hereditary behavioral while unaffected by environmental change. The importance of low-salinity preferences in relation to the megapola's up-estuary migration will be discussed in this study.
     9. Effect of salinity on molt and Na+/K+-ATPase activity of E. sinensis megalopa
     We determinted the percentage of megalopa molt to first juvenile instars under the condition of salinity range of1-40ppt, and detected the Na+/K+-ATPase activities of total megalopas after directly exposing them to1,15ppt (control group), and30ppt salinity. The result showed that nearly all the megalopas molted to the first juvenile instars at salinities range of1-40ppt on the fifth day of experiment, whereas molt delayed significantly at40ppt, compared with other salinities. Na+/K+-ATPase activity increased remarkably either at low salinity (1ppt) or at high salinity (30ppt) medium, compared with control group. The results suggest that Eriocheir sinensis megalopas possess moderate hyper-/hypo-regulating ability, and the osmoregulatory ability was also exhibited by the change of Na+/K+-ATPase activity under salinity stress. The results of this study provide physical evidence for comprehensing the up-estuary migration of crab larvae to adult habitats.
引文
Abe H, Okuma E, Amano H, et al. Effects of seawater acclimation on the levels of free D-and L-alanine and other osmolytes in the Japanese mitten crab Eriocheir japonicas [J]. Fish Sci. 1999a,65:949-954.
    Abe H, Okuma E, Amano H, et al. Role of free D-and L-alanine in the Japanese mitten crab Eriocheir japonicus to intracellular osmoregulation during downstream spawning migration [J]. Comp Biochem Physiol.1999b,123A:55-59.
    Allan G, Fielder D. Mud crab aquaculture in Australia and Southeast Asia proceedings of the aciar crab. Aquaculture Scoping Study and Workshop.28-29 April 2003, Joondooburri Conference Centre, Bribie Island.
    Altinok I, Grizzle J M. Effects of brackish water on growth, feed conversion and energy absorption efficiency by juveniles euryhaline and freshwater stenohaline fishes [J]. J Fish Biol.2001,59:1142-1152.
    Alvarez-Fernandez I, Rotllant G, Company J B, et al. Biochemical characterization of eggs of the Norway lobster, Nephrops norvegicus (Decapoda:Nephropid ae), during the embryonic development. Sixth International Crustacean Congress,18-22th July 2005, Glasgow, U.K.
    Ameyaw-Akumfi C, Naylor E. Spontaneous and induced components of salinity preference behavior in Carcinus maenas [J]. Mar Ecol Prog Ser,1987,37:153-158.
    Andres M, Gisbert E, Diaz M. Ontogenetic changes in digestive enzymatic capacities of the spider crab, Majabrachydactyla (Decapoda:Majidae) [J]. J Exp Mar Biol Ecol.2010,389(1-2): 75-84.
    Anger K, Charmantier G. Ontogeny of osmoregulation and salinity tolerance in a mangrove crab, Sesarma curacaoense (Decapoda:Grapsidae) [J]. J Exp Mar Bioi Ecol.2000,251:265-274.
    Anger K. Effects of salinity on embryonic development of Palaemonetes argentines (Crustacea: Decapoda:Palaemonidae) cultured in vitro [J]. Invertebr Reprod Dev.2005,47:213-223.
    Anger K. Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda:Grapsidae) [J]. Mar Ecol Prog Ser.1991,72:103-110.
    Anger K. Patterns of growth and chemical composition in decapod crustacean larvae [J]. Invert Reprod Develop.1998,33:159-176.
    Anger K. Salinity as a key parameter in the larval biology of decapod crustaceans [J]. Inv Repr Dev.2003,43:29-45.
    Anger K. Salinity tolerance of the larvae and the first juveniles of a semi terrestrial grapsid crab, Armases miersii (Rathbun) [J]. J Exp Mar Biol Ecol.1996,202:205-223.
    Anger K. The biology of decapod crustacean Larvae [J]. Crustacean.2001,14:1-420.
    Anger K. The Do threshold:a critical point in the larval development of decapod crustaceans [J]. J Exp Mar Biol Ecol.1987,108(1):15-30.
    Armstrong D A, Strange K, Crowe J, et al. High salinity acclimation by the prawn Macrobrachium Rosenbergii:uptake of exogenous ammonia and changes in endogenous nitrogen compounds [J]. Reference boil Bull.1981,160:349-365.
    Arudpragasam K D, Naylor E. Gill ventilation and the role of reversed respiratory currents in Carcinus maenas [J]. J Exp Biol,1964,41:299-307.
    Arudpragasam K D, Naylor E. Patterns of gill ventilation in some decapod Crustacea [J]. J Zool Lond.1966,150:401-411.
    Asaro A, Valle J C D, Mananes A A L. Amylase, maltase and sucrase activities in hepatopancreas of the euryhaline crab Neohelice granulata (Decapoda:Brachyura:Varunidae):partial characterization and response to low environmental salinity [J]. Scientia Marina.2011,75(3): 517-524.
    Ashida M. Purification and characterization of prophenoloxidase from hemolymph of the silkworm Bombyx mori [J]. Arch Biochem Biophysics.1971,144(2):749-762.
    Atema J, Voigt R. Behavior and sensory biology. Pp.313-348 in Biology of the Lobster, Homarus americanus Factor J R., ed. Academic Press,1995. New York.
    Audsley N, McIntosh C, Phillips J E. Actions of iontransport peptide from locust corpus cardiacum on several hindgut transport processes [J]. J Exp Biol.1992,173:275-288.
    Augusto A, Greene L J, Laure H J, et al. The ontogeny of isosmotic intracellular regulation in the diadromous, freshwater palaemonid shrimps, Macrobrachium amazonicum and M. olfersi (Crustacea, Decapoda) [J]. J Crustac Biol.2007,27(4):626-634.
    Babu D E. Observations on the embryonic development and energy source in the crab Xantho bidentatus [J]. Mar Biol.1987,95:123-127.
    Bas C C, Spivak E D. Effect of salinity on embryo of two southwestern Atlantic estuarine grapsid crab species cultured in vitro [J]. J Crust Biol.2000,20(4):647-656.
    Bell G W, Eggleston D B, Wolcott T G. Behavioral responses of free-ranging blue crabs to episodic hypoxia [J]. I Movement Mar Ecol Prog Ser.2003,259:215-225.
    Belli N M, Faleiros R. O, Firmino K C S, et al. Na,K-ATPase activity and epithelial interfaces in gills of the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae) [J]. Comp Biochem Physiol.2009,152A:431-439.
    Beltz B S. Distribution and functional anatomy of amine-containing neurons in decapod crustaceans [J]. Micro Res Techni. Special Issue:The Cellular Distribution of Histamine and Other biogenic Amines in the Nervous System of Arthrods.1999,2-3(44):105-120.
    Bentley M G. The global spread of the Chinese mitten crab Eriocheir sinensis. In the Wrong Place-Alien Marine Crustaceans:Distribution, Biology and Impacts Invading Nature-Springer Series in Invasion Ecology Part 2 [J].2011,6:107-127.
    Berlind A, Kamemoto F I. Rapid water permeability changes in eyestalkless euryhaline crabs and in isolated, perfused gills [J]. Comp Biochem Physiol.1977,58A:383-385.
    Bianchini A, Lauer M M, Nery L E M, et al. Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during acclimation [J]. Comp Biochem Physiol.2008, 151 A:423-436.
    Biesiot P M, Perry H M. Biochemical composition of the deep-sea red crab Chaceon quinquedens (Geryonidae):organic reserves of developing embryos and adults [J]. Mar Biol.1995,124: 407-416.
    Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Can J Biochem Physiol.1959,37:911-917.
    Boeuf G, Payan P. How should salinity influence fish growth [J]. Comp Biochem Physiol PartC Pharmacol Toxicol.2001,130:411-423.
    Bradford M M. A rapid and sensitive method for quantification of microgram quantities of proteins utilizing the principle of protein binding [J]. Anal Biochem.1976,72:248-254.
    Brown A C, Terwilliger N B. Developmental changes in ionic and osmotic regulation in the Dungeness crab, Cancer magister [J]. Biol Bull.1992,182:270-277.
    Buckup L, Dutra B K, Ribarcki F P, et al. Seasonal variations in the biochemical composition of the crayfish Parastacus defossus (Crustacea, Decapoda) in its natural environment [J]. Comp Biochem Physio.2008.149A:59-67.
    Burnett L E, Dunn T N, Infantino J R L. The function of carbonic anhydrase in crustacean gills. R. Gilles, M. Gilles-Baillien (Eds.), Transport processes, iono-and osmoregulation, Springer-Verlag, Berlin,1985, pp.159-168.
    Burrows M, Willows A O D. Neuronal co-ordination of rhythmic maxilliped beating in brachyuran and anomuran crustacean [J]. Comp Biochem Physiol.1969,31:121-135.
    Bystriansky J S, Richards J G, Schulte P M, et al. Reciprocal expression of gill Na+/K+-ATPase a-subunit isoforms ala and alb during seawater acclimation of three salmonid fishes that vary in their salinity tolerance [J]. J Exp Biol.2006,209:1848-1858.
    Castilho P C, Martins I A, Bianchini A. Gill Na+, K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana,1851 (Decapoda, Grapsidae) [J]. J Exp Mar Biol Ecol. 2001,256:215-227.
    Castille F L, Lawrence A L. The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus [J]. Comp Biochem Physiol.1981,68A:75-80.
    Chang E S, Chang S A, Beltz B S, et al. Crustacean hyperglycemic hormone in the lobster central nervous system:Localization and release from cells in the subesophageal ganglion and thoracic second roots [J]. J Comp Neurol.1999,414:50-56.
    Chang E S, Chang S A, Mulder E P. Hormones in the Lives of Crustaceans:An Overview [J]. Amer Zool.2001,41:1090-1097.
    Chang E S, Keller R, Chang S A. Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses [J]. Gen Comp Endocrinol.1998,111:359-366.
    Chang E S. Stressed-out lobsters:crustacean hyperglycemic hormone and stress protein [J]. Integr Comp Biol.2005,45:43-50.
    Chapelle S, Zwingelstein G. Phospholipid composition and metabolism of crustacean gills as related to changes in environmental salinities. Relationship between Na+-K+-ATPase activity and phospholipids [J]. Comp Biochem Physiol.1984,78B:363-372.
    Charmantier G, Wolcott D L. Introduction to the symposium:Ontogenetic strategies of invertebrates in aquatic environments [J]. Amer Zool.2001,41(5):1053-1056.
    Charmantier G, Charmantier-Daures M, Towle D. Osmotic and ionic regulation in aquatic arthropods. D. H. Evans (Ed.), Osmotic and Ionic Regulation. Cells and Animals, CRC Press, Boca Raton, FL, New York, NY, Oxford, UK,2009, pp.165-230.
    Charmantier G, Aiken D E. Osmotic regulation in late embryos and prelarvae of the American lobster Homarus americanus H. Milne-Edwards,1837 (Crustacea, Decapoda) [J]. J Exp Mar Biol Ecol.1987,109:101-108.
    Charmantier G, Charmantier-Daures M, Anger K. Ontogeny of osmoregulation in the grapsid crab Amarses miersii (Crustacea:Decapoda) [J]. Mar Ecol Prog Ser.1998,164:285-292.
    Charmantier G, Charmantier-Daures M. Ontogeny of Osmoregulation in Crustaceans:The Embryonic Phase [J]. Amer Zool.2001,41:1078-1089.
    Charmantier-Daures M, Charmantier G, Janssen K P C, et al. Involvement of eyestalk factors in the neuroendocrine control of hydromineral metabolism in adult American lobster Homarus americanus [J]. Gen Comp Endocr.1994,94:281-293.
    Charmantier-Daures M, Thuet P, Charmantier G, et al. Tolerance a la salinite et osmoreguiation chez les post-larves de Penaeus japonicus et P. chinensis. Effet dela temperature [J]. Aquat Liv Res.1988,1:267-276.
    Chen J C, Cheng S Y. Hemolymph oxygen content, oxyhemocyanin, protein levels and ammonia excretion in the shrimp Penaeus monodon exposed to ambient nitrite [J]. J Comp Physio. 1995,164B(7):530-535.
    Chen J C, Cheng S Y. Studies on haemocyanin and haemolymph protein levels of Penaeus japonicas based on sex, size and moulting cycle [J]. Comp Biochem Physio.1993,106B(2): 293-296.
    Chen J C, Chia P G. Hemolymph ammonia and urea and nitrogenous excretions of Scylla serrata at different temperature and salinity [J]. Mar Ecol Prog Ser.1996,139:119-125.
    Chen J C, Chia P G. Oxyhemocyanin, protein, osmolality and electrolyte levels in the hemolymph of Scylla serrata in relation to size and molt cycle [J]. J Exp Mar Biol Ecol.1997,217(1): 93-105.
    Chen J C, Lin C Y. Oxygen consumption and ammonia-N excretion of Penaeus chinensis juveniles exposed to ambient ammonia at different salinity levels [J]. Comp Biochem Physio. 1992,2B(102):287-291.
    Cheng W, Chen J C. Enterococcus-like infections in Macrobrachium rosenbergii are exacerbated by high pH and temperature but reduced by low salinity [J]. Dis Aquat Org.1998,34: 103-108.
    Cheng W, Chen J C. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii [J]. Fish Shellfish Immunol.2000.10: 387-391.
    Cheng W, Chen J C. Effects of environmental factors on the immune responses of freshwater prawn Macrobrachium rosenbergii and other decapod crustaceans [J]. J Fish Soc Taiwan. 2002,29:1-19.
    Cheng W, Chen S M, Wang F I. Effects of temperature, pH, salinity and ammonia on the phagocytic activity and clearance efficiency of giant prawn Macrobrachium rosenbergii to Lactococcus garvieae [J]. Aquaculture.2003,219:111-121.
    Cheng S Y, Lee W C, Chen J C. Increase of uricogenesis in the kuruma shrimp Marsupenaeus japonicas reared under hyper-osmotic conditions [J]. Comp Biochem Physio.2004,138B: 245-253.
    Cheng W, Liu C H, Cheng C H, et al. Hemolymph oxyhemocyanin, protein, osmolality and electrolyte levels of Macrobarchium rosenbergii in relation to size and molt stage [J]. Aquaculture.2001,198(3-4):387-400.
    Cheng W, Liu C H, Cheng C H, et al. Osmolality and ion balance in giant river prawn Macrobrachium rosenbergii subjected to changes in salinity:role of sex [J]. Aquac Res.2003, 34:555-560.
    Cheng W, Liu C H, Yan D F, et al. Hemolymph oxyhemocyanin, protein, osmolality and electrolyte levels of whiteleg shrimp Litopenaeus vannamei in relation to size and molt stage [J]. Aquaculture.2002,211(1-4):325-339.
    Christopher G D, Steven H J, James M N, et al. Detection of salinity by the lobster, Homarus americanus [J]. Refference Biol Bull.2001,201:424-434.
    Chung J S, Webster S G. Binding sites of crustacean hyperglycemic hormone and its second messengers on gills and hindgut of the green shore crab, Carcinus maenas [J]. Gen Com Endocrinol.2006,270:206-213.
    Chung J S, Webster S G. Expression and release patterns of neuropeptides during embryonic development and hatching of the green shore crab, Carcinus maenas [J]. Development.2004, 131:4751-4761.
    Chung J S, Zmora N, Katayama H, et al. Crustacean hyperglycemic hormone (CHH) neuropepti des family:Functions, titer, and binding to target tissues [J]. Gen Comp Endocrinol.2010, 166:447-454.
    Chung K F, Lin H C. Osmoregulation and Na, K-ATPase expression in osmoregulatory organs of Scylla paramamosain [J]. Comp Biochem Physio.2006,144A:48-57.
    Cieluch U, Anger K, Charmantier-Daures M, et al. Salinity tolerance, osmoregulation, and immunolocalization of Na+/K+-ATPase in larval and early juvenile stages of the Chinese mitten crab, Eriocheir sinensis (Decapoda, Grapsoidea) [J]. Mar Ecol Progr Ser.2007,329: 169-178.
    Coccia E, Varricchio E, Paolucci M. Digestive Enzymes in the Crayfish Cherax albidus: Polymorphism and Partial Characterization [J]. Inter J Zool.2011,1-9.
    Comoglio G, Gaxiola A, Roque G, et al. The effect of starvation on refeeding, digestive enzyme activity, oxygen consumption, and ammonia excretion in juvenile white shrimp Litopenaeus vannamei [J]. J Shellfish Res.2004,23:243-249.
    Curtis D L, Jensen E K, McGaw I J. Behavioral influences on the physiological responses of Cancer gracilis, the Graceful Crab, during hyposaline exposure [J]. Reference Biol Bull. 2007,212:222-231.
    Curtis D L, McGaw I J. Respiratory and digestive responses of postprandial Dungeness crabs, Cancer magister, and blue crabs, Callinectes sapidus, during hyposaline exposure [J]. J Comp Physiol.2010,180B:189-198.
    Curtis D L. McGaw I J. Salinity and thermal preference of Dungeness crabs in the lab and in the field:Effects of food availability and starvation [J]. J Exp Mar Biol Ecol.2012,413(10): 113-120.
    Curtis D L, Vanier C H, McGaw I J. The effects of starvation and acute low salinity exposure on food intake in the Dungeness crab, Cancer magisler [J]. Mar Biol.2010,157:603-612.
    Da Silva R S M, Kucharski L C. Effect of hypoosmotic stress on the carbohydrate metabolism of crabs maintained on high protein or carbohydrate diets [J]. Comp Biochem Physiol.1992, 101:631-634.
    Dall W, Hill B J, Rothlisberg P C, et al. The biology of the Penaeidae [J]. Adv Mar Biol.1990,27: 1-461.
    Dall W, Moriarty DJW. Functional aspects of feeding and digestion. In:Mantel LH (ed) The biology of crustacea. Vol 5. Internal anatomy and physiological regulation. Academic, New York,1983, pp 215-261.
    Dalla Via. Effects of salinity and temperature on oxygen consumption in a freshwater population of Palaemonetes antennarius (Crustacea, decapoda) [J]. Comp Biochem Physiol.1987, 88B(2):299-305.
    Davenport J, Busschots P L, Cawthorne D F. The influence of salinity on the distribution, behaviour and oxygen uptake of the hermit crab Pagurus bernhardus [J]. J Mar Biol Assoc UK.1980,60:127-134.
    Davenport J, Wankowski J. Pre-immersion salinity choice behaviour in Parcellana platycheles [J]. Mar Biol.1973,22:313-16.
    Davenport J. Salinity tolerance and preference in the porcelaincrabs, Porcellana platycheles and Porcellana longicornis [J]. Mar Behav Physiol.1972,1:123-138.
    De Kleijn D P V, De Leeuw E P H, Van Den Berg M C, et al. Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus [J]. Biochem biophys Acta.1995,1260:62-66.
    De Vries M C, Forward R B. Mechanisms of crustacean egg hatching:evidence for enzyme release by crab embryos [J]. Mar Biol.1991,110:281-291.
    Deane E E, Woo N Y S. Differential gene expression associated with euryhalinity in sea bream (Spams sarba) [J]. Am J Physiol.2004,287:1054-1063.
    Diaz H, Orihuela B, Forward R B Jr, et al. Orientation of blue crab, Callinectes sapidus megalopae:responses to visual and chemical cues [J]. J Exp Mar Biol Ecol.1999,233: 25-40.
    Djangmah J S. The effects of feeding and starvation on copper in the blood and hepatopancreas, and on blood proteins of Crangon vulgaris (Fabricius) [J].Comp Biochem Physiol.1970,32: 709-731
    D'Orazio S E, Holliday C W. Gill Na, K-ATPase and osmoregulation in the sand fiddler crab, Uca pugilator [J]. Physiol Zool.1985,58:364-373.
    Drews G. Na+/K+-ATPase activity in the gills and Na" concentration in the haemolymph of Uca tangeri during osmotic stress [J]. Abstr 5th Conf. Eur. Soc. Comp Physiol Biochem.1983, pp. 138-139.
    Dufort C G, Jury S H, Newcomb J M. et al. Detection of salinity by the lobster, Homarus americanus [J]. Biol Bull.2001,201:424-434.
    Edeline E, Dufour S, Eliel P. Role of glass eel salinity preference in the control of habitat selection and growth plasticity in Anguilla Anguilla [J]. Mar Ecol Pro Ser.2005,304: 191-199.
    Ehlinger G S. Spawning behavior and larval biology of the American horseshoe crab, Limulus polyphemus, in a microtidal coastal lagoon [D]. Ph.D. dissertation, Florida Institute of Technology, Melbourne, FL.2002,133 pp.
    Engel D W, Brouwer M, McKenna S. Hemocyanin concentrations in marine crustaceans as a function of environmental conditions [J]. Mar Ecol Pro Ser.1993,93(3):235-244.
    Escamilla-Chimal E G, Van Herp F, Fanjul-Moles M L. Daily variations in crustacean hyperglycemic hormone and serotonin (5-HT) immunoreactivity during the development of crayfish [J]. J Exp Biol.2001,204:1073-1081.
    Esser L J, Cumberlidge N. Evidence that salt water may not be a barrier to the dispersal of Asian freshwater crabs (Decaponda:Brachyura:Gecarcinucidae and Potamidae) [J]. Raffles Bull Zool.2011,59:259-268.
    Fanjul-Moles M L. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans:Review and update [J]. Comp Biochem Physiol.2006,142C:390-400.
    Felder J M, Felder D L, Hand S C. Ontogeny of osmoregulation in the estuarine ghost shrimp Cullianassa jamaicense var. Iouisianensis Schmitt [J]. J Exp Mar Biol Ecol.1986,99: 91-106.
    Fernandez-Gimenez AV, Garcia-Carreno F L, Navarrete del Torro M A, et al. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea):partial characterisation and relationship with moulting [J]. Comp Biochem Physiol.2001,130:331-338.
    Figueiredo M S R B, Kricker J A, Anderson A J. Digestive enzyme activities in the alimentary tract of redclaw crayfish, Cherax quadricarinatus (Decapoda; Parastacidae) [J]. J Crusta Biol. 2001,21:334-344.
    Forward R B, Rittschof D. Photoresponses of crab megalopae in offshore and estuarine waters: implications for transport [J]. J Exp Mar Biol Ecol.1994,182:183-192.
    Freire C A, Cavassin F, Rodrigues E N, et al. Adaptative patterns of osmotic and ionic regulation and the invasion of freshwater by the palaemonids shrimps [J]. Comp Biochem Physiol.2003, 136A:771-778.
    Freire C A, McNamara J C. Fine structure of the gills of the fresh-water shrimp Macrobrachium olfersii (Decapoda):Effect of acclimation to high salinity medium and evidence for involvement of the intralamellar septum in ion uptake [J]. J Crust Biol.1995,15:103-116.
    Freire C A, Onken H, McNamara J C. A structure-function analysis of ion transport in crustacean gills and excretory organs [J]. Comp Biochem Physiol.2008,151A:272-304.
    Garcia-Guerrero M. Proximate biochemical variations in eggs of the prawn Macrobrachium americanum (Bate,1869) during its embryonic development [J]. Aquac Res.2009,40(5): 575-581.
    Gaxiolaa G, Cuzonb G, Garciaa T, et al. Factorial effects of salinity, dietary carbohydrate and moult cycle on digestive carbohydrases and hexoki nases in Litopenaeus vannamei (Boone, 1931) [J]. Comp Biochem Physiol.2005,140(1):29-39.
    George S. Egg quality, larval growth and phenotypic plasticity in a forcipulate seastar [J]. J Exp Mar Biol Ecol.1999,237:203-224.
    Gilles R, Pequeux A J. Cell volume regulation in crustaceans:relationship between mechanisms for controlling the osmolality of extracellular and intracellular fluids [J] J Exp Zool.1981, 215:351-362.
    Gilles R, Pequeux A. Interactions of chemical and osmotic regulation with the environment, in: D.E Bliss, F.J Vernberg, W.B Vernberg (Eds.), The Biology of Crustacea, Environmental Adaptations, vol.8, Academic Press, New York,1983. pp.109-177.
    Gilles R, Pequeux A. Ion transport in crustacean gills:Physiological and ultrastructural approaches. In:Gilles. R., Gilles-Baillien, M. (Eds.), Transport Processes:Iono-and Osmoregulation. Springer Verlag, Berlin, pp.1985,136-158.
    Gilles G, Pequeux A. Physiological and ultrastructural studies of NaCl transport in crustacean gills [J]. Boll Zool.1986,53:173-182.
    Gilles R, Delpire E. Variations in salinity, osmolarity, and water availability:vertebrates and invertebrates. In:Dantzler, W.H. (Ed.), Handbook of Comparative Physiology [M]. vol.Ⅱ. Oxford University Press, New York,1997, pp.1523-586.
    Gilles R. Effects of osmotic stresses on the proteins concentration and pattern of Eriocheir sinensis blood [J]. Comp Biochem Physiol.1977,56A(2):109-114.
    Gilles R. Organic dcompensatoryT osmolytes in osmolarity control and hydration changes in animals cells [J]. S Afr J Zool.1998,33:76-86.
    Gimenez L, Anger K. Larval performance in an estuarine crab, Chasmagnathus granulata, is a consequence of both larval and embryonic experience [J]. Mar Ecol Prog Ser. 2003,249: 251-264.
    Gimenez L, Anger K. Relationships among salinity, egg size, embryonic development, and larval biomass in the estuarine crab Chasmagnathus granulata Dana,1851 [J]. J Exp Mar Biol Ecol. 2001,260:241-257.
    Gimenez L, Torres G. Larval growth in the estuarine crab Chasmagnathus granulata:The importance of salinity experienced during embryonic development, and the initial larval biomass [J]. Mar Biol.2002,141:877-885.
    Gimenez L. Effects of prehatching salinity and initial larval biomass on survival and duration of development in the zoea I of the estuarine crab, Chasmognathus granulata. under nutritional stress [J]. J Exp Mar Biol Ecol.2002,270:93-110.
    Gleeson R A, McDowell L M, Aldrich H C. Structure of the aesthetic (olfactory) sensilla of the blue crab, Callinectes sapidus:transformations as a function of salinity [J]. Cell Tissue Res. 1996,284:279-288.
    Gleeson R A, Wheatly M G, Reiber C L. Perireceptor mechanisms sustaining olfaction at low salinities:insight from the euryhaline blue crab Callinectes sapidus [J]. J Exp Biol.1997,200: 445-456.
    Goldsmith T H, Fernandez H R. Comparative studies of crustacean spectral sensitivity [J]. J Comp Physiol.1968,60A(2):156-175.
    Green J. Chemical embryology of the crustacea.1965,40(4):580-599.
    Greenaway P. Uptake of calcium at the postmolt stage by the marine crabs Callinectes sapidus and Carcinus maenas [J]. Comp Biochem Physiol.1983,75A(2):181-184.
    Gross W J. A behavioral mechanism for osmotic regulation in a semi-terrestrial crab [J]. Biol Bull. 1957,113:168-174.
    Gross W J. Aspects of osmoregulation in crabs showing the terrestrial habit [J]. Am Nat.1955,89: 205-222.
    Haefner P A, Schuster C N. Length increments during terminal molt of the female blue crab Callinectes sapidus in different salinity environments [J]. Chesapeake Sci.1964,5:114-118.
    Harms J, Anger K, Klaus S, et al. Nutritional effects on ingestion rate, digestive enzyme activity growth and biochemical composition of Hyas araneus (Decapoda Majidae) larvae [J]. J Exp Mar Biol Ecol.1991,145:233-265.
    Harms J, Meyer-Harms B, Dawirs R, et al. Growth and physiology of Carcinus maenas (Decapoda, Portunidae) larvae in the field and in laboratory experiments [J]. Mar Ecol Prog Ser.1994,108:107-118.
    Hart M W. What are the costs of small egg size for a marine invertebrate with a feeding planktonic larva? [J].Amer Nat.1995,146:415-426.
    Hedgpeth J. Ecological aspects of the Laguna Madre, a hypersaline estuary. Pp.408-419. in Estuaries, Lauff G H. ed. American Association for Advancement of Science,1967. Washington, DC.
    Henry R P, Borst D W. Effects of eyestalk ablation on carbonic anhydrase activity in the euryhaline blue crab Callinectes sapidus:neuroendocrine control of enzyme expression [J]. Comp Exp Biol.2006,305(1):23-31.
    Henry R P, Cameron R. Acid-base balance in (Callinecte ssapidus) during acclimation from high to low salinity [J]. J Exp Biol.1982,101:255-264.
    Henry R P, Gennrich P, Weihrauch, et al. Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas [J]. Comp Biochem Physiol.2003,136A: 243-258.
    Henry R P, Thomason L K, Towle D W. Quantitative changes in branchial carbonic anhydrase activity and expression in the euryhaline green crab, Carcinus maenas, in response to low salinity exposure [J]. J Exp Zool.2006,305:842-850.
    Henry R P. Techniques for measuring carbonic anhydrase activity in vitro:The electrometric delta pH and pH stat methods. In:Dodgson S J, Tashien R E, Gros G. (Eds.). The Carbonic Anhydrases:Cellular Physiology and Molecular Genetics. Plenum, New York, pp.1991, 119-125.
    Henry R P. Environmentally mediated carbonic anhydrase induction in the gills of euryhaline crustaceans [J]. J Exp Biol.2001,204:991-1002.
    Henry R P. Critical salinity, sensitivity, and commitment of salinity-mediated carbonic anhydrase induction in the gills of two euryhaline species of decapod crustaceans [J]. J Exp Zool.2005. 3O3A:45-56.
    Henry R P, Campoverde M P, Borst D W. Effects of eyestalk ablation on salinity-mediated carbonic anhydrase induction in three species of decapod crustaceans [J]. Amer Zool.1999, 39:65A.
    Henry R P, Campoverde M P, Borst D W. Effects of eyestalk ablation on carbonic anhydrase activity in the gills of Carcinus maenas and Cancer irroratus. Bull. Mt Desert Island Biol. Lab.2000,39,21-22.
    Heras H, Gonzales-Baro M, Pollero R. Lipid and fatty acid composition and energy partitioning during the embryo development in the shrimp Macrobrachium borellii [J].2000,35: 645-651.
    Heras H. Mecanismo de Transporte Hemolinfatico de Lipidos en Octopus tehuelchus d'Orb.1835, Ph.D. Thesis, University of La Plata, La Plata, Argentina,1990,206 pp.
    Herborg L M, Bentley M G, Clare A S, et al. Mating behaviour and chemical communication in the invasive Chinese mitten crab Eriocheir sinensis [J]. J. Exp Mar Biol Ecol.2006,329: 1-10.
    Herborg L M, Rushton S P, Clare A S, et al. Spread of the Chinese mitten crab (Eriocheir sinensis H. Milne Edwards) in Continental Europe:analysis of a historical data set [J]. Hydrobiologia. 2003,503:21-28.
    Herring P J. Depth distribution of the carotenoid pigments and lipids of some oceanic animals Decapod crustaceans [J]. J Mar Biol Assoc UK.1973,53:539-562.
    Hesthagen I. Temperature selection and avoidance in the sand goby, Pomatoschistus minutus (Pallas), collected at different seasons [J]. Environ Biol Fishe.1979,4:369-377.
    Hinton H E. Biology of insect eggs. Pergamon Press.1981.
    Hirche H J, Anger K. Digestive enzyme activities during larval development of Hyas aroneus [J]. Comp Biochem Physiol.1987,87B:297-302.
    Hochachka P W, Somero G N.1984. Biochemical Adaptation. Princeton University Press, Princeton.
    Holland D L. Lipid reserves and energy metabolism in the larvae of benthic marine invertebrates. In, Biochemical and biophysical perspectives in marine biology, edited by D.C. Malins and J.R. Sargent, Academic Press, London, pp.1978,85-123.
    Holliday C W, Royce D, Roer R. Salinity-induced changes in branchial Na+, KT-ATPase activity and transepithelial potential difference in Artemia [J]. J Exp Biol.1990,151:279-296.
    Hughes G M, Knights B, Scammell C A. The distribution of PO and hydrostatic pressure changes within the branchial chambers in relation to gill ventilation of the shore crab Carcinus maenas L [J]. J Exp Biol.1969,51:203-220.
    Hume R, IBeriind A. Heart and scaphognathite changes in a euryhaline crab Carcinus maenas exposed to a dilute medium [J]. Biol Bull.1976,150:241-254.
    Huong D T T, Yang W J, Okuno A, et al. Changes in free amino acids in the hemolymph of giant freshwater prawn Macrobrachium rosenbergii exposed to varying salinities:relationship to osmoregulatory ability [J]. Comp Biochem Physiol.2001,128:317-326.
    Hurst T P, Conover D O. Effects of temperature and salinity on survival of young-of-the-year Hudson River striped bass (Morone saxatilis):implications for optimal overwintering habitats [J]. Can J Fish Aquat Sci.2002,59:787-795.
    Hurtado M A, Racotta I S, Civera R, et al. Effect of hypo-and hypersaline conditions on osmolality and Na+/K--ATPase activity in juvenile shrimp (Litopenaeus vannamei) fed low-and high-HUFA diets [J]. Comp Biochem Physiol.2007.147A:703-710.
    Hymanson Z, Wang J, Sasaki T. Lessons from the home of the Chinese mitten crab [J]. Interagency Ecol Progr Newslett.1999,12(3):25-32.
    Icely J D, Nott J A. Digestion and absorption:digestive system and associated organs. In:Harrison, F.W. (Ed.), Microscopic Anatomy of Invertebrates, vol.10. Wiley, New York,1992, pp. 147-202.
    Ituarte R B. Efectos de la salinidad sobre la reproducciony el desarrollo del'camaron de agua dulce'Palae monetes argentinus. PhD dissertation, Universidad Nacional de Mar del Plata, 2008, Mar del Plata.
    Ituarte R B, Spivak E D, Anger K. Effects of salinity on embryonic development of Palaemonetes argentines (Crustacea:Decapoda:Palaemonidae) cultured in vitro [J]. Invertebr Reprod Dev. 2005,47:213-223.
    Jegla T C, Costlow J D. Temperature and salinity effects on developmental and early posthatch stage of Limulus. In:Bonaventura, J., Bonaventura C. Tesh, S (eds) Physiology and biology of horseshoe. Alan R Liss, New York,1982, pp.103-113.
    Jiang D H, Lawrence A L, Neill W H, et al. Effects of temperature and salinity on nitrogenous excretion by Litopenaeus vannamei juveniles [J]. J Exp Mar Biol Ecol.2000,253(2): 193-209.
    Jillette N, Cammack L, Lowenstein M, et al. Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, Carcinus maenas, in response to high salinity acclimation [J]. Comp Biochem Physiol.2011,158A:189-193.
    Johnston D J, Yellowlees D. Relationship between the dietary preferences and digestive enzyme complement of the slipper lobster Thenus orienialis (Decapoda:Scyllaridae) [J]. J Crustac Biol.1998,18:656-665.
    Johnston D J. Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda; Palinuridae) [J]. Mar Biol.2003,143:1071-1082.
    Jones D R, Hartnoll R G. Mate selection and mating behavior in spider crabs [J]. Est Coast Shelf Sci.1997,44:185-193.
    Jones M B, Simons M J. Responses of embryonic stages of the estuarine mud crab, Macrophthalmus hirtipes (Jacquinot), to Salinity [J]. Int J Invertebr Reprod.1982,5(4): 273-279.
    Joseph A, Philip R. Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunocompetence to white spot syndrome virus infection [J]. Aquaculture.2007,272:87-97.
    Jury S H, Kinnison M T, Howell W H, et al. The behavior of lobsters in response to reduced salinity [J]. J Exp Mar Biol Ecol.1994,180:23-37.
    Kamemoto F I. Neuroendocrinology of osmoregulation in crabs. Zool Sci.1991,8:827-833.
    Kamemoto F L, Tullis R E. Hydromineral regulation in decapod crustacean [J]. Gener Comp Endocrino.1972,3:299-307.
    Kamemoto F L. Neuroendocrinology of osmoregulation in crabs [J]. Zoo Sci,1997,8:827-833.
    Kefford B J, Nugegoda D, Zalizniak L, et al. The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages [J]. Aqua Ecol. 2007,41:335-348.
    Keller R, Jaros P, Kegel G, et al. Crustacean hyperglycemic neuropeptides [J]. Amer Zool.1985, 25(1):207-221.
    Keller R, Sedlmeier D. A metabolic hormone in crustacean:the hyperglycemic neuropeptide R.L. Alan (Ed.), Endocrinology of Selected Invertebrates Types, Academic Press, New York, NY, USA.1988, pp.315-326.
    Kinne O. Physiological aspects of animal life in estuaries with special reference to salinity [J]. Neth J Sea Res.1966,3:222-244.
    Kirschner L B. The mechanism of sodium chloride uptake in hyperregulating aquatic animals [J]. J Exp Biol.2004,207:1439-1452.
    Kormanik G A. Ionic and osmotic environment of developing elasmobranch embryos [J]. Environ Biol Fish.1993,38:233-240.
    Lagerspetz K, Mattila M. Salinity reactions of some fresh and brackish water crustaceans [J]. Biol Bull.1961,120:44-53.
    Lago-Leston A, Poncea E, Munozb M E. Cloning and expression of hyperglycemic (CHH) and molt-inhibiting (MIH) hormones mRNAs from the eyestalk of shrimps of Litopenaeus vannamei grown in different temperature and salinity conditions [J]. Aquaculture.2007, 270(1-4):343-357.
    Lange R, Mostad A. Cell volume regulation in osmotically adjusting marine animals [J]. J Exp Mar Biol Ecol.1967,1:209-219.
    Lankford T E, Targett T E. Suitability of estuarine nursery zones for juvenile weakfish (Cynoscion regalis):effects of temperature andsalinity on feeding, growth and survival [J]. Mar Biol. 1994,119:611-620.
    Laughlin Jr R B, French W. Interactions between temperature and salinity during brooding on subsequent zoeal development of the mud crab Rhithropanopeus harrisii [J]. Mar Biol.1989, 102:377-386.
    Lee W C, Chen J C. Hemolymph ammonia, urea and uric acid levels and nitrogenous excretion of Marsupenaeus japonicas at different salinity levels [J]. J Exp Mar Biol Ecol.2003,288: 39-49.
    Leelapiyanart N. Ecophysiological studies on developing eggs and ovigerous females of intertidal crabs. Ph. D. thesis,1996, University of Canterbury.
    Leersnyder De M. Le milieu interieur d'Eriocheir sinensis Milne-Edwards et ses variations I Etude dans le milieu naturel [J]. Cah Biol Mar.1967,8:195-218.
    Lemos D, Phan V N, Alvarez G. Growth, oxygen consumption, ammonia-N excretion, biochemical composition and energy content of Farfantepenaeus paulensis Perez-Farfante. (Crustacea, Decapoda, Penaeidae) early postlarvae in different salinities [J]. J Exp Mar Biol Ecol.2001,261:55-74.
    LI C H, Cheng S Y. Variation of calcium levels in the tissues and hemolymph of Litopenaeus vannamei at various molting stages and salinities [J]. J Crust Biol.2012,32:101-108.
    Li E C, Chen L Q, Zeng C, et al. Comparison of digestive and antioxidant enzymes activities, haemolymph oxyhemocyanin contents and hepatopancreas histology of white shrimp, Litopenaeus vannamei, at various salinities [J]. Aquaculture,2008,274:80-86.
    Li E C, Chen L Q, Zeng C, et al. Growth, body composition, respiration and ambient ammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, at different salinities [J]. Aquaculture.2007,265(1-4):385-390.
    Lignot J H, Charmantier-Daures M, Charmantier G. Immunolocalization of Na+-K+-ATPase in the organs of the branchial cavity of the European lobster Homarus gammarus (Crustacea: Decapoda). Cell Tissue Res.1999,296:417-426.
    Lignot J H, Spanings-Pierrot C, Charmantier G. Osmoregulatory capacity as a tool in monitoring the physiological condition and the effect of stress in crustaceans [J]. Aquaculture.2000,191: 209-245.
    Lignot J H, Susanto G N, Charmantier-Daures M, et al. Immunolocalization of Na+,K+-ATPase in the branchial cavity during the early development of the crayfish Astacus leptodactylus (Crustacea, Decapoda) [J]. Cell Tissue Res.2005,319:331-339.
    Lima A G, McNamara J C, Terra W R, et al. Regulation of hemolymph osmolytes and gill Na/K-ATPase activities during acclimation to saline media in the freshwater shrimp Macrobrachium olfersii (Wiegmann,1836) (Decapoda, Palaemonidae) [J]. J Exp Mar Biol Ecol.1997,215:81-91.
    Lin S C, Liou C H, Cheng J H. The role of the antennal glands in ion and body volume regulation of cannulated Penaeus monodon reared in various salinity conditions [J]. Comp Biochem Physiol.2000,127A:121-129.
    Lockwood A P M. Aspects of the Physiology of Crustacea.W. H. Freeman and Company, San Francisco,1967. CA.
    Lopez-Mananes A A, Magnoni L J, Goldemberg A L. Branchial carbonic anhydrase (CA) of gills of Chasmagnathus granulata (Crustacea Decapoda) [J]. Comp Biochem Physiol.2000,127B: 85-95.
    Lovett D L, Tanner C A, Ricart T M, et al. Modulation of Na+,K+-ATPase expression during acclimation to salinity change in the blue crab, Callinectes sapidus [J]. Bull Mt Desert Island Biol Lab.2003,42:83-84.
    Lucu C, Devescovi M. Osmoregulation and branchial Na.K-ATPase in the lobster Homarus gammarus acclimated to dilute seawater [J]. J Exp Mar Biol Ecol.1999,234:291-304.
    Lucu C, Flik G. Na,K-ATPase and Na+/Ca2--exchange activities in gills of hyperregulating Carcinus maenas [J]. Am J Physiol.1999,276:490-499.
    Lucu C, Towle D W. Na-/K--ATPase in gills of aquatic crustacean [J]. Comp Biochem Physiol. 2003,135A:195-214.
    Luo W, Zhao Y L, Yao J J. Biochemical composition and digestive enzyme activities during the embryonic development of the redclaw crayfish, Cherax quadricarinalus [J]. Crustaceana, 2008,81(8):897-915.
    Luquet C M, Postel U, Urcola M, et al. Active ion uptake and excretion across the gills of the hyper-hypo-regulating rainbow crab Chasmagnathus granulates [J]. J Exp Biol.2002,205: 71-77.
    Luquet C M, Weihrauch D, Senek M, et al. Induction of branchial ion transporter mRNA expression during acclimation to salinity change in the euryhaline crab Chasmagnathus granulates. J Exp Biol.2005,208:3627-3636.
    Luvizotto-Santos, Lee J T, Pereira-Branco Z, et al. Lipids as energy source during salinity acclimation in the euryhaline crab Chasmagnathus granulata Dana,1851 (Crustacea-Grapsidae) [J]. J Exp Zool.2003,295A:200-205.
    Mantel L H, Farme L L.1983. Osmotic and ionic regulation. In:Bilss, D.E. (Ed.), The Biology of Crustacea. Internal Anatomy and Physiological Regulation, vol.5. Academic Press, New York, pp.53-161.
    Mantel L H. Neurohormonal integration of osmotic and ionic regulation [J]. Am Zool.1985,25: 253-263.
    Maren T H. Carbonic anhydrase:chemistry, physiology and inhibition [J]. Physiol Rev.1967,47: 595-781.
    Martins T L, Chitto A L F, Rossetti C L, et al. Effects of hypo-or hyperosmotic stress on lipid synthesis and gluconeogenic activity in tissues of the crab Neohelice granulate [J]. Com Biochem Physiol.2011,158A:400-405.
    McGaw I J. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis. Cardiovascular and respiratory responses [J]. J Exp Biol.2006a,209:3766-3776.
    McGaw I J. Feeding and digestion in low salinity in an osmoconforming crab, Cancer gracilis II. Gastric evacuation and motility [J]. J Exp Biol.2006b,209:3777-3785.
    McGaw I J. Impacts of habitat complexity on physiology:purple shore crabs tolerate osmotic stress for shelter [J]. Estuar Coast Shelf Sci.2001,53:865-876.
    McGaw I J, McMahon B R. Actions of putative cardioinhibitory substances on the in viva decapod crustacean cardiovascular system [J]. J Crust Biol.1999,19(3):435-449.
    McGaw I J, McMahon B R. Cardiovascular responses resulting from variation in external salinity in the Dungeness crab, Cancer magister [J]. Physiol Zool.1996,69:1384-1401.
    McGaw I. J, McMahon B R. Endogenous rhythms of haemolymph flow and cardiac performance in the crab Cancer magister [J]. J Exp Mar Biol Ecol.1998,224:127-142.
    McGaw I J, Naylor E. The effect of shelter on salinity preference behaviour of the shore crab carcinus maenas [J]. Mar Behav Physiol.1992a,21(2):145-152.
    McGaw I J, Naylor E. Salinity preference of the shore crab Carcinus maenas in relation to coloration during intermoult and prior acclimation [J]. J Exp Mar Biol Ecol.1992b,155(2): 145-159.
    McGaw I J, Reiber C L, Guadagnoli J A. Behavioral physiology of four crab species in low salinity [J]. Biol Bull.1999,19:163-176.
    McLaughlin P A. Hermit crabs-are they really polyphyletic? [J]. J Crust Biol.1983,3:608-621.
    McNamara J C. Faria S C. Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea:a review [J]. J Comp Physiol B.2012, DOI 10.1007/s00360-012-0665-8.
    McNamara J C, Lima A G. route of ion and water movements across the gill epithelium of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae):Evidence from ultrastructural changes induced by acclimation to saline media [J]. Biol Bull.1997,192(2): 321-331.
    McNamara J C, Moreira G S. O2 consumption and acute salinity exposure in the freshwater shrimp Macrobrachium olfersi (Wiegmann) (Crustacea:Decapoda):whole animal and tissue respiration [J]. J Exp Mar Biol Ecol.1987,113:221-230.
    McNamara J C, Rose J C, Greene L J, et al. Free amino acid pools as effectors of osmostic adjustment in different tissues of the freshwater shrimp Macrobrachium olfersii (crustacea, decapoda) during long-term salinity acclimation [J]. Mar Fresh Behavio Physiol.2004, 37(3):193-208.
    Mellinger J. Les reserves lipidiques de l'oeuf des poisons [J]. Annee Biol.1995,34:63-90.
    Mendonca N N, Masui D C, Mcnamara J C, et al. Long-term exposure of the freshwater shrimp Macrobrachium olfersii to elevated salinity:effects of gill (Na-, K+)-ATPase a-subunit expression and K·-phosphatase activity [J]. Comp Biochem Physiol.2007,146A:534-543.
    Mente. Nutrition, physiology and metabolism in crustaceans. Science Publishers, Enfield,2003, NH.
    Mercier E, Palacios A I, Campa-Cordova D, et al. Metabolic and immune responses in Pacific whiteleg shrimp Litopenaeus vannamei exposed to a repeated handling stress [J]. Aquaculture. 2006,258:633-640.
    Mo J L, Devos P, Trausch G. Dopamine as a modulator of ionic transport and Na/K--ATPase activity in the gills of the Chinese crab (Eriocher sinensis) [J]. J Crust Biol.1998,18(3): 442-448.
    Morais S, Narciso L, Calado R, et al. Lipid dynamics during the embryonic development of Plesionika martia martia (Decapoda; Pandalidae), Palaemon serratus and P. elegans (Decapoda; Palaemonidae):relation to metabolic consumption [J]. Mar Ecol Prog Ser.2002, 242:195-204.
    Morgan J D, Iwama G K. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout(Oncorhynchus mykiss) and fall Chinook salmon(Oncorhynchus tshawytscha) [J]. Can J Fish Aquat Sci.1991,48:2083-2094.
    Morris S. Neuroendocrine regulation of osmoregulation and the evolution of air-breathing in decapod crustaceans [J]. J Exp Biol.2001,204:979-989.
    Moullac G L, Haffner P. Environmental factors affecting immune responses in Crustacea [J]. Aquaculture,2000,191:121-131.
    Mulford A L, Villena A J. Cell cultures from crustaceans:shrimp, crabs and crayfish in aquatic invertebrate cell culture (C. Mothersil and B. Austin, eds.) [J]. Springer Chichester.2000, 63-95.
    Muramoto A. Endocrine control of water balance in decapod crustaceans. In"Endocrinology of selected invertebrate types" (H. Laufer and R. G. H. Downer, Eds.), Vol.Ⅲ, pp.341-356. A. R. Liss,1988, New York.
    Myrick C A, Folgner D K, Cech J J. An annular chamber for aquatic animal preference studies [J]. Transactions of the American Fisheries Society.2004,133(2):427-433.
    Nagel H. Die augaben der exkretionsorgane und der kiemen bei der osmoregulation von Carcinus maenas [J]. Z vergl Physiol.1934,21:468-469.
    Narasimhan T, Krishnamoorthy R V. Carbohydrate metabolism in the leg muscles of the fresh-water field crab Paratelphusa hydrodromus adapted to high salinities [J]. Mar Biol. 1975,30(9):167-173.
    Nery L E M. Santos E A. Carbohydrate metabolism during osmoregulation in Chasmagnathus grandata dana,1851 (crustacea, decapoda) [J]. Comp Biochem Physiol.1993,106B(3): 747-753.
    Neufeld D S, Cameron J N. Postmoult uptake of calcium by the blue crab(Callinectes sapidus) in water of low salinity [J]. J Exp Biol.1992,171:283-299.
    Noblitt S B, Payne J F. A comparative study of selected chemical aspects of the eggs of the crayfish Procambarus clarkii (Girard,1852) and P. zonangulus Hobbs and Hobbs,1990 (Decapoda, Cambaridae) [J]. Crustaceana,1995,68:695-704.
    Normant M, Krol M, Jakubowska M. Effect of salinity on the physiology and bioenergetics of adult Chinese mitten crabs Eriocheir sinensis [J]. J Exp Mar Biol Ecol.2012,416-417: 215-220.
    Novo M S, Miranda R B, Bianchini A. Sexual and seasonal variations in osmoregulation and ionoregulation in the estuarine crab Chasmagnathus granulatus (Crustacea, Decapoda) [J]. J Exp Mar Biol Ecol.2005,323:118-137.
    Oconnor J D, Gilbert L I. Aspects of lipid metabolism in crustaceans [J]. Am Zool.1968,8: 529-539.
    Odinetz-Collart O, Rabelo C. Variation in egg size of the fresh-water prawn Macrobrachium amazonicum (Decapoda Palaemonidae) [J]. J Crust Biol.1996,16:684-688.
    Ogburn M B, Jackson J L, Forward Jr R. B Comparison of low salinity tolerance in Callinectes sapidus Rathbun and Callinectes similis Williams postlarvae upon entry into an estuary [J]. J Exp Mar Biol Ecol.2007,352:343-350.
    Oliveira G T, Da Silva R S M. Gluconeogenesis in hepatopancreas of Chasmagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets [J]. Comp Biochem Physiol. 1997,118A:1429-1435.
    Oliveira G T, Da Silva R S M. Hepatopancreas gluconeogenesis during hypsometric stress in Chasmagnathus granulata crabs maintained on high-protein or carbohydrate-rich diets [J]. Comp Biochem Physiol.2000,127:375-381.
    Olsowski A, Putzenlechner M, Bottcher K, et al. The carbonic anhydrase of the Chinese crab Eriocheir sinensis:effects of adaption from tap to salt water [J]. Helgol Meeresunters.1995, 49:727-735.
    Onken H, Putzenlechner M. A V-ATPase drives active, electrogenic and Na+-independent Cl-absorption across the gills of Eriocheir sinensis [J]. J Exp Biol.1995,198:767-774.
    Onken H, Schobe A, Kraft J, et al. Active NaCl absorption across spit lamellae of posterior gills of the Chinese crab Eriocheir sinensis:stimulation by eyestalk extract [J]. J Exp Biol.2000,203: 1373-1381.
    Onken H, Tresguerres M, Luquet C M. Active NaCl absorption across posterior gills of Chasmagnathus granulates [J]. J Exp Biol.2003,206:1017-1023.
    Palacios E, Bonilla A, Perez A, et al. Salinity stress resistance, fatty acid composition, and osmoregulatory responses of white shrimp Litopenaeus vannamei postlarvae fed diets containing different levels of highly unsaturated fatty acids [J]. J Exp Mar Biol Ecol.2004, 299:201-215.
    Pandian T J, Schumann K H. Chemical composition and caloric content of egg and zoea of the hermit crab eupagurus bernhardus [J]. Helgol Mar Res.1967,16(3):225-230.
    Pandian T J. Ecophysiological studies on the developing eggs and embryos of the European lobster Homarus gammarus [J]. Mar Biol.1970,2(5):154-167.
    Pandian T J. Yolk utilization in the gastropod Crepidula fornicata [J]. Mar Biol.1969,3(2): 117-121.
    Panning A. The Chinese mitten crab [J]. Annu Rep Smithson Inst.1938,361-375.
    Parado-Estepa F D, Ladja J M, De Jesus E G, et al. Effect of salinity on hemolymph calcium concentration during the molt cycle of the prawn Penaeus monodon [J]. Mar Biol.1989,102: 189-193.
    Pavasovica M, Richardsonb N A, Andersonb A J, et al. Effect of pH, temperature and diet on digestive enzyme profiles in the mud crab, Scylla serrata [J]. Aquaculture.2004,242: 641-654.
    Pavicic-Hamer D, Dwvescovi M, Lucu C. Activation of carbonic anhydrase in branchial cavity tissues of lobsters (Homarus gammarus) by dilute seawater exposure [J]. J Exp Mar Biol Ecol.2003,287:79-92.
    Pechemnik J A. The encapsulation of eggs and embryos by molluscs:An overview [J]. Amer Malacol Bull.1986,4(2):165-172.
    Pequeux A, Gilles R. The transepithelial potential difference of isolated perfused gills of the Chinese crab Eriocheir sinensis acclimated to freshwater [J]. Comp Biochem Physiol.1988, 89A:163-172.
    Pequeux A, Marchal A, Wanson S, et al. Kinetic characteristics and specific activity of gill Na"-K+-ATPase in the euryhaline Chinese crab, Eriocheir sinensis, during salinity acclimation [J]. Mar Biol Lett.1984,5:35-45.
    Pequeux A, Vallota A C, Gilles R. Blood proteins as related to osmoregulation in crustacean [J] Comp Biochem Physio.1979,64(3):433-435.
    Pequeux A. Osmotic regulation in crustaceans [J]. J Crust Biol.1995,15:1-60.
    Petersen S, Anger K. Chemical and physiological changes during the embryonic development of the spider crab, Hyas araneus L. (Decapoda:Majidae) [J]. Comp Biochem Physiol.1997, 117B:299-306.
    Peterson R H, Martin-Robichaud D J. Perivitelline and vitelline potentials in teleost eggs as influenced by ambient ionic strength, natal salinity, and electrode electrolyte; and the influence of these potentials on cadmium dynamics within the egg [J]. Can J Fish Aquat Sci. 1986,43:1445-1450.
    Pfaff K. Einflu$ der Salinitat auf den Stoffbestand der Larvenstadien einer marinen Dekapodenart. Master's thesis, Universitat Darmstadt,1997, Germany.
    Piller S C, Henry R P, Doeller J E, et al. A comparison of the gill physiology of two euryhaline crab species, Callinectes sapidus and Callinectes similis:Energy production, transport-related enzymes and osmoregulation as a function of acclimation salinity [J]. J Exp Bioi.1995,198: 349-358.
    Price-sheets W C, Dendinger J E. Calcium deposition into the cuticle of the blue crab, Callineetes sapidus related to external salinity [J]. Comp Biochem Physiol.1983,74A:903-907.
    Prosser C L. Environmental and metabolic animal physiology. Wiley-Liss, New york etc.1991.
    Prymaczoka N C, Medesania D A, Rodrigueza E M. Levels of ions and organic metabolites in the adult freshwater crayfish, Cherax quadricarinatus, exposed to different salinities [J]. Mar Fresh Behavi Physiol.2008,41(2):121-130.
    Psochiou E, Sarropoulou E, Mamuris Z, et al. Sequence analysis and tissue expression pattern of Sparus aurata chymotrypsinogens and trypsinogen [J]. Comp Biochem Physiol.2007,147B: 367-377.
    Ramamurthi R. Oxygen consumption of a fresh water crab, Paratelphusa hydrodromus, in relation to salinity stress [J]. Comp Biochem Physiol.1967,23(2):599-605.
    Rameshkumar G, Ravichandran S, Kaliyavarathan G, et al. Comparison of protein content in the haemolymph of brachyuran crabs [J]. Middle-East J Sci Res.2009,4(1):32-35.
    Rathmayer M, Siebers D. Ionic balance in the freshwater-adapted Chinese crab, Eriocheir sinensis [J]. J Comp Physiol.2001,171B:271-281.
    Re A D, Diaz F, Valdez G, et al. Physiological energetics of blue shrimp Penaeus stylirostris (Stimpson) juveniles acclimated to different salinities [J]. Open Zool.2009,2:102-108.
    Regnault M. Nitrogen excretion in marine and freshwater crustacean [J]. Biol Rev.1987,62:1-24.
    Regnault M. Respiration and ammonia excretion of sand shrimp Crangon crangon (L.). Metabolic responses to prolonged starvation [J]. J Comp Physiol.1981,141:549-555.
    Reiber C L. Ontogeny of cardiac and ventilatory function in the crayfish Procambarus clarkia [J]. Am Zool.1997,37:82-91.
    Richard B, Forward Jr, Richard A, et al. Selective tidal-stream transport of the blue crab Callinectes Sapidus:an overview [J]. Bull Mar Sci.2003,72(2):347-365.
    Roast S D, Rainbow P S, Smith B D, et al. Trace metal uptake by the Chinese mitten crab Eriocheir sinensis:the role of osmoregulation [J]. Mar Environ Res.2002,53:453-464.
    Robertson J D.1960. Osmotic and ionic regulation. In:Waterman TH (ed) Crustacean physiology. Academic Press, New York, pp.317-339.
    Rodriguez A, Vay L L, Mourente G, et al. Biochemical composition and digestive enzyme activity in larvae and post larvae of Penaeus japonicus during herbivorous and carnivorous feeding [J]. Mar Biol.1994,118:45-51.
    Rodriguez J, Moullac G L. State of the art of immunological tools and health control of penaeid shrimp [J]. Aquaculture,2000,191:109-119.
    Rodriguez G A. Effect of hyperosmotic stress on hemolymph protein, muscle ninhydrin-positive substances and free amino acids in Macrobrachium rosenbergii (deman) [J]. Comp Biochem Physiol.1981,70(4):485-489.
    Rosas C, Cuzon G, Gaxiola G. An energetic and conceptual model of the physiological role of dietary carbohydrates and salinity on Litopenaeus vannamei juveniles [J]. J Exp Mar Biol Ecol.2002,268:47-67.
    Rosas C, Cuzon G, Gaxiola G, et al. Metabolism and growth of juveniles of Litopenaeus vannamei: effect of salinity and dietary carbohydrate levels [J]. Exp Mar Biol Ecol.2001,259:1-22.
    Rotllant G, De Kleijn D, Charmantier-Daures, et al. Localization of the Crustacean Hyperglycemic hormone (CHH) and gonad inhibiting hormone (GIH) in the eyestalk of Homarus gammarus by immunocytochemistry and in situ hybridization [J]. Cell Tissue Res.1993,271:507-512.
    Rudnick D, Halat K, Resh V.2000. Distribution, ecology and potential impacts of the Chinese mitten crab (Eriocheir sinensis) in San Francisco Bay [J]. University of California Water Resources Center,#206,74pp.
    Rudnick D, Veldhuizen T, Tullis R, et al. A life history model for the San Francisco Estuary population of the Chinese mitten crab, Eriocheir sinensis (Decapoda:Grapsoidea) [J]. Biol Invasions.2005,7:333-350.
    Sanchez-Paz A, Garcia-Carreno F, Hernandez-Lopez J, et al. Effect of short-term starvation on hepatopancreas and plasma energy reserves of the Pacific white shrimp (Litopenaeus vannamei) [J]. J Exp Mar Biol.2007,340:184-193.
    Santos E A, Nery L E M, Keller R, et al. Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism [J]. Physiol Zool.1997,70: 415-420.
    Santos E A, Nery, L E M. Blood glucose regulation in an estuarine crab, Chasmagnathus Granulata (dana,1851) exposed to different salinities [J]. Comp Biochem Physiol.1987, 87A(4):1033-1035.
    Santos F H, McNamara J C. Neuroendocrine modulation of osmoregulatory parameters in the freshwater shrimp Macrobrachium olfersii (Wiegmann) (Crustacea, Decapoda) [J]. J Exp Mar Biol Ecol.1996,206:109-120.
    Sasaki G C, Capuzzo J M, Biesiot P. Nutritional and bioenergetic considerations in the development of the American lobster, Homarus americanus [J]. Can J Fish Aquat Sci.1986, 43:2311-2319.
    Sasaki G C. Biochemical changes associated with embryonic and larval development in the American lobster Homarus americanus Milne Edwards. PhD thesis, MIT, Cambridge, and WHOI,1984, Woods Hole.
    Scheina V, Chittoa A L F, Etgesa R, et al. Effect of hyper or hypo-osmotic conditions on neutral amino acid uptake and oxidation in tissues of the crab Chasmagnathus granulate [J]. Comp Biochem Physiol.2005,140:561-567.
    Scheina V, Wache Y, Etgesa R, et al. Effect of hyper osmotic shock on phosphoenol pyruvate carboxy kinase gene expression and gluconeogenic activity in the crab muscle [J]. Febs Letters.2004,561:202-206.
    Schmidt M. The hair-peg organs of the shore crab, Carcinus maenas (Crustacea, Decapoda): ultrastructure and function properties of sensilla sensitive to changes in seawater concentration [J]. Cell Tissue Res.1989,257:609-621.
    Schoffeniels E, Gilles R. Osmoregulation in aquatic arthropods, in:M. Florkin, B.T. Sheer (Eds.), Chemical zoology, Arthropoda,5, Academic Press, New York,1970, pp.255-286.
    Seneviratna D. Ontogeny of osmoregulation of the embryos of two intertidal crabs hemigraps usedwardsii and Hemigrapsus crenulatus [D]. Ph.D. Thesis. University of Canterbury,2003. New Zealand.
    Serrano L, Henry P R. Differential expression and induction of two carbonic anhydrase isofonns in the gills of the euryhaline green crab, Carcinus maenas, in response to low salinity [J]. Com Biochem Physiol.2008,3D:186-193.
    Serrano L, Blanvillain G, Soyez D, et al. Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus [J]. J Exp Biol.2003,206:979-988.
    Serrano L, Towle D W, Charmantier G, et al. Expression of Na+/K+-ATPase a-subunit mRNA during embryonic development of the crayfish Astacus leptodactylus [J]. Comp Biochem Physiol.2007,2D:126-134.
    Setiarto A, Strussmann C A, Takashima F, et al. Short-term responses of adult kuruma shrimp Marsupenaeus japonicus (Bate) to environmental salinity:osmotic regulation, oxygen consumption and ammonia excretion [J]. Aquac Res.2004,35(7):669-677.
    Shinji J, Okutsu T, Jayasankar V. Metabolism of amino acids during hyposmotic adaptation in the whiteleg shrimp, Litopenaeus vannamei [J]. Amino Acids.2012.
    Sibert V, Ouellet P, Brethes J C. Changes in yolk total proteins and lipid components and embryonic growth rates during lobster (Homarus amaricanus) egg development under a simulated seasonal temperature cycle [J]. Mar Biol.2004,144:1075-1086.
    Siebers D, Leweck K, Markus H, et al. Sodium regulation in the shore crab Carcinus maenas as related to ambient salinity [J]. Mar Biol.1982,69:37-43.
    Siebers D, Winkler A, Lucu C, et al. Na-K-ATPase generates an active transport potential in the gills of the hyperregulating shore crab Carcinus maenas [J]. Mar Biol.1985,87:185-192.
    Silva-Castiglioni D, Dutra B K, Oliveira G T, et al. Seasonal variations in the intermediate metabolism of Parastacus varicosus (Crustacea, Decapoda, Parastacidae) [J]. Comp Biochem Physio.2007,148A:204-213.
    Silva-Neto M A C, Atella G C, Faialho E, et al. Isolation of a calcium-binding phosphoprotein from the oocytes and hemolymph of the blood-sucking insect Rhodnius prolixus [J]. J Biol Chem.1996,271:30227-30232.
    Skou J C, Esmann M. The Na,K-ATPase [J]. J Bioenerg Biomembranes.1992,24:249-261.
    Smith S A, Berkson J, Barratt R A. Horseshoe crab(Limulus polyphemus) hemolymph biochemical and immunological parameters. Proceedings of the 33rd Annual Conference of the international Association for Aquatic Animal Medicine. Albufeira, Portugal, May 4-8, 2002.
    Soengas J L, Aldegunde M, Andres M D. Gradual transfer to seawater of rainbow trout:effects on liver carbohydrate metabolism [J]. J Fish Biol.1995,47:466-478.
    Spaargaren D H, Haefner P A Jr. The effect of environmental osmotic conditions on blood and tissue glucose levels in the brown shrimp, Crangon crangon (L.) [J]. Comp Biochem Physiol. 1987,87A:1045-1050.
    Spaargaren D H, Richard P, Ceccaldi H J. Excretion of nitrogenous products by Penaeus japonicus Bate in relation to environmental osmotic conditions [J]. Comp Biochem Physiol.1982,72A: 673-678.
    Spanings-Pierrot C, Soyez D, Herp F V, et al. Involvement of crustacean hyperglycemic hormone in the control of gill ion transport in the crab Pachygrapsus marmoratus [J]. Gen Comp Endocrinol.2000.119:340-350.
    Spanings-Pierrot C, Towle D W. Expression of Na+, K+-ATPase mRNA in gills of the euryhaline crab Pachygrapsus marmoraus adapted to low and high salinities [J]. Bull Mt Desert Island Biol Lab.2003.
    Staaland H. A device for the study of salinity preference in mobile marine animals [J]. Comp Biochem Physiol.1969,29:853-857.
    Stauffer J, Hocutt C, Goodfellow W. Effects of sex and maturity on preferred temperatures:a proximate factor for increased survival of young Poecilia latipinna. Hydrobiologia.1985, 103:129-132.
    Strathman R R. Selection for retention or export of larvae in estuaries, pp.521-536. In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press,1982. New York.
    Stuck K C, Watts S A, Wang S Y. Biochemical responses during starvation and subsequent recovery in postlarval Pacific white shrimp, Penaeus vannamei [J]. Mar Biol.1996,33-45.
    Subramoniam T. Yolk utilization and esterase activity in the mole crab Emerita asiatica (Milne Edwards). In:Wenner, A.M., Kuris, A.M. (Eds.), Crustacean Egg Production:Crustacean Issues, vol.7. Balkema Press, Rotter dam,1991, pp.19-29.
    Sugarman P C, Pearson W H, Woodruff D L. Salinity detection and associated behavior in the Dungeness crab, Cancer magister [J]. Estuaries.1983,6:380-386.
    Sulkin S D, Epifanio C E. A conceptual model for recruitment of the blue crab, Callinectes sapidus Rathbun, to estuaries of the Middle Atlantic Bight [J]. Can Spec Publ Fish aquat Sciences.1986,92:117-123.
    Sun H Y, Zhang L P, Ren C H, et al. The expression of Na, K-ATPase in Litopenaeus vannamei under salinity stress [J]. Mar Biol Res.2011,7:623-628.
    Sung H H, Yang Y L, Song Y L. Enhancement of microbicidal activity in the tiger shrimp, Penaeus monodon, via immunostimulation [J]. J Crust Biol.1996,16:278-284.
    Susanto N G, Charmantier G. Ontogeny of osmoregulation in the crayfish Astacus leptodactylus [J]. Physiol Biochem Zool.2000,73:169-176.
    Susanto N G, Charmantier G. Crayfish freshwater adaptation starts in eggs:ontogeny of osmoregulation in embryos of Astacus leptodactylus [J]. J Exp Zool.2001,289:433-440.
    Tan C H, Choong K Y. Effect of hyperosmotic stress on hemolymph protein, muscle ninhydrinpositive substances and free amino acids in Macrobrachium rosenbergii (de Man) [J]. Comp Biochem Physiol.1981,70(4):485-489.
    Tan E C, Van Engel W A. Osmoregulation in the adult blue crab, Callinectes sapidus Rathbun [J]. Ches Sci.1966,7:30-35.
    Tankersley R A, Forward Jr R B. Endogenous swimming rhythms in estuarine crab megalopae: implications for flood tide transport [J]. Mar Biol.1994,118:415-423.
    Tankersley R A, McKelvey L M, Forward R B Jr. Responses of estuarine crab megalopae to pressure, salinity and light:implications for flood tide transport [J]. Mar Biol.1995,122: 391-400.
    Taylor A C, Naylor E. Entrainment of the locomotor rhythm of Carcinus maenas by cycles of salinity change [J]. J Mar Biol Assoc UK.1977,57:273-277.
    Taylor H, Seneviratna D. Ontogeny of salinity tolerance and hyper-osmoregulation by embryos of the intertidal crabs Hemigrapsus edwardsii and Hemigrapsus crenulatus (Decapoda, Grapsidae):survival of acute hyposaline exposure [J]. Comp Biochem Physiol.2005,140: 495-505.
    Tazaki J K, Tanino T. Responses to osmotic concentration changes in the lobster antenna [J]. Experientia.1973,29:1090-1091.
    Tazaki K. Sensory units responsive to osmotic stimuli in the antennae of the spiny lobster, Panuliris japonicas [J]. Comp Biochem Physiol.1975,51A:647-653.
    Teshima S, Kanazawa A. Biosynthesis of sterols in the lobster, Panulirus japonica, the prawn, Penaeus japonicus, and the crab, Portunus trituberculatus [J]. Comp Biochem Physiol.1971, 38B:597-602.
    Thabrew M I, Poat P C, Munday K A. Carbohydrate metabolism in Carcinus maenas gill tissue [J]. Comp Biochem Physiol.1971,40B:531-541.
    Thomas N J, Lasiak T A, Naylor E. Salinity preference behaviour in Carcinus [J]. Mar Behav Physiol.1981,7:277-282.
    Tilburg C E, Reager J T, Whitney M M. The physics of blue crab larval recruitment in Delaware Bay:A model study [J]. J Mar Res.2005,63:471-495.
    Tiu S H K, He J G, Chan S M. The LvCHH-ITP gene of the shrimp (Litopenaeus vannamei) produces a widely expressed putative ion transport peptide (LvITP) for osmo-regulation [J]. Gene.2007,396(2):226-235.
    Torres G, Charmantier-Daures M, Chifflet S, et al. Effects of long-term exposure to different salinities on the location and activity of Na+/K+-ATPase in the gills of juvenile mitten crab, Eriocheir sinensis [J]. Comp Biochem Physiol.2007,147A:460-465.
    Torres G, Gimenez L, Anger K. Cumulative effects of low salinity on larval growth and biochemical composition in an estuarine crab, Neohelice granulate [J]. Aquatic Biol.2008,2: 37-45.
    Torres G, Gimenez L, Anger K. Effects of reduced salinity on the biochemical composition (lipid, protein) of zoeal decapod crustacean larvae [J]. J Exp Mar Biol Ecol.2002,277:43-60.
    Towle D W, Palmer G E, Harris III J L. Role of gill Na+/K+-dependent ATPase in acclimation of blue crabs(Callinectes sapidus) to low salinity [J]. J Exp Zool.1976,196:315-322.
    Towle D W, Weihrauch D. Osmoregulation by gills of euryhaline crabs:molecular analysis of transporter [J]. Am Zool.2001,41:770-780.
    Towle D W, Rushton M E, Heidysch D, et al. Sodium/proton antiporter in the euryhaline crab Carcinus maenas:molecular cloning, expression and tissue distribution [J]. J Exp Biol.1997, 200:1003-1014.
    Towle D W. Cloning and sequencing a Na+/K+-2Cl- cotransporter from gills of the euryhaline blue crab Callinectes sapidus [J]. Am Zool.1998,38:114A.
    Tseng Y C, Hwang P P. Some insights into energy metabolism for osmoregulation in fish [J]. Amino Acids. Comp Biochem Physiol.2008,148C:419-429.
    Tsuzuki MY, Cerqueira V R, Teles A, et al. Salinity tolerance of laboratory reared juveniles of the fat snook Centropomus parallelus Braz [J]. J Oceanography (Rev Bras Oceanogr).2007,55: 1-5.
    Van Herp F. Molecular, cytological and physiological aspects of the crustacean hyperglycemic hormone family, in:G.M. Coast, S.G. Webster (Eds.), Recent Advances in Arthropod Endocrinology, vol.65. Cambridge University Press, Cambridge.1998, pp.537-70.
    Van Weel P B, Christofferson J P. Electrophysiological studies on perception in the antennules of certain crabs [J]. Physiol Zool.1966,39:317-325.
    VanWormhoudt A, Sellos D, Donval A, et al. Chymotrypsin gene expression during the intermoult cycle in the shrimp Penaeus vannamei (Crustacea, Decapoda) [J]. Experientia.1995,51: 159-163.
    Velurtas S M, Diaz A C, Fernandez-Gimenez A V, et al. Influence of dietary starch and cellulose levels on the metabolic profile and apparent digestibility in penaeoid shrimp [J]. Lat Am J Aquat Res.2011,39(2):214-224.
    Venkatachari S A T, Vasantha N. Salinity tolerance and osmoregulation in the freshwater crab, Barytelphusa Guerini (Mine edwards) [J]. Hydrobiologia.1981,77(2):133-138.
    Vinagre A S, Ana Paula Nunes do Amaral, Fabiana Pinto Ribarcki, et al. Seasonal variation of energy metabolism in ghost crab Ocypode quadrata at Siriu Beach (Brazil) [J]. Comp Biochem Physiol.2007,146A:514-519.
    Vinagre A S, DaSilva R S M. Effects of fasting and refeeding on metabolic processes in the crab Chasmagnathus granulata (Dana,1851) [J]. Can J Zool.2002,80:1413-1421.
    Vonck A P M A, Swendelaar Bonga E, Flik G. Sodium and calcium balance in Mozambique Tilapia, Oreochromis mossambicus, raised at different salinities [J]. Comp Biochem Physiol. 1998,119A:441-449.
    Wang Y B, Xu Z R, Xia M S. The effectiveness of commercial probiotics in Northern White Shrimp (Penaeus vannamei L.) ponds [J]. Fish Sci.2005,71:1034-1039.
    Wanson S, Pequeux A, Gilles R. Osmoregulation in the stone crab Cancer pagurus [J]. Mar Biol Lett.1983,4:321-330.
    Warman C G, Abello P, Naylor E. Behavioural responses of Carcinus mediterraneus Czernaivsky, 1884, to changes in salinity [J]. Sci Mar.1991,55:637-643.
    Webley J A C, Connolly R M. Vertical movement of mud crab megalopae(Scylla serrata) in response to light:Doing it differently down under [J]. J Exp Mar Bio Ecol.2007,341: 196-203.
    Webster S G. Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress [J]. J Exp Biol.1996,199:1579-1585.
    Wehrtmann I S, Graeve M. Lipid composition and utilization in developing eggs of two tropical marine caridean shrimps (Decapoda:Caridea:Alpheidae:Palaemonidae) [J]. Comp Biochem Physiol.1998.121B:457-463.
    Wehrtmann 1 S, Kattner G. Changes in volume, biomass, and fatty acids of developing eggs in Nauticaris magellanica (Decapoda:Caridea):a latitudinal comparison [J]. J Crust Biol. 1998,18(3):413-422.
    Weiland A L, Mangum C P. The influence of environmental salinity on hemocyanin function in the blue crab, Callinectes sapidus [J]. J Exp Zool.1975,193(3):265-273.
    Welch J M, Forward Jr R B. Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavorial responses to salinity and turbulence [J]. Mar Biol.2001,139:911-918.
    Welch J M, Forward R B Jr, Howd P A. Behavioral responses of blue crab Callinectes sapidus larvae to turbulence:implications for selective tidal stream transport [J]. Mar Ecol Prog Ser. 1999,179:135-143.
    Welcomme L, Devos P. Cytochrome coxidase and Na, K ATPase activities in the anterior and posterior gills of the shore crab Carcinus maenas L. after adaptation to various salinities [J]. Comp Biochem Physiol.1988,89B:339-341.
    Welcomme L, Devos P. Energy consumption in the perfused gills of the euryhaline crab Eriocheir sinensis adapted to freshwater [J]. J Exp Zool.1991,257:150-159.
    Wheatly M G. An overview of calcium balance in crustaceans [J]. Physiol Zool.1996,69: 351-382.
    Whyte J N C, Bourne N, Ginther N G, et al. Compositional changes in the larva to juvenile development of the scallop crassadoma gigantea (Gray) [J] J Exp Mar Biol Ecol.1992,163: 13-29.
    Wilder M N, Ikuta K, Atmomarsono M, et al. Changes in osmotic and ionic concentrations in the hemolymph of Macrobrachium rosenbergii exposed to varying salinities and correlation to ionic and crystalline composition of the cuticle [J]. Comp Biochem Physiol.1998,119A: 941-950.
    Wilder M N, Huong D T T, Okuno A, et al. Ouabain-sensitive Na/K-ATPase activity increases during embryogenesis in the giant freshwater prawn Macrobrachium rosenbergii [J]. Fish Sci. 2001,67:182-184.
    Wilder M N, Subramoniam T, Aida K.2002. Yolk proteins of Crustacea. In "Reproductive Biology of Invertebrate Vol XII Part A, Progress in Vitellogenesis". Ed by Raikhel, A. S. and T. W. Sappington, editors. Science Publishers. Enfield. pp.131-174.
    Wolcott T G, Wolott D L. Role of behavior in meeting osmotic challenges [J]. Amer Zool.2001, 41:795-806.
    Wormhoudt Van A. Regulation d'activite'de l'a amylase a'diffe'rentes tempe'ratures d'adaptation et en fonction de l'ablation des pe'doncules oculaires et du stade de mue chez Palaemon serratus [J]. Biochem Syst Ecol.1980,8:193-203.
    Wormhoudt Van A. Variations of the level of the digestive enzymes during the intermolt cycle of Palaemon serratus:influence of the season and effect of the eyestalk ablation [J]. Comp Biochem Physiol.1974,49:707-715.
    Yao J J, Zhao Y L, Wang Q. Biochemical compositions and digestive enzyme activities during the embryonic development of prawn, Macrobrachium rosenbergii [J]. Aquaculture.2006,253: 573-582.
    Zanders I P, Rodriguez J M. Effects of temperature and salinity on osmoionic regulation in adults and on oxygen consumption in larvae and adults of Macrobrachium amazonicum (Decapoda, Palaemonidae) [J]. Comp Biochem Physiol.1992,101A:505-509.
    Zanotto F P, Wheatly M G. Ion regulation in invertebrates:molecular and integrative aspects [J]. Physiol Biochem Zool.2006,79:357-362.
    Zhang T L, Li Z J, Cui Y B. Survival, growth, sex ratio, and maturity of the Chinese mitten crab (Eriocheir sinensis) reared in a Chinese pond [J]. J Freshw Ecol.2000,16:633-640.
    Zhao A N.1999. Ecology and aquaculture of the Chinese mitten crab in its native habitat. Meeting of the interagency ecological project Chinese mitten crab project work team, Richmond, California.26 August.
    Zilli L, Schiavone R, Storelli C, et al. Analysis of calcium concentration fluctuations in hepatopancreatic R cells of Marsupenaeus japonicus during the molting cycle [J]. The Biological Bulletin.2007,212:161-168.
    Zollner N, Kirsch K. Uber die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen naturlichen Lipoiden (Allen bekannten Plasmalipoide) gemeinsamen Sulphopho sphovanillin-Reaktion [J]. Z G esamte Exp Med.1962,135:545-561.
    Zwingelstein G, Bodennec J, Brichon G, et al. Formation of phospholipid nitrogenous bases in euryhaline fish and crustaceans. I. Effects of salinity and temperature on synthesis of phosphatidylserine and its decarboxylation [J]. Comp Biochem Physiol.1998,120B: 467-473.
    鲍鹰,刘军,林少军.中华绒螫蟹卵离体培育的初步研究[J].海洋科学.1999,(1):55-58.
    陈炳良,堵南山,叶鸿发.河蟹的食性分析[J].水产科技情报.1989,16(1):2-5.
    陈文虎,杨青松,吴刚等.河蟹离体卵孵化育苗研究[J].水利渔业.2002,22(1):26-27.
    陈宇锋,艾春香,林琼武等.盐度胁迫对拟穴青蟹血清及组织、器官中PO和SOD活性的影[J].台湾海峡.2007,26(4):569-575.
    成永旭,王武,谭玉钧等.盐度及钙镁离子对中华绒螯蟹大眼幼体育成Ⅲ仔蟹的成活率和生长的影响[J].水产学报.1997,21(1):84-88.
    成永旭,王武,李应森.河蟹的人工繁殖和育苗技术[J].水产科技情报.2007.34(2):73-75.
    堵南山.中华绒螯蟹的洄游[J].水产科技情报.2004,31(2):56-57.
    丁森.盐度变化对中国明对虾生理生态学影响的基础研究[D].青岛:中国海洋大学,2007.
    顾功超,黄旭雄,谭正启.中华绒螫蟹离体卵的人工孵化及其利用[J].渔业机械仪器.1995,22(5):11-14
    顾全保,王幽兰,左嘉客等.不同发育时期中华绒螯蟹血淋巴渗透压分析[J].动物学报.1990,36(2):165-171.
    顾顺樟.硫化物对中华绒螯蟹雌性亲体胁迫效应的研究[D].上海:华东师范大学,2007.
    何绪刚.中华鲟海水适应过程中生理变化及盐度选择行为研究[D].武汉:华中农业大学.2008.
    洪美玲,陈立侨,顾顺樟等.不同温度胁迫方式对中华绒螯蟹免疫化学指标的影响[J].应用与环境生物学报.2007,13(6):818-822.
    黄凯,杨鸿昆,战歌等.盐度对凡纳滨对虾幼虾消化酶活性的影响[J].海洋科学.2007,31(3):37-41.
    黄鹤忠,李义,宋学宏等.氨氮胁迫对中华绒螯蟹(Eriocheir sinensis)免疫功能的影响[J].海洋与湖沼.2006,37(3):198-205.
    黄伟.天然海水河蟹人工育苗技术[J].水产养殖.1989,(5):2-3.
    黄晓荣,庄平,章龙珍等.中华绒螯蟹胚胎发育及几种代谢酶活性的变化[J].水产学报.2011,35(2):192-199.
    江洪波.中华绒螯蟹蛋白质营养生理研究[D].华东师范大学.2003.
    蒋志刚.动物行为原理与物种保护方法[M],北京:科学出版社.2004.
    蒋传葵.工具酶的活性测定[M].上海:上海科学技术出版社.1982.
    李二超.盐度对凡纳滨对虾的生理影响及营养调节[D].华东师范学.2008.
    李广丽,李思发.长江、瓯江、辽河中华绒螯蟹消化酶的初步研究[J].上海海洋大学学报.1996,5(2):134-137.
    李华,李强,曲健凤等.不同盐度下凡纳滨对虾血淋巴免疫生理指标比较[J].中国海洋大学学报.2007,37(6):927-930.
    李少箐,王贵忠,汤鸿等.拟穴青蟹胚胎发育过程中几种消化酶活力的比较研究[J].厦门大学学报,1995,34(6):970-974.
    李悦悦,林云萍,林诗燕等.孔雀绿、福尔马林、亚甲基蓝对河蟹离体胚胎真菌病防治效果的比较[J].水产科技情报.1998,25(2):77-81.
    刘慧杰,潘鲁青,胡发文.凡纳滨对虾在盐度变化下面以及能评价的研究.海洋湖沼通报.2008,(2):159-166.
    刘立鹤.中华绒螯蟹亲体脂质营养及生殖调控研究[D].上海:华东师范大学,2005.
    刘树青.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用[J].海洋与湖沼.1999,30(3):278-283.
    刘学军,顾景玲.河蟹离体胚胎人工孵化试验[J].淡水渔业.1994,24(6):34-35.
    刘玉梅,朱谨钊.对虾消化酶的研究[J].海洋科学.1984,(5):46-50.
    刘玉梅,朱谨钊.中国对虾幼体和仔虾消化酶活力及氨基酸组成的研究[J].海洋与湖沼,1991,22(6):571-575.
    吕富.环境因子对中华绒螯蟹渗透压调节的影响[D].青岛:中国海洋大学,2002.
    孟凡丽,赵云龙,陈立侨等.红螯螯虾胚胎发育研究:Ⅱ.胚胎外部结构的形态发生[J].动物学研究,2001,22(5):383-387.
    孟凡伦,张玉臻,孔键等.甲壳动物中的酚氧化酶原激活系统研究评价[J].海洋与湖沼.1999,30(1):110-116.
    潘鲁青.环境因子对甲壳动物渗透调节与免疫力的影响[J].青岛:中国海洋大学,2004.
    潘鲁青,金彩霞.甲壳动物血蓝蛋白研究进展[J].水产学报.2008,32(3):485-491.
    潘鲁青,王克行.中华绒螯蟹幼体消化酶活力与氨基酸组成的研究[J].中国水产科学,1997,4(2):13-20.
    潘鲁青,王奎琪.三疣梭子蟹幼体消化酶活力及氨基酸组成的研究[J].水产学报,1997,21(3):246-251.
    潘伟槐,祝尧荣,黄文光等.日本沼虾(Macrobrachium nipponense)成体组织三种同工酶的研究[J].绍兴文理学院学报.2001,21(4):43-46.
    施炜纲,谢骏,周恩华.中华绒螯蟹幼体及成体的消化酶活性研究[J].浙江海洋大学学报.2000,20(3):67-70.
    宋林生,季延宾,蔡中华等.温度骤升对中华绒螯蟹(Eriocheir sinensis)儿种免疫化学指标的影响[J].海洋与湖沼.2004,35(1):74-77.
    汤鸿,李少菁,王桂忠等.拟穴青蟹幼体消化酶活力[J].厦门大学学报(自然科学版),1995,34(1):88-93.
    田华梅.中华绒螯蟹胚胎营养与发生相关性的初步研究[D].华东师范大学硕十论文,2002.
    王桂忠,李少菁,曾朝曙.环境因素诱发拟穴青蟹幼体发育期变化的研究[J].海洋科学.1995,(5):60-63.
    王洪全,黎志福.水温、盐度双因子交互作用对河蟹胚胎发育的影响[J].湖南师范大学自然科学学报.1996,13(3):63-68.
    王吉桥,张涛,佟鹰等.不同发育期中华绒螯蟹胚胎离体孵化和幼体培育的研究[J].大连水产学院学报.2005,20(3):192-197.
    王顺吕,于敏.中华绒蝥蟹在不同盐度下鳃Na+/K+-ATPase和ALP活性的变化[J].安徽技术师范学院学报.2003,17(2):117-120.
    王淑红,陈昌生,刘志勇等.凡纳滨对虾幼体消化酶活力的初步研究[J].厦门大学学报(白然科学版).2004,43(3):389-392.
    王维娜,孙儒泳,王安利.环境因子对日本沼虾消化酶和碱性磷酸酶的影响[J].应用生态学报.2002,13(9):1153-1156.
    汪红英,余文畴.三峡,南水北调工程径流调节对长江口盐水入侵影响的初步研究.第六届全国泥沙基本理论研究学术讨论会论文集.2005,1262-1270.
    许步劭,何林岗.河蟹养殖技术[M].金盾出版社.北京:1987,67-68.
    许实容.中国对虾营养研究[J].海洋科学.1987,11(4):34-37.
    杨志彪,赵云龙,周忠良.水体铜对中华绒螯蟹消化酶活性的影响[J].水产学报.2005,29(4):496-501.
    叶建生,王兴强,马甡等.盐度突变对凡纳滨对虾非特异性免疫因子的影响[J].海洋水产研究.2008,29(1):38-43
    叶元土,林仕梅,萝莉等.池塘中华绒螯蟹雌、雄个体部分形状的比较研究[J].内陆水产.2000,(4):7-8.
    臧维玲,王敏,戴习林等.盐度对中华绒螯蟹幼体发育的影响[J].上海水产大学学报.1999,8(2):174-178.
    张列士,朱选才,宫伦祥.河蟹苗对氯化钠溶液忍受度的试验[J].水产科技情报.1973,12:6-8.
    张列十,朱传龙,杨杰等.长江口河蟹繁殖场环境调查[J].水产科技情报.1988,(1):3-11.
    张林娟.甲壳动物早期幼体渗透生理适应性的研究[D].青岛:中国海洋大学,2007.
    赵亮,陈红玲,孙德祥.盐度对河蟹仔蟹培育的影响[J].淡水渔业,2004,34(4):33-35.
    赵青松,秦方锦,李长红等.3种海产蟹类血淋巴酶活性的初步研究[J].宁波大学学报(理工版).2009,22(1):33-38.
    赵艳民,王新华,秦延文.汞对中华绒螯蟹肝胰腺消化酶活性及组织结构的影响[J].中国海洋湖沼学报,28(3):427-434.
    郑美芬.河蟹早期大眼幼体对海水盐度突变的适应性试验[J].河北渔业.1999,(5):9-10
    郑萍萍,王春琳,宋微微等.盐度胁迫对三疣梭子蟹血清非特异性免疫因子的影响[J].水产科学.2010,29(11):634-638.
    周永奎,刘立鹤,陈立侨等.卵巢发育过程中河蟹肝胰腺消化酶活力的变化[J].水利渔业.2005,25(2):19-21.
    庄平,章龙珍,田宏杰等.盐度对施氏鲟幼鱼消化酶活力的影响[J].中国水产科学.2008,15(2):198-203.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700