用户名: 密码: 验证码:
MgZn_2和Cr_2X(X=Nb,Zr,Hf)层错及B2-MgRE和L1_2-Al_3X(X=Sc,Mg)位错的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以金属间化合物为基体的合金是当前正在发展的一种新型金属材料。随着科技的不断发展,对材料性能的要求越来越高,有关金属间化合物的科技研究工作也越来越受到重视。目前常见的金属间化合物材料的开发有两类,一类是发展新型轻质结构材料,制造出质轻、比强度高、抗应力强、耐腐蚀性好的合金材料,如镁基合金;另一类是发展高温结构材料,制造出具有高熔点、抗蠕变能力强、抗腐蚀和抗氧化性能好的合金材料,如Laves相铬基合金。虽然镁基和铬基合金因其自身优异的性质得到了认可与应用,但是它们都存在一个共同的缺点——低温易脆性。这一缺点阻碍了镁基和铬基合金的进一步发展与广泛应用。
     低温脆性与材料的塑性形变密切相关,而塑性形变主要受到层错、反相畴界和位错等有序微观缺陷结构控制。通过研究金属间化合物的微观缺陷结构,了解其塑性形变特征、形变机理和相关力学性质,进而设计具有优异力学性能的材料,是目前金属间化合物性能优化研究的关键性课题。
     本文基于密度泛函理论第一性原理计算研究了C14Laves相MgZn2及C15Laves相Cr2X(X=Nb, Zr, Hf)的广义层错能曲线,讨论了它们的形变机制,并从电荷密度分布、原子间相互作用和化学成键等电子原子水平揭示了Laves相中层错的形成特征。此外,本文系统地计算了B2-MgRE (RE=La-Er)中<111>{110}方向和L12-Al3X(X=Sc,Mg)中<110>{111}方向的广义层错能曲线,联合Peierls-Nabarro模型研究得到了它们的位错芯结构和性质。本论文主要内容包括以下四个方面:
     (1)基于协同剪切机制,建立了C14Laves相结构合金的内禀型层错intrinsic stacking fault(I2)和类孪生层错twin-like stacking fault (T2)的形成模型。通过第一性原理计算了C14Laves相MgZn2的I2和T2的广义层错能曲线。结果表明即使通过协同剪切机制,MgZn2中I2的非稳定层错能仍然很大,在MgZn2中形成I2层错比较困难。基于已有的内禀型层错I2构型,继续协同剪切操作,可以形成类孪生层错T2。非稳定和稳定类孪生层错能比非稳定和稳定内禀型层错能稍大,表明形成T2层错和形成I2层错的过程是类似的。基于获得的广义层错能,我们讨论了C14Laves相MgZn2的形变机制,结果表明MgZn2中主要的形变机制为扩展不全位错滑移。为了进一步揭示C14Laves相MgZn2的I2和T2形成的本质特征,其层错形成过程中的电荷密度分布也被进一步研究。
     (2)基于协同剪切机制,建立了C15Laves相结构合金的本征层错stacking fault (SF)和孪生层错twinning fault (TF)的形成模型。通过第一性原理计算了C15Laves相Cr2X(X=Nb, Zr, Hf)的广义层错能曲线,并讨论它们相关的形变机制。结果表明即使通过协同剪切机制,C15Laves相Cr2X(X=Nb, Zr, Hf)中SF和TF的非稳定层错能仍然很大,相应的稳定层错能较小。在C15Laves相Cr2X(X=Nb, Zr, Hf)中,可行的形变模式是扩展不全位错和孪生。研究还表明,Cr2Nb的孪生化趋势最强,随后为Cr2Zr和Cr2Hf。为了进一步揭示C15Laves相Cr2X(X=Nb, Zr, Hf)中SF和TF层错形成的本质特征,其层错形成过程中的电荷密度分布也被进一步研究。
     (3)通过第一性原理计算了B2-MgRE(RE=La-Er)合金中<111>{110)方向的广义层错能曲线。基于获得的层错能曲线联合Peierls-Nabarro模型研究了合金的<111>{110}超位错的结构和性质。结果表明在B2-MgRE合金中,<111>位错分解为两个共线的不全位错。对于同一物质同一体系,螺位错分解宽度比刃位错分解宽度小,螺位错的Peierls力和Peierls能比刃位错大。对比不同B2-MgRE合金可知,MgEu的<111>{110}螺位错和刃位错的Peierls能和Peierls力最大,MgSm的最小,表明在MgEu中移动<111>{110}位错最困难,而在MgSm中相对最容易。此外,研究还表明随着稀土元素原子序数的增加,B2-MgRE(RE=La-Er)合金中<111>{110}的位错分解宽度、Peierls力和Peierls能分段减少(La to Sm)和(Eu to Er)。
     (4)通过第一性原理计算了Ll2-Al3Sc和Al3Mg合金中<110>{111}方向的广义层错能曲线,获得了它们的反相畴界能。基于获得的广义层错能曲线联合Peierls-Nabarro模型研究了L12-A13Sc和Al3Mg合金中共线分解的<110>{111}超位错的结构和性质。计算估测的Al3Sc的<110>{111}刃位错的分解宽度与已报道的实验值相吻合。Al3Sc的<110>{111}刃位错和螺位错的位错分解宽度、Peierls力和Peierls能比Al3Mg的小。在L12-A13Sc和Al3Mg中,<110>{111}螺位错分解宽度比刃位错分解宽度小,螺位错的Peierls力和Peierls能比刃位错大。
Alloys which have intermetallic compounds as matrix, have been developed as a new type of metal materials. With the development of science and technology, the requirements of the material property are higher and higher. More and more attention has been paid to the research on the intermetallic compounds. At present, the development of common intermetallic compound materials can be divided into two categories. One is the development of new lightweight material, which has low density, high specific strength and good corrosion resistance, such as magnesium-based alloys; the other one is the development of high-temperature structural material, which has high melting point, high creep resistance, good corrosion resistance and oxidation resistance, such as Laves phase chromium-based alloys. Although magnesium-based and chromium-based alloys gain the recognition and application owing to their superior properties, they have a common drawback--brittleness at low temperature. This drawback hinders the further development and the application of magnesium-based and chromium-based alloys.
     Brittleness at low temperature is closely related to plastic deformation characteristics which are been controlled by micro-defects structures, such as the stacking faults, antiphase boundary and dislocations. Through the study of micro-defects structures of the intermetallic compounds, revealing their plastic deformation characteristics and deformation mechanisms as well as the related mechanical properties, thereby designing materials having excellent mechanical properties, which is the key subject of this study.
     Based on density function theory, the stacking faults and deformation mechanism in C14Laves phase MgZn2and C15Laves phases Cr2X (X=Nb, Zr, Hf) have been studied by first-principles calculations. The charge density distribution, interaction of atoms and chemical bonding have been analyzed in detail to reveal the intrinsic mechanism for the formation of stacking faults in C14Laves phase MgZn2and C15Laves phases Cr2X (X=Nb, Zr, Hf). Furthermore, the structure and properties of<111>{110} superdislocations in B2-MgRE (RE=La-Er) and<110>{111} superdislocations in L12-A13X (X=Sc,Mg) have been investigated using the Peierls-Nabarro model in combination with generalized stacking fault energies. The thesis is mainly divided in to four parts:
     (1) Based on synchroshear mechanism, the formation of intrinsic stacking fault I2and twin-like stacking fault T2in C14Laves phases has been modeled in details and the generalized stacking fault energy curve of I2and T2for C14Laves phase MgZn2has been calculated from first-principles. The results demonstrate that the unstable stacking fault energy of I2by synchroshear is still very large, implying that the formation of I2SF in MgZn2is difficult. Upon the pre-existing I2configuration, the T2stacking fault can be further formed by following a next synchroshear. The unstable and stable stacking fault energies of T2are only slightly larger than those of I2, implying that the formation of T2may be essentially similar to that of I2. From the obtained generalized stacking fault energy, the relevant deformation mechanism of MgZn2is also discussed. The result suggests that deformation is performed by partial dislocations in C14Laves phase MgZn2. Finally, the electronic structure during synchroshear process is further studied to unveil the intrinsic mechanism for the formation of I2and T2in C14Laves phase MgZn2.
     (2) Based on the synchroshear model, the formation of stacking fault and twinning fault in C15Laves phases is modeled, then the generalized stacking fault energy curves and deformation mechanism in C15Laves phases Cr2X (X=Nb, Zr, Hf) alloys are investigated by ab initio calculations based on the density functional theory. The results demonstrate that the unstable stacking fault and twinning fault energies of C15Laves phases Cr2X (X=Nb, Zr, Hf) by the synchroshear are still large while the stable stacking fault and twinning fault energies are low, and the deformation modes by extended partial dislocation and twining are feasible in C15Laves phases Cr2X (X=Nb, Zr, Hf). Moreover, the Cr2Nb has the largest deformation twinning tendency, followed by Cr2Zr and Cr2Hf. The evolution of electronic structure during the synchroshear process is further studied to unveil the intrinsic mechanism for the formation of stacking fault and twinning fault in C15Laves phases Cr2X (X=Nb, Zr, Hf).
     (3) The structure and properties of<111>{110} superdislocations in B2-MgRE (RE=La-Er) intermetallics are investigated using the Peierls-Nabarro model in combination with generalized stacking fault energies. The results demonstrate that the<111>{110} superdislocations in B2-MgRE have dissociated into two collinear partials bound to anti-phase boundary. For the same material system, the dislocation dissociated width of screw is narrower than that of edge, while the Peierls energy and stress are larger. Among the B2-MgRE, MgEu has the highest Peierls energies and stresses for screw and edge superdislocations, while those for MgSm are the lowest, indicate that movement of<111>{110} superdislocation in MgEu is the most difficult, while it is the easiest in MgSm. With increasing of atomic number, the dislocation dissociated width, Peierls energy and stress in B2-MgRE decrease for both early lanthanides from La to Sm and late lanthanides from Eu to Er.
     (4) The generalized stacking fault energy curves along the<110> direction on{111} slip plane for L12Al3SC and Al3Mg are calculated within framework of density functional theory, and the anti-phase boundary energies are obtained. Then the structures and properties of collinear dissociated<110>{111} dislocations in Al3Sc and Al3Mg are studied using Peierls-Nabarro model combined with generalized stacking fault energies, the obtained dislocation dissociation width of the<110>{111} edge dislocation in Al3Sc is in agreement with the available experimental value. In comparison with Al3Mg, the dislocation dissociation widths of both screw and edge in Al3Sc are narrower and the Peierls energies and stresses are lower. Furthermore, for both Al3Sc and Al3Mg, the dislocation dissociation width of screw dislocation is smaller than that of edge dislocation, while the Peierls energy and stress of screw dislocation is slightly larger.
引文
[1]张永刚,韩雅芳,陈国良,金属学.金属间化合物结构材料[M].国防工业出版社.2001.
    [2]王勇,王本庭,云志.金属间化合物的制备及其在化工中的应用[J].材料导报,2006,20(12):32-34.
    [3]张亚东.镁-稀土合金塑性变形的显微组织演变规律研究[D].2009.
    [4]夕叮正,王越,王中光,李锋,申志勇.镁基轻质材料的研究与应用[J].2000.
    [5]Kainer K.U. Magnesium alloys and their applications [J]. Magnesium Alloys and their Applications, in:H.P. Degischer, B. Kriszt (Eds.), Germany,2003.
    [6]Wen L., P. Chen, Z.F. Tong, B.Y. Tang, L.M. Peng, W.J. Ding. A systematic investigation of stacking faults in magnesium via first-principles calculation [J]. The European Physical Journal B-Condensed Matter and Complex Systems,2009,72(3):397-403.
    [7]钟显康.镁合金表面耐蚀性溶胶—凝胶膜层的制备与修复研究[D].2010.
    [8]高德明.Mg-Al合金铸态组织细化技术基础研究[D].2009.
    [9]张泉.溶质原子对镁固溶体合金层错的影响及镁位错性能的研究[D].2012.
    [10]宋珂.镁合金在汽车轻量化中的应用发展[J].机械研究与应用,2007,20(1):14-16.
    [11]文丽.纯镁及B2结构镁合金层错与力学性质的研究[D].2010.
    [12]李晓明. Mg-Zn-Ce系富镁侧三元化合物及相平衡的研究[D].2008.
    [13]崔双双.Mg-Zn-Nd合金的显微组织与性能研究[D].2009.
    [14]Kim Woo Jeong, Sun Ig Hong, Kap Ho Lee. Structural characterization of Laves-phase MgZn2 precipitated in Mg-Zn-Y alloy [J]. Metals and Materials International,2010, 16(2):171-174.
    [15]Wei Ly, G1 Dunlop, H. Westengen. Precipitation hardening of Mg-Zn and Mg-Zn-RE alloys [J]. Metallurgical and Materials Transactions A,1995,26(7):1705-1716.
    [16]Liang P., T. Tarfa, Ja Robinson, S. Wagner, P. Ochin, Mg Harmelin, Hj Seifert, HI Lukas, F. Aldinger. Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system [J]. Thermochimica acta,1998,314(1-2):87-110.
    [17]Gao X., Jf Nie. Characterization of strengthening precipitate phases in a Mg-Zn alloy [J]. Scripta materialia,2007,56(8):645-648.
    [18]Geng J., X. Gao, Xy Fang, Jf Nie. Enhanced age hardening response of Mg-Zn alloys via Co additions [J]. Scripta materialia,2011,64(6):506-509.
    [19]Liu Ct, Jh Zhu, Mp Brady, Cg Mckamey, Lm Pike. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys [J]. Intermetallics,2000, 8(9-11):1119-1129.
    [20]沙桂英,徐永波,韩恩厚.铸造Mg-RE合金的显微结构及其蠕变行为[J].Chinese Journal of Materials Research,2003,17(6):603-608
    [21]Tao X., Y. Ouyang, H. Liu, Y. Feng, Y. Du, Y. He, Z. Jin. Phase stability of magnesium-rare earth binary systems from first-principles calculations [J]. Journal of Alloys and Compounds,2011,509(24):6899-6907
    [22]Wu X., R. Wang, S. Wang, L. Liu. Generalized-stacking-fault energy surfaces for B2-MgRE (RE=Y, Dy, Pr, Tb) intermetallic compounds:Ab initio calculations [J]. Physica B:Condensed Matter,2011,406(4):967-971.
    [23]赵阳,王志峰,孟宪阔,杨杰,赵维民.Mg-RE合金的阻燃能力研究[J].中国铸造装备与技术,2010,(005):9-12.
    [24]Wu Y, W Hu. Elastic and brittle properties of the B2-MgRE (RE= Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er) intermetallics [J]. The European Physical Journal B-Condensed Matter and Complex Systems,2007,60(1):75-81.
    [25]Tao X., Y. Ouyang, H. Liu, Y. Feng, Y. Du, Z. Jin. Elastic constants of B2-MgRE (RE=Sc, Y, La-Lu) calculated with first-principles [J]. Solid State Communications,2008, 148(7-8):314-318.
    [26]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].科学出版社.2007.
    [27]杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(002):76-80.
    [28]Sawtell Ralph R, Craig L Jensen. Mechanical properties and microstructures of Al-Mg-Sc alloys [J]. Metallurgical and Materials Transactions A,1990,21(1):421-430.
    [29]林肇琦.新一代铝合金—铝钪合金的发展概况[J].材料导报,1992,3(10):10-16.
    [30]Gao Y, Dm Ban, Yj Han, X. Zhong, H. Liu. Atomic bonding and mechanical properties of Al-Mg-Zr-Sc alloy[J]. Transactions of Nonferrous Metals Society of China,2004, 14(5):922.
    [31]D.L. Li, P. Chen, J.X. Yi, B.Y. Tang, L.M. Peng, W.J. Ding. Ab initio study on the thermal properties of the fcc Al3Mg and Al3Sc alloys [J]. Journal of Physics D:Applied Physics,2009,42:225407.
    [32]Wu J., L. Wen, B.Y. Tang, L.M. Peng, W.J. Ding. Generalized planner fault energies, twinning and ductility of L12 type Al3Mg and Al3Sc [J]. Solid State Sciences,2011, 13(1):120-125.
    [33]黄铭刚.合金化对Laves相NbCr2合金组织与性能的影响研究[D].2008.
    [34]郑海忠.Laves相NbCr2基合金的制备、增韧及高温氧化行为与机理研究[D].2008.
    [35]Kellou A, Thierry Grosdidier, C Coddet, H Aourag. Theoretical study of structural, electronic, and thermal properties of Cr2(Zr, Nb) Laves alloys [J]. Acta materialia,2005, 53(5):1459-1466.
    [36]Dimiduk Dm, Md Uchic, Pa Shade, C Woodward, Si Rao, Gb Viswanathan, E Nadgorny, S Polasik, D Norfleet, M Mills. Strengthening and Plastic Flow of Ni3Al Alloy Microcrystals (Preprint) [R]. DTIC Document,2012.
    [37]Kohlmann H. Comment on Structural and Electronic Properties of the Hydrogenated ZrCr2 Laves Phases [J]. Journal of physical chemistry. C,2010,114(30):1315
    [38]Baumann W., A. Leineweber. Solid solubility by anti-site atoms in the C36-TiCr2 Laves phase revealed by single-crystal X-ray diffractometry [J]. Journal of Alloys and Compounds,2010,505(2):492-496
    [39]Woodward C, Md Uchic, Dm Dimiduk, Si Rao, Ta Parthasarathy, Atomistic Simulations of Intersection Cross-Slip Nucleation in L12 Ni3Al (Preprint).2011
    [40]Li Yu, Zili Kou, Haikuo Wang, Kaixue Wang, Hongchang Tang, Yanfei Wang, Shenzhuo Liu, Xiangting Ren, Chuanming Meng, Zhigang Wang. High pressure sintering behavior and mechanical properties of cBN-Ti3Al and cBN-Ti3Al-Al composite materials [J]. High Pressure Research,2012,32(4):524-531.
    [41]马燕青,鲁世强,胡春文,李鑫,丁文华.Laves相铬化物的研究概况[J].国外金属加工,2004,25(2):10-15.
    [42]Chu F, Ah Ormeci, Te Mitchell, Jm Wills, Dj Thoma, Rc Albers, Sp Chen. Stacking fault energy of the NbCr2 laves phase [J]. Philosophical magazine letters,1995, 72(3):147-153.
    [43]Yang Zq, Mf Chisholm, B. Yang, XI Ma, Yj Wang, Mj Zhuo, Sj Pennycook. Role of crystal defects on brittleness of C15 Cr2Nb Laves phase [J]. Acta Materialia,2012, 60(6-7):2637-2646
    [44]Yao Q., J. Sun, D. Lin, S. Liu, B. Jiang. First-principles studies of defects, mechanical properties and electronic structure of Cr-based Laves phases [J]. Intermetallics,2007, 15(5):694-699.
    [45]Chen X.Q., W. Wolf, R. Podloucky, P. Rogl. Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2 [J]. Physical Review B,2005, 71(17):174101.
    [46]Yoshida M., T. Takasugi. TEM observation for deformation microstructures of two C15 NbCr2 intermetallic compounds [J]. Intermetallics,2002,10(1):85-93.
    [47]Hong S., Cl Fu. Phase stability and elastic moduli of Cr2Nb by first-principles calculations [J]. Intermetallics,1999,7(1):5-9.
    [48]Kumar Ks, L Pang, Ja Horton, Ct Liu. Structure and composition of Laves phases in binary Cr-Nb, Cr-Zr and ternary Cr-(Nb,Zr) alloys [J]. Intermetallics,2003, 11(7):677-685.
    [49]Chen Katherine C, Samuel M Allen, James D Livingston. Factors affecting the room-temperature mechanical properties of TiCr2base Laves phase alloys [J]. Materials Science and Engineering:A,1998,242(1):162-173.
    [50]Suklyun H., C. L. Fu. First-principles calculation of stacking fault and twin boundary energies of Cr2Nb [J]. Philosophical Magazine A,2000,80(4):871-880.
    [51]Chisholm M.F., S. Kumar, P. Hazzledine. Dislocations in complex materials [J]. Science, 2005,307(5710):701.
    [52]孙坚,姚强.ZrCr2Laves相弹性性质和堆垛层错能的第一性原理计算[J].中国有色金属学报,2006,16(007):1166-1170.
    [53]Sun J, Qiang Y. First-principles study of elastic properties and stacking fault energies of ZrCr2 Laves phase [J]. The Chinese Journal of Nonferrous Metals,2006, 16(007):1166-1170.
    [54]孙学松. ZrCr2 Laves相金属间化合物的缺陷结构及力学性质[D].2005.
    [55]郑海忠,鲁世强,祝建业,周伟.合金元素A1对Laves相NbCr2显微组织及断裂韧性的影响[J].稀有金属材料与工程,2009,(1):80-85.
    [56]聂小武,何燕,熊顺林,刘振德.粉末冶金制备Laves相NbCr2化合物的强韧化研究进展[J].热加工工艺,2012,40(22):8-11.
    [57]Liu Ct, Jh Zhu, Mp Brady, Cg Mckamey, Lm Pike. Physical metallurgy and mechanical properties of transition-metal Laves phase alloys [J]. Intermetallics,2000, 8(9):1119-1129.
    [58]Zhu Jh, Lm Pike, Ct Liu, Pk Liaw. Point defects in binary Laves phase alloys [J]. Acta materialia,1999,47(7):2003-2018.
    [59]Kazantzis Av, M. Aindow, Ip Jones, Gk Triantafyllidis, J.T.M. De Hosson. The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures [J]. Acta Materialia,2007,55(6):1873-1884.
    [60]Kazantzis Av. Deformation behaviour of the C15 Laves phase Cr2Nb [J]. Materials Science and Engineering:A,1997,233(1):44-49.
    [61]Kanazawa S., Y. Kaneno, H. Inoue, W.Y. Kim, T. Takasugi. Microstructures and defect structures in ZrCr2 Laves phase based intermetallic compounds [J]. Intermetallics,2002, 10(8):783-792.
    [62]K.S. Kumarleineweber A., V. Duppel, Ej Mittemeijer. Polytypic transformations of the HfCr2 Laves phase-Part I:Structural evolution as a function of temperature, time and composition [J]. Intermetallics,2011,19(10):1428-1441.
    [63]Kumar Ks, Pm Hazzledine. Polytypic transformations in Laves phases [J]. Intermetallics, 2004,12(7):763-770.
    [64]吴喜军.FCC金属及合金的层错及反相畴界的理论分析[D].2006.
    [65]吴小志.基于离散效应修正的位错芯结构及Peierls应力计算[D].2009.
    [66]Taylor Gi. The mechanism of plastic deformation of crystals. Part Ⅰ. Theoretical [J]. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character,1934,145(855):362-387.
    [67]Polanyi M. Uber eine Art Gitterstorung, die einen Kristall plastisch machen konnte [J]. Zeitschrift fur Physik A Hadrons and Nuclei,1934,89(9):660-664.
    [68]Orowan E. Zur Kristallplastizitat. I [J]. Zeitschrift fur Physik A Hadrons and Nuclei, 1934,89(9):605-613.
    [69]何艳生.合金材料塑性变形过程中位错和溶质原子交互作用的蒙特卡罗模拟[D].2009.
    [70]Vitek V. Intrinsic stacking faults in body-centred cubic crystals [J]. Philosophical Magazine,1968,18(154):773.
    [71]Rice J.R. Dislocation nucleation from a crack tip:an analysis based on the Peierls concept [J]. Journal of the Mechanics and Physics of Solids,1992,40(2):239-271.
    [72]Lu G, N. Kioussis, V.V. Bulatov, E. Kaxiras. Generalized-stacking-fault energy surface and dislocation properties of aluminum [J]. Physical Review B,2000,62(5):3099.
    [73]张福州.广义层错能的第一性原理计算及定域性分析[D].2008.
    [74]Zhang Q., T.W. Fan, L. Fu, B.Y. Tang, L.M. Peng, W.J. Ding. Ab initio study of the effect of rare-earth elements on the stacking faults of Mg solid solutions [J]. Intermetallics,2012.
    [75]Shang S, Wy Wang, Y Wang, Y Du, Jx Zhang, Ad Patel, Zk Liu. Temperature-dependent ideal strength and stacking fault energy of fcc Ni:a first-principles study of shear deformation [J]. Journal of Physics:Condensed Matter,2012,24(15):155402.
    [76]Muzyk M., Z. Pakiela, K. J. Kurzydlowski. Generalized stacking fault energy in magnesium alloys:Density functional theory calculations [J]. Scripta materialia,2012, 66(5):219-222.
    [77]Datta A., A. Srirangarajan, Uv Waghmare, U. Ramamurty, Ac To. Surface effects on stacking fault and twin formation in fcc nanofilms:A first-principles study [J]. Computational Materials Science,2011,50(12):3342-3345.
    [78]Van Swygenhoven H., Pm Derlet, Ag Fr Seth. Stacking fault energies and slip in nanocrystalline metals [J]. Nature Materials,2004,3(6):399-403.
    [79]Hirth J.P., J. Lothe. Theory of dislocations [J]. John Wiley and Sons, Inc.,1982,857.
    [80]王亚男,陈树江,董希淳.位错理论及其应用[M].冶金工业出版社.2007.
    [81]严家安.位错芯区结构及杂质-位错相互作用的第一原理研究[D].2005.
    [82]Nabarro Frn. Dislocations in a simple cubic lattice [J]. Proceedings of the Physical Society,1947,59:256.
    [83]Vitek V. Intrinsic stacking faults in body-centred cubic crystals [J]. Philosophical Magazine,1968,18(154):773-786.
    [84]杨本洛.量子力学形式逻辑与物质基础探析[M].上海交通大学出版社.2006.
    [85]Parr Robert G, Yang Weitao. Density-functional theory of atoms and molecules [M]. Vol. 16:Oxford University Press, USA.1994.
    [86]Dreizler Reiner M, Eberhard Engel. Density functional theory [J]. Density Functional Theory:An Advanced Course, Theoretical and Mathematical Physics, Springer-Verlag Berlin Heidelberg,2011.
    [87]Kohn Waltkr, Cern. Geneva. Electronic structure of matter:wave functions and density functionals [J]. Nobel Lectures, Chemistry 1996-2000,1999.
    [88]徐光宪,黎乐民.量子化学:基本原理和从头计算法[M].科学出版社.2004.
    [89]张跃,谷景华,尚家香.计算材料学基础[M].北京航空航天大学出版社.2007.
    [90]Eckart Carl. The kinetic energy of polyatomic molecules [J]. Physical Review,1934, 46(5):383.
    [91]Born M., R. Oppenheimer. Zur quantentheorie der molekeln [J]. Annalen der Physik, 1927,389(20):457-484.
    [92]Born M., K. Huang. Dynamical theory of crystal lattices [M]. Oxford:Oxford University Press.1954.
    [93]Hartree Douglas R. The wave mechanics of an atom with a non-Coulomb central field. Part Ⅰ. Theory and methods [C]. Mathematical Proceedings of the Cambridge Philosophical Society.1928. Cambridge Univ Press,89-110.
    [94]黄祖飞.LiMnO2体系结构与性能的第一性原理研究[D].长春:吉林大学,2006.
    [95]Slater John Clarke. The self-consistent field for molecules and solids [M].1974.
    [96]吴兴惠,项金钟.现代材料计算与设计教程[M].电子工业出版社.2002.
    [97]邓永和.镁基储氢合金Mg3Pd和Mg3MNi2(M=Al, Ti)的晶体结构和电子性能[D].2008.
    [98]Kohn Walter, Lu Jeu Sham. Self-consistent equations including exchange and correlation effects [M]. APS.1965.
    [99]Thomas Llewellen H. The calculation of atomic fields [C].Mathematical Proceedings of the Cambridge Philosophical Society.1927. Cambridge Univ Press,542-548.
    [100]Fermi Enrico. Un metodo statistico per la determinazione di alcune priorieta dell'atome [J]. Rend. Accad. Naz. Lincei,1927,6(602-607):32.
    [101]Hohenberg Pierre, Walter Kohn. Inhomogeneous electron gas [J]. Physical Review, 1964,136(3):864.
    [102]Born Max, Robert Oppenheimer. Zur quantentheorie der molekeln [J]. Annalen der Physik,2006,389(20):457-484.
    [103]Hohenberg P., W. Kohn. Inhomogeneous electron gas [J]. Physical Review,1964, 136(3B):B864-B871.
    [104]王仁念.Al-Sc-TM随机合金的第一性原理研究[D].2012.
    [105]Kohn W., L.J. Sham, California Univ San Diego La Jolla. Self-consistent equations including exchange and correlation effects [M]. APS.1965.
    [106]Hedin Lars, Bi Lundqvist. Explicit local exchange-correlation potentials [J]. Journal of Physics C:Solid State Physics,2001,4(14):2064.
    [107]Ceperley David M, Bj Alder. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters,1980,45(7):566-569.
    [108]Perdew John P, Alex Zunger. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B,1981,23(10):5048.
    [109]Perdew J.P., K. Burke, M. Ernzerhof. Generalized gradient approximation made simple [J]. Physical Review Letters,1996,77(18):3865-3868.
    [110]Rodberg Leonard S. Pion Production and the Pion-Pion Interaction [J]. Physical Review Letters,1959,3(1):58-59.
    [111]Perdew John P, Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B,1992,45(23):13244.
    [112]Dufek Philipp, Peter Blaha, Vladimir Sliwko, Karlheinz Schwarz. Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides [J]. Physical Review B,1994,49(15):10170.
    [113]Mishra Sk, G Ceder. Structural stability of lithium manganese oxides [J]. Physical Review B,1999,59(9):6120.
    [114]Hill R. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society. Section A,1952,65:349.
    [115]H.M.Ledbetter. Journal of Applied Physics 1973,44:1451.
    [116]韩健.金属及合金中层错能量势垒的第一性原理研究[D].2011.
    [117]Schoeck G. The Peierls model:Progress and limitations [J]. Materials Science and Engineering:A,2005,400:7.
    [118]Joos B., Ms Duesbery. The Peierls stress of dislocations:An analytic formula [J]. Physical review letters,1997,78(2):266-269.
    [119]Joos B., J Zhou. The Peierls-Nabarro model and the mobility of thedislocation line [J]. Philosophical Magazine A,2001,81(5):1329-1340.
    [120]Joos B., Q. Ren, Ms Duesbery. Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces [J]. Physical Review B,1994,50(9):5890.
    [121]Ferre D., P. Carrez, P. Cordier. Peierls dislocation modelling in perovskite (CaTiO3): comparison with tausonite (SrTiO3) and MgSiO3 perovskite [J]. Physics and Chemistry of Minerals,2009,36(4):233-239.
    [122]Carrez P., D. Ferre, P. Cordier. Peierls-Nabarro modelling of dislocations in MgO from ambient pressure to 100 GPa [J]. Modelling and Simulation in Materials Science and Engineering,2009,17(3):035010.
    [123]Ferre Denise, Philippe Carrez, Patrick Cordier. Peierls dislocation modelling in perovskite (CaTiO3):comparison with tausonite (SrTiO3) and MgSiO3 perovskite [J]. Physics and Chemistry of Minerals,2009,36(4):233-239.
    [124]Kresse G., J. Furthmiiller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54(16):11169.
    [125]Kresse Georg, Jurgen Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science,1996,6(1):15-50.
    [126]Sun Guangyu, Jeno Kurti, Peter Rajczy, Miklos Kertesz, Jurgen Hafner, Georg Kresse. Performance of the Vienna ab initio simulation package (VASP) in chemical applications [J]. Journal of Molecular Structure:Theochem,2003,624(1):37-45.
    [127]周涛.快速凝固Mg-Zn系镁合金的组织与性能研究[D].2009.
    [128]Tang P.Y., L. Wen, Z.F. Tong, B.Y. Tang, L.M. Peng, W.J. Ding. Stacking faults in B2-structured magnesium alloys from first principles calculations [J]. Computational Materials Science,2011,50(11):3198-3207.
    [129]Chandran M., Sk Sondhi. First-principle calculation of stacking fault energies in Ni and Ni-Co alloy [J]. Journal of applied physics,2011,109:103525.
    [130]Chetty N., M. Weinert. Stacking faults in magnesium [J]. Physical Review B,1997, 56(17):10844-10851.
    [131]鲁世强,黄伯云.Laves相合金的物理冶金特性[J].材料导报,2003,17(1):11-13.
    [132]Vedmedenko O., F. Rosch, C. Elsasser. First-principles density functional theory study of phase transformations in NbCr2 and TaCr2 [J]. Acta materialia,2008, 56(18):4984-4992.
    [133]Heggen M., L. Houben, M. Feuerbacher. Plastic-deformation mechanism in complex solids [J]. Nature Materials,2010,9(4):332-336.
    [134]Starke U., J. Schardt, J. Bernhardt, M. Franke, K. Reuter, H. Wedler, K. Heinz, J. Furthmuller, P. Kackell, F. Bechstedt. Novel reconstruction mechanism for dangling-bond minimization:combined method surface structure determination of SiC (111)-(3×3) [J]. Physical review letters,1998,80(4):758-761.
    [135]Wang Cs, Bm Klein, H. Krakauer. Theory of magnetic and structural ordering in iron [J]. Physical review letters,1985,54(16):1852-1855.
    [136]Blochl P.E., O. Jepsen, Ok Andersen. Improved tetrahedron method for Brillouin-zone integrations [J]. Physical Review B,1994,49(23):16223.
    [137]Monkhorst H.J., J.D. Pack. Special points for Brillouin-zone integrations [J]. Physical Review B,1976,13(12):5188-5192.
    [138]Birch F. Finite elastic strain of cubic crystals [J]. Physical Review,1947, 71(11):809-824.
    [139]Ohba T, Y Kitano, Y Komura. The charge-density study of the Laves phases, MgZn2 and MgCu2 [J]. Acta Crystallographica Section C:Crystal Structure Communications, 1984,40(1):1-5.
    [140]蒋毅,唐壁玉.溶质偏析对Mg-Y-Zn合金层错能的影响[J].广西大学学报:自然科学版,2012,36(6):887-891.
    [141]冯中学,张喜燕,潘复生.溶质元素及其偏聚对六方系金属层错能的影响[J].稀 有金属材料与工程,2012,41(010):1765-1769.
    [142]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7).
    [143]Tadmor Eb, N. Bernstein. A first-principles measure for the twinnability of FCC metals [J]. Journal of the Mechanics and Physics of Solids,2004,52(11):2507-2519.
    [144]Wu Jian, Li Wen, Bi-Yu Tang, Li-Ming Peng, Wen-Jiang Ding. Generalized planner fault energies, twinning and ductility of L12 type Al3Sc and Al3Mg [J]. Solid State Sciences,2011,13(1):120-125.
    [145]Han J., X. M. Su, Z. H. Jin, Y. T. Zhu. Basal-plane stacking-fault energies of Mg:A first-principles study of Li-and Al-alloying effects [J]. Scripta materialia,2011, 64(8):693-696.
    [146]Wu M.M., L. Wen, B.Y. Tang, L.M. Peng, W.J. Ding. First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg-Sc-Zn alloy [J]. Journal of Alloys and Compounds,2010,506(1):412-417.
    [147]Li K., S. Li, Y. Xue, H. Fu. Microstructure characterization and mechanical properties of a Laves-phase alloy based on Cr2Nb [J]. International Journal of Refractory Metals and Hard Materials,2012,36:154-161
    [148]肖璇,鲁世强,胡平,黄铭刚,聂小武.Laves相金属间化合物NbCr2的合金化研究进展[J].材料工程,2008,(4):70-73.
    [149]Kibey S., Jb Liu, Dd Johnson, H. Sehitoglu. Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation [J]. Acta materialia,2007, 55(20):6843-6851.
    [150]Blazina Z, R Trojko. Structural investigations of the Nb1-xSixT2 and Nbi-XAlXT2 (T=Cr, Mn, Fe, Co, Ni) systems [J]. Journal of the less-common metals,1986,119(2):297-305.
    [151]Tadmor Eb, S Hai. A Peierls criterion for the onset of deformation twinning at a crack tip [J]. Journal of the Mechanics and Physics of Solids,2003,51(5):765-793.
    [152]Chia T1, Ma Easton, Sm Zhu, Ma Gibson, N. Birbilis, Jf Nie. The effect of alloy composition on the microstructure and tensile properties of binary Mg-rare earth alloys [J]. Intermetallics,2009,17(7):481-490.
    [153]Guo C., Z. Du. Thermodynamic assessment of the Mg-Pr system [J]. Journal of Alloys and Compounds,2005,399(1):183-188.
    [154]Metsue Arnaud, Philippe Carrez, Christophe Denoual, David Mainprice, Patrick Cordier. Plastic deformation of wadsleyite:Ⅳ Dislocation core modelling based on the Peierls-Nabarro-Galerkin model [J]. Acta Materialia,2010,58(5):1467-1478.
    [155]Ravindran P., L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 [J]. Journal of Applied Physics,1998,84(9):4891-4904.
    [156]Villars P., L.D. Calvert, W.B. Pearson. Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Volumes 1,2,3 [J]. American Society for Metals,1985, 1985:3258.
    [157]Wallace D.C. Thermodynamics of crystals [J]. American Journal of Physics,1972, 40(11):1718-1719.
    [158]Carrez P., D. Ferre, P. Cordier. Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles [J]. Philosophical Magazine, 2007,87(22):3229.
    [159]Fu Cl. Electronic, elastic, and fracture properties of trialuminide alloys:Al3Sc and Al3T1 [J]. Journal of Materials Research,1990,5(05):971.
    [160]George Ep, Ja Horton, Wd Porter, Jh Schneibel. Brittle cleavage of L12 trialuminides [J]. Journal of Materials Research,1990,5(08):1639.
    [161]Phillips Ma, Bm Clemens, Wd Nix. A model for dislocation behavior during deformation of AI/Al3Sc (fcc/L12) metallic multilayers [J]. Acta materialia,2003, 51(11):3157.
    [162]Fukunaga K., T. Shouji, Y. Miura. Temperature dependence of dislocation structure of L12-Al3Sc [J]. Materials Science and Engineering:A,1997,239:202-205.
    [163]Harada Y., Dc Dunand. Creep properties of Al3Sc and Al3(Sc, X) intermetallics [J]. Acta materialia,2000,48(13):3477.
    [164]Fu L., J.L. Ke, Q. Zhang, B.Y. Tang, L.M. Peng, W.J. Ding. Mechanical properties of L12 type Al3X (X= Mg, Sc, Zr) from first-principles study [J]. physica status solidi (b), 2012.248(8):1510-1516.
    [165]Herbst Jf, Lg Hector Jr. Exploration of the formation of XLi3N2 compounds (X=Sc-Zn) by means of density functional theory [J]. Physical Review B,2012,85(19):195137.
    [166]Hyland Jr Rw, Rc Stiffler. Determination of the Elastic Constants of Polycrystalline Al3Sc [J]. Scripta metallurgica et materialia,1991,25(2):473-477.
    [167]Medvedeva Ni, On Mryasov, Y.N. Gornostyrev, Dl Novikov, Aj Freeman. First-principles total-energy calculations for planar shear and cleavage decohesion processes in B2-ordered NiAl and FeAl [J]. Physical Review B,1996,54(19):13506.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700