用户名: 密码: 验证码:
大电网地磁感应电流影响因素及建模方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地磁感应电流(GIC)可能对电网安全运行产生不利的影响。随着特高压电网的建设,我国已成为世界上电网规模最大、电压等级最多的国家,结合我国纬度(磁纬)跨度大、大地电性构造复杂多样等实际情况,我国电网可能存在较高的GIC灾害风险。因此,探明中低纬地区GIC的各种影响因素及其作用机理与影响程度,建立适合中低纬电网以及我国大地条件的GIC计算模型及方法是必要和紧迫的任务。基于中低纬GIC准确计算的重大需求,本论文从空间、大地、电网三方面的影响因素入手,围绕电网GIC的建模开展了研究,主要工作及成果如下:
     针对电离层空间电流源对GMD感应地电场的影响差异,定义了“大小源电流”两种典型极限电流源模型。根据电磁感应理论及快速汉克分解等解析方法,从场源水平距离、垂直距离和电流频率三方面对“大小源电流”模型下的地表阻抗特性进行了数值模拟和解析证明。研究结果表明“线电流模型计算出的感应地电场总小于面电流模型的计算结果”的说法不准确,并针对中低纬地区感应地电场计算提出了采用“大源电流”模型的计算思路与方法。
     以“万圣节GMD事件”为例,从频域和时域两方面定量分析了不同纬度及大地电导率模型对感应地电场的影响。结果表明对于中低纬地区的电网,虽然地磁扰动强度相对较低,但大地电性构造的差异可能会使感应地电场相差4-10倍,提出了利用"GIC-Benchmark"算例模型分析大地因素对电网GIC影响的方法,证明了由于大地电导率的影响中低纬地区的GIC可能高于高纬地区。
     结合电网实际参数和特点,研究了输电线路长度、电网拓扑结构以及变压器结构对GIC的影响。结果表明:输电线路较短时,GIC水平与线路长度呈近似线性关系,当线路达到一定长度时,GIC水平与线路长度无关,趋于饱和值;对变电站的GIC计算要考虑与其相连的所有输电线路的共同作用;另外,变电站的GIC受“拐点效应”影响,终端变电站的GIC更大;考虑变压器类型、结构等因素的影响,给出了自耦变压器和普通单相变压器的GIC有效值的计算方法。
     根据变压器绕组联结方式和不同类型变压器组合模式,结合节点导纳矩阵算法,提出了多电压等级电网GIC的建模技术与计算方法,解决了由不同电压等级输电线路GIC相互作用引起的变电站GIC的准确计算问题。在此基础上,建立了三华电网全节点GIC计算模型,研究了500kV电网和1000kV特高压电网之间GIC的相互影响,发现当接入1000kV变电站的500kV线路关于电场方向不对称时,500kV线路GIC对1000kV变电站GIC影响较大。
     本论文综合考虑了空间、大地和电网三方面因素的影响,提出了多电压等级大电网GIC的建模和计算方法,揭示了不同电压等级电网GIC相互作用的特征规律,并利用2015年三华规划电网参数完成了建模理论与方法的实证研究。三华电网在实际地磁扰动作用下GIC水平的计算结果表明,受次级电网GIC的影响特高压电网可能存在较高的GIC灾害风险。因此本论文提出了特高压电网防御磁暴灾害的技术方案,对我国下一步重大的电网工程建设和安全运行具有实际意义。
Geomagnetically induced currents (GIC) may affect the safe operation of power systems. With the construction of the ultra-high voltage (UHV) power grid, China becomes the country with the largest scale and the most voltage-levels power system. Considering that China is geographically a large country and that the earth conductivity structure is very complex, there may be a high GIC disaster risk for the Chinese power system. Thus, it is necessary and significant to ascertain all the factors influencing GIC in mid-low latitude areas, and build an accurate GIC calculating model, which can meet the practical needs of the Chinese power system. In view of this, the influence factors of GIC including the space, the earth and the power system, and the modelling method of GIC in a complex large power grid are studied in this dissertation. The main work and the results are summarized as follows.
     Considering the different effects of the ionospheric space currents to the geoelectric fields induced by the geomagnetic disturbances (GMD), two space current source models are defined representing two extremes, i.e."small-scale source current"'and "large-scale source current". As the surface impedance can be regarded as a tool to determine the horizontal electric field with a given magnetic variation, the numerical simulation and mathematical analysis of the surface impedance of "small-scale and large-scale source currents" are considered as a function of the horizontal distance, the height and the frequency. The results prove that the idea presented previously that with respect to a given magnetic variation "the geoelectric field induced by the line current model is always smaller than that induced by the plane wave" is not completely correct. Anyway, it is shown that the "large-scale source current" model is appropriate for calculating the geoelectric fields experienced by the Chinese power grid
     With the example of the "Halloween GMD event", the influence of the different latitudes and different earth conductivities are studied quantitatively in the frequency domain and time domain. It is found that although the intensity of the geomagnetic variations are low relatively in mid-low latitude areas, the electric field due to the different earth conductivity could differ by factors from4to10. Also, the latest standard GIC calculating model "GIC-Benchmark" network is used as a probe to investigate the influence of the different latitudes and different earth conductivities to the GIC. This approach avoids the dependence of the results on the specific network, and the results show that GIC in mid-low latitude areas can be higher than that in high latitude areas due to the effects of the earth conductivity.
     With the parameters and the characteristics of a real power grid, the influence of the length of the transmission lines, the topology of the network and the structure of the transformers on GIC are studied in detail. It is concluded that: longer transmission lines lead to larger GIC, but there is not a simple relationship between GIC and the line length, for short lines, GIC are linearly related to the line length; for long lines, GIC are almost independent of the line length and approach a limiting value. In practice, for the calculation of GIC at a substation, we need to consider the effects of all the transmission lines not only the lines connected to this substation, and the largest substation GIC typically occur at the edges of the network due to the "edge effect". Also, considering the effect of the different transformer structures, the calculating method of the effective GIC is given for both conventional transformers and autotransformers.
     In view of the scenarios with the different transformer windings connections and the different transformers combination, the modelling method of GIC in multiple-voltage-levels power system is proposed based on the Nodal Admittance Matrix method. Consequently, the problem of calculating the GIC within a substation which is connected to different voltage-level transmission lines is solved. Based on this modelling method, the full-node model of the Sanhua UHV Grid is established, and the effects of GIC in the500kV system on GIC in the1000kV UHV substation is proved. The effects are most significant when the500kV lines which are connected to the1000kV substation are asymmetrical to the electric field.
     In this dissertation, based on all the effects of the space, the earth and the power system factors on GIC, the modelling method of GIC in large multiple voltage-level power grid is proposed, and the characteristics of the GIC affecting each other in different voltage-level grids are demonstrated, also the modelling theory and the method are proved with the case study of the parameters of the Sanhua Planning Grid. The calculated results of GIC in the Sanhua Grid under the real GMD impact show that there may be a high GIC risk in the1000kV power system with the influence of the500kV system. Therefore, the technical measures are proposed for the UHV power system in China to prevent the GMD disaster, that is significant for the construction and safe operation of China's power system in the future.
引文
[1]Bolduc L.. GIC observations and studies in the Hydro-Quebec power system[J]. Journal of Atmospheric and Solar-Terrestrial Physics,2002,64(16):1793-1802
    [2]Albertson V. D., Thorson J. M, Miske S. A, et al. The effects of geomagnetic storms on electric power system[J]. IEEE Transactions on power Apparatus and System,1974,93(4):1031-1044
    [3]Molinski T. S.. Why utilities respect geomagnetically induced currents [J]. Journal of Atmospheric and Solar-Terrestrial Physics,2002,64(16):1765-1778
    [4]刘连光,刘春明,张冰等.我国广东电网的几次强磁暴影响事件[J].地球物理学报,2008,51(4):976-981
    [5]Liu Chunming, Liu Lianguang, Risto Pirjola, et al. Calculation of GIC in mid-low-latitude power grids based on the plane wave method:A preliminary case study[J]. Space Weather,2009,9(2):1173-1182
    [6]Liu Chunming, Liu Lianguang, Risto Pirjola. Geomagnetically Induced Currents in the High Voltage Power Grid in China[J]. IEEE Transactions on Power Delivery,2009, V24(4):2368-2374
    [7]Boteler D. H.. Geomagnetic hazards to conducting networks[J]. Natural Hazards, 2003,28(2-3):537-561
    [8]Kappenman J. G. Geomagnetic Disturbances and Impacts upon Power System Operation[M]. in The Electric Power Engineering Handbook, L. L. Grigsby (Ed.), CRC Press/IEEE Press,2nd Edition, Chapter 16,2007
    [9]Kappenman J. G.. Geomagnetic storms and their impact on power system [J]. IEEE Power Engineering Review,1996,16(5):5-8
    [10]刘连光,刘春明,张冰.磁暴对我国特高压电网的影响研究[J].电网技术,2009,33(11):1-5
    [11]Wik M., Pirjola R., Lundstedt H., et al. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems[J]. Annales Geophysicae,2009,27:1775-1787
    [12]Kappenman J. G. Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations [J]. Space Weather,2003,1(3):1016-1031
    [13]Gaunt C. T., Coetzee G..Transformer failures in regions incorrectly considered to have low GIC-risk[C]. IEEE Lausanne Power Tech.,2007:807-812
    [14]Trivedi N. B., Vitorello I., Kabata W., et al. Geomagnetically induced currents in an electric power transmission system at low latitudes in Brazil:A case study[J]. Space Weather,2007,5(4), S04004, doi:10.1029/2006SW000282
    [15]Marshall R. A., Gorniak H., Van Der Walt T., et al. Observations of geomagnetically induced currents in the Australian power network[J]. Space Weather,2013,11(1):6-16
    [16]刘林玉,谢学武.500kV主变压器异常声音分析[J].高电压技术,2005,31(4):85-87
    [17]张建平,潘星.500kV变压器异常噪声与振动的原因分析[J].浙江电力,2006,25(3): 6-10
    [18]盘学南,玉小玲.变压器运行噪声异常的探讨[J].变压器,2006,43(8):43-44
    [19]谢伦,蹼祖荫,周煦之,等.磁暴环电流形成过程[J].科学通报,2004,49(6):603-610
    [20]Dooling D.. Stormy weather in space[J]. Spectrum IEEE,1995,32(6):64-72
    [21]潘桂堂,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质,2009,36(1): 1-28
    [22]高锐,彭聪著.中国大陆及邻近海域岩石圈/软流圈结构横向变化研究[M].北京:地震出版社,2000
    [23]Pirjola R.. Geomagnetically Induced Currents During MagneticStorms[J]. IEEE Transactions on Plasma Science,2000,28(6):1867-1873
    [24]Cagniard L.. Basic theory of the magneto-telluric method of geophysical prospecting[J]. Geophys,1953,3:605-635
    [25]Weaver J.T.. Mathematical methods for geo-electromagnetic induction[R]. Taunton, Somerset, England:Research Studies Press LTD,1994
    [26]Mitra S. K.. The Upper Atmosphere 2nd ed[M], Calcutta, Royal Asiatic Society of Bengal,1952
    [27]Baker W.G., Martyn D. F.. Conductivity of the Ionosphere[J]. NATURE,1952, 170(4339):1090-1092
    [28]Price A. T.. The Theory of Magnetotelluric Methods When the Source Field Is Considered[J]. Journal of Geophysical Research,1962,67(5):1907-1918
    [29]Wait J. R.. Theory of Magneto-Telluric Fields[J]. J. Res. Nat. Bur. Stand., Sec. D, Radio Prop.,1962,66(5):509-541
    [30]Madden T., Nelson P.. A defence of Cagniard's magnetotelluric method:Project NR-371-401[R]. Geophysical Lab, Massachusetts Institute of Technology,1964
    [31]Hermance J. F., Peltier W R. Magnetotelluric fields of a line current[J]. Journal of Geophysical Research,1970,75(17):3351-3356
    [32]Srivastava S. P.. Method of Interpretation of Magnetotelluric Data when Source Field Is Considered[J]. Journal of Geophysical Research,1965,70(4):945-954
    [33]Johansen H. K., Sorensen, K.. Fast Hankel Transforms[J]. Geophysical Prospecting,1979,27(4):876-901
    [34]Carson J. R.. Wave propagation in overhead wires with ground return[J]. Bell system technical journal,1926,5(4):539-554
    [35]Boteler D. H., Pirjola R. J.. The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet[J]. Geophysical Journal International,1998,132(1):31-40
    [36]Albertson V. D., Van Baelen J.A.. Electric and Magnetic Fields at the Earth's Surface Due to Auroral Currents[J]. IEEE Transactions on Power Apparatus and Systems,1970,4:578-584
    [37]Pirjola R.. Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground-based technological systems[J]. Surveys in Geophysics,2002,23(1):71-90
    [38]Towle J. N., Prabhakara F. S., Ponder J. Z.. Geomagnetic effects modeling for the PJM interconnection system part Ⅰ-earth surface potentials computation[J]. IEEE Transactions on Power Systems,1992,7(3):949-954
    [39]Prabhakara F. S., Hannett L. N., Ringlee R. J., et al. Geomagnetic effects modeling for the PJM interconnection system part Ⅱ-geomagnetically induced current study results[J]. IEEE Transactions on Power Systems,1992,7(2): 565-571
    [40]Marti L., Berge J., Varma R. K.. Determination of geomagnetically induced current flow in a transformer from reactive power absorption[C]. Proc. of 2011 Electrical Power and Energy Conference, Winnipeg, Manitoba, Canada,2011
    [41]Horton R., Boteler D. H., Pirjola R., et al. A test case for the calculation of geomagnetically induced currents[J]. IEEE Trans on Power Delivery,2012, 27(4):2368-2373
    [42]Boteler D. H., Trichtchenko L., Pirjola R., et al. Real-time simulation of geomagnetically induced currents[C]. Electromagnetic Compatibility and Electromagnetic Ecology,2007 7th International Symposium on,2007,261-264
    [43]刘连光,刘宗岐,张建华.地磁感应电流对我国电网影响的初步分析[J].中国电力,2004,37(11):10-14
    [44]Pirjola R.. On currents induced in Power transmission systems during geomagnetic variations[J]. IEEE Transactions on Power Apparatus and Systems, 1985,10:2825-2831
    [45]Pirjola R., Viljanen A.. Complex image method for calculating electric and magnetic fields produced by an auroral electrojet of finite length[C]. Ann. Geophys. Springer-Verlag,1998,16(11):1434-1444
    [46]Hakkinen L., Pirjola R.. Calculation of electric and magnetic fields due to an electroj et current system above a layered earth[J]. Geophsica,1986,22(1-2): 31-44
    [47]Pirjola R., Viljanen A.. On geomagnetically induced currents in the Finish 400kV Power system by an auroral electrojet current[J]. IEEE Transactions on Power Delivery,1989,4(2):1239-1245
    [48]Viljanen A., Pirjola R., Amm O.. Magnetotelluric effect due to 3D ionospheric current systems using the complex image method for 1D conductivity structures[J]. Earth Planets and Space,1999,51(9):933-946
    [49]Pirjola R., Boteler D. H., Viljanen A., et al. Prediction of geomagnetically induced currents in power transmission systems [J]. Advances Space Research, 2000,26(1):5-14
    [50]许文耀.地球电磁现象物理学[M].中国科学技术大学出版社,2009
    [51]Wait J. R.. Electromagnetic Wave Theory[M]. corrected printing, Wait J. R., Tucson, AZ,1992
    [52]Pirjola R.. Electromagnetic induction in the earth by a plane wave or by fields of line currents harmonic in time and space[J]. Geophysica,1982,18:1-16
    [53]Boteler D.H.. Geomagnetically induced currents:present knowledge and future research[J]. IEEE Trans. Power Delivery,1994, V9:50-58
    [54]Zhang D. W., Yuan X.-C., Ngo N. Q., et al.. Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields[J]. Optics Express,2002,10(12):521-525
    [55]Galloway R. H., Shorrocks W. B., Wedepohl L. M.. Calculation of electrical parameters for short and long polyphase transmission lines[J]. Proc. Inst. Electr. Eng.,1964,111(12):2051-2059
    [56]Pirjola R., Viljanen A., Boteler D. H.. Series expansions for the electric and magnetic fields produced by a line or sheet current source above a layered Earth[J]. Radio Sci.,1999,34(2):269-280
    [57]Wait J. R., Spies K. P.. On the representation of the quasi static fields of a line current source above the ground[J]. Can. J. Phys.,1969,47(23):2731-2733
    [58]Thomson D. J., Weaver J.T.. The complex image approximation for induction in a multilayered earth[J]. J. geophys. Res.,1975,80(1):123-129
    [59]Bolduc L., Langlois P., Boteler D. H., et al. A study of geoelectromagnetic disturbances in Quebec. I. General results[J]. IEEE Transactions on Power Delivery,1998,13(4):1251-1256
    [60]Bolduc L., Langlois P., Boteler D.H., et al. A study of geoelectromagnetic disturbances in Quebec. II. Detailed analysis of a large event[J]. IEEE Transactions on Power Delivery,2000,15(1):272-278
    [61]Peltier W. R., Hermance J. F.. Magnetotelluric fields for a Gaussian electrojet[J]. Canadian Journal of Earth Sciences,1971,8(3):338-346
    [62]Boteler D. H., Pirjola R., Trichtchenko L.. On calculating the electric and magnetic fields produced in technological systems at the Earth's surface by a "wide" electrojet[J]. J.Atmos. Sol.-Terr. Phys.,2000,62(14):1311-1315
    [63]吴迎燕,徐文耀,陈耿雄,等.暴时环电流不对称性的地面磁场特征研究[J].中国科学D辑:地球科学,2008,38(4):424-431
    [64]Pirjola R.. Geomagnetically Induced Currents during Magnetic Storms[J]. IEEE Trans. On Plasma Sci.,2000,28(6):1867-1873
    [65]Mannucci A. J., Tsurutani B. T., Iijima B.A., et al. Dayside global ionospheric response to the major interplanetary events of October 29-30,2003 " Halloween Storms" [J]. Geophysical Research Letters,2005,32(12),32(12), L12S02, doi:10.1029/2004GL021467
    [66]Lin C. H., Richmond A. D., Liu J. Y.. Large-scale variations of the low-latitude ionosphere during the October-November 2003 superstorm:Observational results[J]. Journal of Geophysical Research:Space Physics (1978-2012),2005, 110(A9), A09S28, doi:10.1029/2004JA010900
    [67]Yizengaw E., Moldwin M. B., Dyson P. L., et al. Southern Hemisphere ionosphere and plasmasphere response to the interplanetary shock event of 29-31 October 2003[J]. Journal of Geophysical Research:Space Physics (1978-2012), 2005,110(A9), A09S30, doi:10.1029/2004JA010920
    [68]Liu H., Luhr H.. Strong disturbance of the upper thermospheric density due to magnetic storms:CHAMP observations[J]. Journal of Geophysical Research: Space Physics (1978-2012),2005,110(A9), A09S29, doi:10.1029/2004JA010908
    [69]Gordienko GI., Vodyannikov V. V., Yakovets A. F.. Ionospheric disturbances over Alma-Ata during the October-November 2003 magnetic storms[J]. Journal of Geophysical Research:Space Physics (1978-2012),2005,110(A9), A09S35, doi:10.1029/2004JA010945
    [70]Pallamraju D., Chakrabarti S.. First ground-based measurements of OI 6300 A daytime aurora over Boston in response to the 30 October 2003 geomagnetic storm[J]. Geophysical Research Letters,2005,32(3), L03S10, doi:10.1029/2004 GL021417
    [71]Simpson S.. Protecting the Power Grid From Electromagnetic Pulses[J]. Space Weather,2004,2(10), S10002, doi:10.1029/2004SW000122
    [72]Sojka J. J., Rice D., Eccles J V, et al. Understanding midlatitude space weather: Storm impacts observed at Bear Lake Observatory on 31 March 2001 [J]. Space Weather,2004,2(10), S10006, doi:10.1029/2004SW000086
    [73]Forbes K. F., St Cyr O. C.. Space weather and the electricity market:An initial assessment[J]. Space Weather,2004,2(10), S10003, doi: 10.1029/2003SW000005
    [74]Campbell W.. Introduction to Geomagnetism[M]. Cambridge Univ. Press,2003
    [75]Trichtchenko L., Holt D., Pirjola R.. Responses of power systems to the natural geomagnetic variations at different latitudes[C]. Electrical and Computer Engineering,2006. CCECE '06. Canadian Conference on, Ottawa, Ont. May 2006,390-393
    [76]石应骏,刘国栋,吴广耀,等.大地电磁测深法教程[M].地震出版社,1985:35-82,204-240
    [77]魏文博.我国大地电磁测深新进展及瞻望[J].地球物理学进展,2002,17(2):245-254
    [78]Viljanen A., Pirjola R.. On the possibility of performing studies on the geoelectric field and ionospheric currents using induction in power systems[J]. Jour. Atmos. and Terr. Phys.,1994,56(11):1483-1497
    [79]刘春明.中低纬电网地磁感应电流及其评估方法研究[D].北京:华北电力大学,2009
    [80]Watari S., Kunitake M., Kitamura K., et al. Measurements of geomagnetically induced current in a power grid in Hokkaido, Japan[J]. Space Weather,2009, 7(3), S03002, doi:10.1029/2008SW000417
    [81]Pirjola R., Boteler D. H., Trichtchenko L.. Ground effects of space weather investigated by the surface impedance[J]. Earth Planets Space,2009,61 (2): 249-261
    [82]Zhang Bing, Liu Lian-guang, Lin Yilu, et al. Effect of geomagnetieally induced current on the loss of transformer tank[J]. IET Electric Power Applications,2010, 4(5):373-379
    [83]Zhang Bing, Liu Yilu, Liu Lianguang, et al. Effectof load current on leakage flux of transformer with geomagnetically induced current[J]. European Transactions on Electrical Powerm,2011,21(1):165-173
    [84]张冰,刘连光,肖湘宁.地磁感应电流对变压器振动噪声的影响[J].高电压技术,2009,35(4):900-904
    [85]Kappenman J. G., Albertson V. D.. Bracing for the geomagnetic storm[J]. IEEE Spectrum Magazine,1990,27(3):27-33
    [86]Pirjola R., Boteler D. H.. Geomagnetically induced currents in European high-voltage power systems[C]. Proceeding of Canadian Conference on Electrical and Computer Engineering, Canada,1263-1266
    [87]Tuglie E. De, Scala M. La, Torelli F.. Effects of geomagnetically induced current on long distance AC transmission systems[C]. Proeeeding of International Conference on Power System Technology, Politecnico di Bari, Italy,1998, 127-131
    [88]Erinmez I. A., Kappenman J. G., Radasky W. A.. Management of the geomagnetically induced current risks on the national grid company's electric power transmission system[J]. Jounal of Atmospheric and Solar-Terrestrial physics,2002,64:743-756
    [89]Pulkkinen A., Lindahl S., Viljanen A., et al. Geomagnetic storms of 29-31 October 2003:GIC and their relation to problems in the Swedish high-voltage power transmission sytem[J]. Space Weather,2005,3(19):1001-1008
    [90]Lundstedt H.. The sun, space weather and GIC effects in Sweden[J]. Advances in Space Research,2006,37(6):1182-1191
    [91]Albertson V. D, Thorson J. M., Clayton R. E., et al. Solar induced currents in power system:cause and effects[J]. IEEE Transactions on Power Apparatus and System,1973,92(2):471-477
    [92]Nobuo Takasu, Tetsuo Oshi, Fumihiko Miyawaki, et al. An experimental analysis of DC excitation of transformer by geomagnetically induced currents[J]. IEEE Transactions on Power Delivery,1994,9(2):1173-1182
    [93]Pulkkinen A., Bernabeu E., Eichner J., et al. Generation of 100-year geomagnetically induced current scenarios[J]. Space Weather,2012,10(4), S04003, doi:10.1029/2011SW000750
    [94]Boteler D. H., Bui-Van Q., Lemay J.. Directional sensitivity to geomagnetically induced currents of the Hydro-Quebec 735kV power system[J]. IEEE Trans on Power Delivery,1994,9(4):1963-1971
    [95]Radasky W. A., Kappenman J. G. Impacts of geomagnetic storms on EHV and UHV power grids[C]. Proc. of 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility conf., Beijing, China,2010
    [96]Wik M., Viljanen A., Pirjola R., et al. Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden[J]. Space Weather,2008, 6(7), S07005, doi:10.1029/2007SW000343
    [97]Dong X., Liu Y., Kappenman J. G. Comparative Analysis of Exciting Current Harmonics and Reactive Power Consumption from GIC Saturated Transformers[C]. Proc. IEEE 2001 Winter Meeting, Columbus, OH.,2001, 318-322
    [98]King K.. Alternating current (AC) resistance of helically stranded conductors [J]. Energize,2008,6:31-34
    [99]Rivas R A. Overhead transmission lines and underground cables. in Handbook of electric power calculations[M],3rd ed., vol.9, H. W. Beaty, Ed., New York: McGraw-Hill,2001
    [100]Westinghouse Electrical Transmission and Distribution Reference Book[M]. Westinghouse, East Pittsburgh, PA, USA,1964:98
    [101]Kappenman J. G, Albertson V.D., Mohan N.. Investigation of Geomagnetically Induced Currents in the Proposed Winnipeg-Duluth-Twin Cities 500 kV Transmission Line[J]. EPRI EL-1949. Palo Alto, CA, USA:EPRI,1981
    [102]Dommel H., Electro-Magnetics transient Program (EMTP) Theory Book[M]. USA, Portland, OR:EMTP,1994
    [103]ANSI/IEEE Std.80-2000. IEEE Guide for safety in AC substation grounding[S]. New York, IEEE,2000
    [104]Foss A.. Boteler D. H.. GIC simulation using network modeling [C]. Proc. Canadian Conference on Electrical and Computer Engineering (CCECE), Ottawa, Canada,2006
    [105]Boteler D. H., Pirjola R. J. Modelling geomagnetically induced currents produced by realistic and uniform electric fields[J]. IEEE Trans on Power Delivery,1998, 13(4):1303-1308
    [106]Ge H.Y., Liu L. G, Feng X. S.. The estimation of the possible influence on the UHV power grid induced by different kind geomagnetic storms[C]. International Conference on Electrical and Control Engineering (ICECE), Yichang, China, 2011
    [107]Trichtchenko A, Boteler D. H., Foss A. GIC modeling for an over determined system[C]. IEEE CCECE/CCGEI,Ottawa, Canada,2006
    [108]Albertson V. D., Kappenman J. G, Mohan N., et al. Load-flow studies in the presence of geomagnetically induced currents[J]. IEEE Trans on Power Apparatus and Systems,1981,100(2):594-607
    [109]Lehtinen M., Pirjola R.. Currents produced in earthed conductor networks by geomagnetically-induced electric fields[J]. Annales Geophysicae,1985,3(4): 479-484
    [110]董鹏,朱艺颖,呙虎,等.特高压电网建设初期“三华”电网数模混合实时仿真试验研究[J].电网技术,2012,36(1):18-25
    [111]郭剑波,周俊,郭强,等.华北—华中—华东交直流输电系统数模混合仿真[J].电网技术,2011,35(9):55-59
    [112]张文亮,周孝信,印永华,等.华北—华中—华东特高压同步电网构建和安全性分析[J].中国电机工程学报,2010,30(16):1-5
    [113]艾琳,王超,陈为化.三华特高压同步联网及其对调度方式的影响[J].能源技术经济,2011,23(5):38-41
    [114]刘遵义,卢明,吕中宾,等.特高压交流输电线路工频参数测量技术及应用[J].电网技术,2009,33(10):59-62
    [115]燕立,吴袆琼,王芳.晋东南1000kV变电站电气控制和监视的几个特点[J].电力建设,2010.31(2):21-24
    [116]于超.特高压电网参数及地磁感应电流评估算法研究[D].北京:华北电力大学,2008
    [117]刘连光.灾害空间天气对我国电网安全的影响及风险[J].中国工程科学,2010,12(9):29-33
    [118]Anthony T., Lui Y.. Tutorial on geomagnetic storms and substorms[J]. IEEE Transactions on Plasma,2000,28(6):1854-1866
    [119]曹源.用于电网GIC计算的大地电阻率模型研究[D].北京:华北电力大学, 2009
    [120]袁学诚.中国地球物理图集[M].北京:地质出版社,1996:54-55,163
    [121]魏文博,金胜,叶高峰,等.中国大陆岩石圈导电性结构研究[J].地质学报,2010,84(6):788-799
    [122]李立.中国大陆地壳上地幔地电特征研究[A].第30届国际地质大会论文集[C].北京:地质出版社,1999(20):80-87
    [123]国家地震局地学断面编委会编著.青海门源至福建宁德地学断面[M].北京:地震出版社,1992
    [124]国家地震局地学断面编委会编著.江苏响水至内蒙满都拉地学断[M].北京:地震出版社,1991
    [125]中国地质科学院岩石圈研究中心编著.格尔木至额济纳旗地学断面[M].北京:地质出版社,1997
    [126]刘顺,熊大和.超高压下氧化物电导率测量及下地面电导率的讨论[J].地球物理学进展,1993,8(2):27-31
    [127]孙寿广.魁北克电力40年经验简介[J].电力勘察设计,2006,2:27-31
    [128]Walling R. A., Khan A. H.. Characteristics of transformer exciting-current during Geomagnetic disturbances[J]. IEEE Transactions on Power Delivery,1991,6(4): 1707-1713
    [129]张冰.大型电力变压器直流偏磁现象的研究[D].北京:华北电力大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700