用户名: 密码: 验证码:
巴西橡胶树N、P、K高效利用砧木材料筛选方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶芽接树的砧木对接穗生长、产胶及抗性等都有重要影响。因此选择和培育有利于芽接树速生、高产、高抗的橡胶树砧木材料,在改进橡胶树种植材料和指导育苗生产,或探讨橡胶树砧木选择理论等方面都有十分重要的意义。本研究对3个品种(GT1、RRIM600、PR107)橡胶树实生苗采用N、P、K营养调控处理,开展橡胶实生苗N、P、K高效利用单株筛选,探讨高大乔木橡胶树N、P、K高效利用砧木材料筛选方法。主要研究结果如下:
     1初步建立起橡胶树养分高效利用砧木材料筛选体系
     本研究在其它作物耐N、P、K胁迫筛选方法的基础上进行了改进,建立了N、P、K营养调控筛选体系。本体系将长势一致的实生苗种植在高位沙床上,采用低N、P、K营养胁迫-初选-复肥-复选-再胁迫-再选择的方法选择在生物学性状和生理生化特性方面表现突出的单株,本法可能筛选出在N、P、K养分匮乏或充足环境条件下都具有N、P、K养分高效利用潜力的砧木材料。
     2初步筛选出一些在N、P、K养分匮乏或充足环境条件下的N、P、K高效利用橡胶实生苗单株
     经过历程近3年的N、P、K养分胁迫初选-复肥复选-再胁迫再选择,共筛选出70株在N、P、K养分匮乏或充足环境条件下的N、P、K高效利用橡胶实生苗单株。其中,GT1和RRIM600实生苗分别为21株,选出率均为11.67%;PR107实生苗28株,选出率15.56%。
     3初选的橡胶实生苗N、P、K高效利用单株的优异表现
     采用本法选出的N、P、K高效利用单株表现出较强的生长优势和优异的生理生化特性,各优株的生物学性状指标(株高、茎粗、叶蓬距、叶面积、叶片SPAD值),叶片养分性状指标(N、P、K含量),净光合速率Pn、水分利用效率WUE,抗逆性指标(相对电导率、MDA含量、Pro含量)和酶活性指标(NR、SOD活性)等均显著或极显著地优于普通株和ck(常规施肥处理)。
     4橡胶树N、P、K高效利用砧木材料筛选指标优化的建议
     对现有20个筛选指标进行相关性分析,结果表明一些指标高度相关。其中,N高效利用优株主要生物学性状指标根据相关程度其先后顺序为:叶蓬距、叶片SPAD值,茎粗、叶面积,株高;叶片养分性状为:K含量,P含量,N含量。P高效利用优株的为:株高、茎粗,叶蓬距,叶片SPAD值,叶面积;叶片养分性状为:P含量,N含量,K含量。K高效利用的优株为:茎粗,株高,叶片SPAD值,叶面积,叶蓬距;叶片养分性状为P含量,K含量,N含量。因此,建议在N、P、K高效利用优株筛选时,可根据选择对象采用高度相关的指标,以减少本筛选方法的工作量,提高筛选工作效率。
     综上所述,本研究是以营养调控为手段,改进了以往仅以养分胁迫为手段的筛选方法。初步探讨了在N、P、K养分匮乏或充足环境条件下具有养分高效利用潜力砧木材料的筛选方法,并筛选出一批在N、P、K养分匮乏或充足环境条件下都能高效利用养分的优良单株。但这些优株还需进一步作分子水平的分析鉴定和通过橡胶树砧穗亲和性试验等,才能应用于生产,或作砧木种质资源等科学研究。
There are obvious effect of the rootstock on the growth, latex yield and resistant ability of rubber budding tree. Therefore, it is significance that selection and propagation of the rootstock material which makes for the rubber budding tree grow fast, give a high yield and high resistance in the improvement of rubber tree planting material, directing rubber budding breeding, or discussing the theory of rubber rootstock selection. In this paper, a N, P, K highly effective use plants screening system was studied by that to treat the rubber seedling of 3 varieties, GT1, RRIM600 and PR107 with the N, P, K nutrient regulation, that developed from the N, P, K stress screening method, to select the N、P、K highly effective use rootstock material for rubber budding tree, a megaphanerophyte. The main results shown as follows:
     A N, P, K nutrient regulation screening system was established for the highly effective use rubber seedling plants base on the low N, P, K stress screening system for some of crops. It was that the uniform seedlings were grown in the raised sand bed and up-took in normal way until the plants grown 2-flush leaves, and then low N, P, K stress on the seedling until the plants appeared obvious nutrient deficiency symptom, which were marked, then refertilizing to the plants growth recovered and re-marked, and followed by low N, P, K stress and marked again. The plants with outstanding character in biological traits, physiological and biochemical characteristics were selected through the system. It possible to screen out the highly effective use rubber seeding plants under the N, P, K nutrient short or sufficient environmental conditions.
     70 N, P, K highly effective use rubber seedling plants were screened out in total, of which there were 21 GT1 and RRIM600 seedling plants respectively, selection rate were 11.67%; 28 PR107 seedling plants, selection rate 15.56%, under the condition of N, P, K nutrient deprivation or sufficiency, through almost 3 years by the N、P、K nutrient regulation screening system.
     The N、P、K highly effective uses rubber seedling plants selected out by the system shown superiority in growth and physiological biochemistry characteristic. The plants screened out were significantly or very significantly superior than the other plants in the same treatment and ck (fertilized conventionally) in biology character target (height, stem diameter, leaf-umbrella distance, leaf area, the value of leaf SPAD), the leaf nutrient target (the leaf content of N, P and K), photosynthesizes speed Pn, moisture content use efficiency WUE, the resistance target (relative conductivity, the MDA content, the Pro content) and the enzyme activity target (the NR and SOD activeness) and so on.
     The relativity among 20 screening parameters was analyzed and result shown that there were closed relation among some parameters. According to the degree of relation among the main biological characters, the order in the related rate of the N highly effective use was: leaf-umbrella distance, the value of leaf SPAD, stem diameter, leaf area and height. Among the leaf nutrient character it was:K content, P content and N content. Of the P highly effective issue was:height, stem diameter, leaf-umbrella distance, the value of leaf SPAD and leaf area; among the leaf nutrient character was:P content, N content and K content. Of the K highly effective use was:stem diameter, height, the value of leaf SPAD, leaf area and leaf-umbrella distance; among the leaf nutrient character was the P content, the K content and the N content. So that it was suggested that when to screen out the N, P, K highly effective use rubber seedling plants, the closed relation screening parameters would be observed to instead of the all screening parameters that in order to reduce the workload and improve the screening efficiency in the screening system.
     In summary, the nutrient highly effective use plant screening system was improved by the mean of nutrition regulating not only nutrient stressing. It was probed that the method to screen out the N, P, K highly effective use rubber seedling plants under the environmental conditions of N, P, K nutrient deprivation or sufficiency. And some N、P、K highly effective use plants, which could highly effective use the nutrient under the environmental conditions of N, P, K nutrient deprivation or sufficiency, were elected. However, it only would be used in rubber production or as the rubber rootstock germplasm for scientific research after the further discriminated by molecular analyzed and the compatibility tested of rubber tree stock and scion.
引文
[1]何康,等.热带北缘橡胶树栽培[M].广州:广东科技出版社,.987:11.
    [2]Samarappuli L, Yogarainam N,Karunadasa P. Role of Potassium in growth and water relations of rubber Plants[J]. Journal of RubberResearch Institute of Sri Lanka,1993,73:37-57.
    [3]Ng A.P., Ho C.Y., Sultan M.O., Ooi C.B., Lew H.L., Yoon P.K. Influence of Six rootstocks on growth and yied of six seion clones of Heavea brasiliensis[J]. Proe. Rubber Res. Inst. Malaysia Planters Conf. Kuala Lumpur.1981:134-151.
    [4]黄国涛,林位夫。巴西橡胶树砧木与接穗的相互影响-生理生化特性。华南热带农业大学硕士毕业论文,2002.5.
    [5]李新峥,刘用生.蔬菜嫁接杂交及其应用研究进展[J].北方园艺.1998.(2):28-29.
    [6]Hirata, Y., Yagishita, N.,Sugimoto, M., et al. Inter-varietal chimera formation in cabbage[J]. Japanese Journal of Breeding,1990,40(4):419-428.
    [7]Noguchi T., Hirata Y., Yagishita N. Intervarietal and interspecific chimera formation by the in-vitrograft-culture method in Brassica[J].Theor Appl Genet.,1992:83:727-732.
    [8]Zhou, J. Y, Hirata, I11-Sup Nou,et al. Interactions between different genotypic tissues in citrus graft chimeras[J]. Euphytica,2002,126:355-364.
    [9]Zhou, J., Y Hirata, H.Shiotani, et al. Studies on the chimeras in Citrus I. Molecular analysis of the chimeras between'Kawano natsudaidai'and Fukuhara orange[J]. Breed research,2001,3(2):831.
    [10]Hirata, Y., Motegi, T., Hogi, Y. Changes in mitochondrial and chloroplast genome structure accompanied with cytoplasmic male sterility induced by protoplast fusion and chimera synthesis[J]. ISHS Acta Horticulturae,2000,539:83-88.
    [11]Hirata. Y., Takeda, T. Motegi. Induction of cytoplasmic male sterility in the progeny derived from interspecific chimera between Brassica oleracea and campesris[J]. Euphytica,2001,117:143-149.
    [12]张新忠,刘玉艳,龙成莲.苹果矮化砧木致矮机理的研究现状与展望[J].河北农业技术师范学院学报.1996,10(2):62-65.
    [13]王淑英,石雪晖.葡萄不同砧木嫁接亲合力的鉴定[J].落叶果树.1998,30(3):34-39.
    [14]陈雄庭.浅谈巴西橡胶树的嫁接亲和力[J].热带作物科技,1990(4):37-45.
    [15]刘世彪,林位夫,郝秉中.巴西橡胶树嫁接接合区接穗和砧木径向生长差异的研究[J].西北植物学报2003,23(7):1178-1181.
    [16]M.J.狄克蔓.三叶橡胶研究二十年[J].华南热带作物科学研究译校,热带作物杂志社,1965.
    [17]NG Ai Peng几种橡胶砧木的性状[J].热带作物译丛,1985,(2):10-14.
    [18]Sevsiratne P., Nugawela aetal. The growth of stock Plants and its effete on the seion growth of young buddings of Heavea brasiliensis(Mullarg) [J]. Joural of Plantation Crops,1996,24(2):119-125.
    [19]RRIM.橡胶树树冠芽接试验[J].热带作物译丛(庞任声译),1983(1):12-17.
    [20]大丰育种站.橡胶树芽接树砧木对产量的影响[J].热带作物科技通讯,1973(1):12-17.
    [21]刘维殷.橡胶树砧木接穗试验总结[J].热带作物科技,1990(4):37-45.
    [22]Ng A.P. Perform Acne of rootstocks[M]. Planters Bull:rubber Res. Malaysia NO.175:56-63.
    [23]Yoon, H.T., Long, T.T.1976 Chimera crown budding trials, Proceedings of the Rubber Research Institute of Malaya Planters Conference, Kuala Lumpur,1976:28-116.
    [24]杨少斧,后琼仙.橡胶树几种砧穗对产量组合试验初报[J].云南热带科技,1993,16(2):19-22.
    [25]B.Nouy.橡胶砧木和接穗无性系的组合研究-砧木来源和生势对接穗未成龄期生长的影响[J].热带作物译丛,1985,(5):16-21.
    [26]陈俊明,曹建华,林位夫3种自根无性系砧木对接穗PR107产量的影响初报[J].热带农业科学,2006,26(6):1-3.
    [27]Sobhana P.et.al, Can difference in the geneties between the root stock and scion lead to tapping panel dryness syndrome,1998.210-214.
    [28]林位夫等.橡胶三合树树冠与茎干的相互影响-胶乳特性[J].热带作物学报,1999,21(增刊):31-37.
    [29]曹建华,林位夫。巴西橡胶树砧木与接穗间的相互影响-内源激素[M].海南:华南热带农业大学,2003.5.
    [30]宋金耀,齐永顺.砧-穗间作用对凤凰-51葡萄过氧化物酶同工酶的影响(初报)[J].河北农业技术师范学院学报.1994,8(2):62-65.
    [31]李正之.果树矮化密植[M].上海:上海科学技术出版社.1982,11-30.
    [32]张宇和.果树繁殖[M].上海:上海科学技术出版社,1984.10-39.
    [33]李能芳,荀琳,郭学君,等.嫁接对茄子植株过氧化物酶同工酶的影响[J].西南园艺.1999,27(4):24-25
    [34]肖桂山,杨世杰.黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J].农业生物技术学报.1995,3(2):32-37.
    [35]胡国谦,吴伟民.利用叶片过氧化物酶同工酶鉴定柑桔砧木资源矮化性能[J].热带作物科技.1992,1.
    [36]傅远志,陆军.水杉异砧嫁接植株体内激素的分布和含量变化[J].植物生理学通迅.1997,33(1)33-35.
    [37]张春兰,张耀栋.不同品种番茄嫁接植株吸钾特性差异的研究[J].南京农业大学学报.1995,18(3):78-85.
    [38]吴强.杉木砧木质量对接穗生长影响的研究[J].四川农业大学学报.1996,(2):1-3.
    [39]余金龙,彭明碧.通过嫁接对甘薯库、源关系及成熟期问题的探讨[J].国外农学-杂粮作物.1996,(1):40-43.
    [40]黄华孙,周钟毓.我国橡胶树的引种试种与亲品种选育[J].热带作物研究,1997,(4):6-10.
    [41]黄华孙,陈雄庭.国外橡胶选育种现状与发展趋势[J].热带作物科技,1998,(4):1-4.
    [42]王泽云.像胶花药体细胞植物的优良性状[J].热带作物学报,1989,10(2):18-22.
    [43]刘子凡,林位夫.超高产橡胶芽接树高产机理的初步研究.海南大学博士学位论文.2009.5.
    [44]Vitousek P M. Nutrient cycling and nutrient use efficiency[J]. Am. Nat.,1982,119(4):553-572.
    [45]Killingbeck K T. The terminological jungle revisited:making a case for use of the term resorption. Oikos,1986,46(2):263-264.
    [46]Arco J M, Escudero A and Garrido M Vega. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology,1991,72(2):701-708.
    [47]Jonasson S. Implications of leaf longevity, leaf nutrient re-absorption and translocation for the resource economy of five evergreen plant species[J]. Oikos,1989,56(1):121-131.
    [48]Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands[J]. Oecologia, 1990,84(3):391-397.
    [49]Birk E A, Vitousek P M. Nitrogen availability and nitrogen use efficiency in loblolly pine stands[J]. Ecology,1985,67(1):69-79.
    [50]May J D and Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics[J]. Ecology,1992,73(5):1868-1878.
    [51]薛达,薛立,罗山.日本中部风景林凋落物量养分归还量和养分利用效率的研究[J]..华南农业大学学报,2001,22(1):25-28.
    [52]De Lucia E H, Schlesinger W H. Resource-use efficiency and dry tolerance in adjacent great basin and sierra plants[J]. Ecology,1991,72(1):51-58.
    [53]Johannes M H K, Walter D K, Thomas H N. On the relationship between nutrient use efficiency and fertility in forest ecosystems [J]. Springer-Vela 1997. Ecologic,1997,110(4):550-556.
    [54]Boerner R E. Foliar nutrient dynamic and nutrient use efficiency of four deciduous tree species in relation to site fertility[J]. J Apply Ecol,1984,21(3):1029-1040.
    [55]Pastor J and Blockhead G. Distribution and cycling of nutrients in an aspen (Populus tremulbides Michx)-mixed hardwood spodosol ecosystem in northern Wisconsin[J]. Ecol,1984,65(2):339-353.
    [56]Alongi D M, Clough B F, Robertson AI. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia miarina[J].Aquatic Botany,2005,82(2):121-131.
    [57]Aerts R. Nutrient resorption from senescing leaves of perennials:are there general patterns? [J]. Journal of Ecology,1996,84(4):597-608.
    [58]Ecstein R L, Karlsson P S. Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species[J]. Oikos,1997,79(2):311-324.
    [59]Pugnaire F I and Chapin Ⅲ F S. Environmental and physiological factors governing nutrient resorption efficiency in barley [J]. Oecologia,1992,90(1):120-126.
    [60]Pugnaire F I, Chapin Ⅲ F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species[J]. Ecology,1993,74(1):124-129.
    [61]Arco J M, Escudero A and Garrido M Vega. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology,1991,72(2):701-708.
    [62]Killingbeck K T. Nutrient in senesced leaves:keys to the search for potential resorption and resorp tion proficiency [J]. Ecology,1996,77(6):1716-1727.
    [63]Birk E A, Vitousek P M. Nitrogen availability and nitrogen use efficiency in loblolly pine stands[J]. Ecology,1985,67(1):69-79.
    [64]May J D and Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics[J]. Ecology,1992,73(5):1868-1878.
    [65]Rundel P W. Nitrogen utilization efficiencies in mediterranean-climate shrubs of California and Chile[J]. Oecologia,1982,55(3):409-413.
    [66]苏波,韩兴国,黄建辉等.植物的养分利用效率(NUE)及植物对养分胁迫环境的适应策略[J].生态学报,2000,20(2):335-343.
    [67]邢雪荣,韩兴国,陈灵芝.植物养分利用效率研究综述[J].应用生态学报,2000,11(5):785-790.
    [68]拜得珍,纪中华,沙毓沧.元谋干热区两年生木豆(Cajanus cajan)人工林营养循环和养分利用效率[J].生态学报,2007,27(3):1093-1098.
    [69]赵广亮,王继兴,王秀珍,等.油松人工林密度与养分循环关系的研究[J].北京林业大学学报,2006,28(4):39-44.
    [70]An Y, Wan Sh-Q, Xhou X-H. Plant nitrogen concentration, use efficiency, and contents in a tall grass
    prairie ecosystem under experimental warming[J]. Global Change Biology,2005,11(10):1733-1744.
    [71]陈子明,袁锋明,姚造华,等.北京潮土硝态氮土体中的移动特点及淋失动态[J].植物营养与肥料学报,1995,1(2):71-79.
    [72]Bert H J. Efficient use of nutrients:an art of balancing[J]. Field Crops Research,56(1):1998,197-201.
    [73]Huttl R F, Schaaf W. Nutrient supply of forest soils in relation to management and site history[J]. Plant Soil,1995,168-169(1):31-41.
    [74]李跃林,彭少麟.按树人工林地土壤酶活性与营养元素含量关系研究[J].福建林业科技.2002,29(3):6-10.
    [75]张福锁,曹一平.根际动态过程与植物营养[J].土壤学报,1992,29(3):239-250.
    [76]Kohlberg R L, Rupert B, Westfall D G et al. Evaluation of an in situ net soil nitrogen mineralization method in dry land agro co system[J]. Soil Sci. Sac. Am. J,1997,61(3):504-508.
    [77]An Y, Wan Sh-Q, Xhou X-H (2005). Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming[J]. Global Change Biology,11(10): 1733-1744.
    [78]许松葵,薛立,杨鹏,等.马占相思等5个树种叶中养分含量和养分利用效率的研究[J].广东林业科技,2003,19(2):13-16.
    [79]王希华,黄建军,闰恩荣.天童国家森林公园若干树种叶水平上养分利用效率的研究[J].生态
    学杂志,2004,23(4):13-16.
    [80]Miller H G, Garbon X. Nutrient Interaction-the Limitations to Productivity, Proceeding of International Conference[J]. Forest Nutrien Cycling,1987,373-385.
    [81]Chabot B F, Hicks D J. The ecology of leaf life spans[J]. Annual Review of Ecology and Systematics, 1982,13:229-259.
    [82]Reich P B, Walters M B, Ellsworth D S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems[J]. Ecol. Monogr,1992,62(3):365-392.
    [83]Reich P B, Walters M B, Ellsworth D S. From tropics to tundra:Global convergence in plant functioning[J]. Proc Natl. Acad. Sci.,1997,94(25):13730-13734.
    [84]Vitousek P M. Litterfall, nutrient cycling and nutrient limitation in tropical forests[J]. Ecology,1984, 65(1):285-298.
    [85]薛利红,杨林章,李刚华.遥感技术在精确施肥管理中的应用进展[J].农业工程学报,2004,20(5):22-26.
    [86]陈蓉蓉,周治国,曹卫星等.农田精确施肥决策支持系统的设计和实现[J].中国农业科学,2004,37(4):516-521.
    [87]鲁如坤,刘鸿翔,闻大中,钦绳武.我国典型地区农业生态系统养分循环和平衡研究[J].土壤通报,1996,27(5):197-199.
    [88]楼一平,盛炜彤.人工林长期立地生产力研究概述[J].世界林业研究,1998,(5):18-25.
    [89]Andreas B, Maher N, Stefan S, et al. Nutrient cycling and field-based partial nutrient balancesin two mountain oases of Oman[J]. Field Crops Research,2005,94(23):149-164.
    [90]Helyar K R. Efficiency of nutrient utilization and sustaining soil fertility with particular reference to phosphorus[J]. Field Crops Research,1998,56(1):187-195.
    [91]中华人民共和国农业部农垦局,农业部发展南亚热带作物办公室(2004).中国天然橡胶五十年[M].北京:中国科学技术出版社,22-23.
    [92]何康,黄宗道.热带北缘橡胶树栽培[M].广东:广东科技出版社.1987.11.
    [93]陆行正,何向东.橡胶树的营养诊断指导施肥[J].热带作物学报.1982,3(1):27-39.
    [94]云南农垦集团有限公司,云南省热带作物学会编.云南热带北缘高海拔植胶的理论与实践(内部资料)2005,2.
    [95]广西农垦科技处.广西农垦主要科技成果简介[J].广西热作科技.1983(1):20-25.
    [96]苏祉注.橡胶树叶片营养诊断指导施肥应用推广成效[J].福建热作科技.1984(4):1-7.
    [97]王秉忠.橡胶栽培学[M].北京:农业出版社.1989,115.
    [98]Aweto A O. Physical and nutrient status of soils under rubber (Hevea brasiliensis) of different ages in South Western Nigeria[J]. Agricultural Systems-UK,1987,23(1):63-72.
    [99]Abraham J, Philip A, Punnoose K I. Soil nutrient status during the immature phase of growth in a Hevea plantation[J].Indian Journal of Natural Rubber Research,2001,14(2):170-172.
    [100]麦全法,张木兰,蒋菊生等.海南农垦部分胶园养分变化分析[J].海南师范大学学报,2008,(1):60-65.
    [102]张玉凤,蒋菊生.海南东部垦区部分农场橡胶树叶片营养元素含量分析[J].山东林业科技,2008,175(2):8-9.
    [103]麦全法,蒋菊生,刘志崴.海南农垦高产胶园生态系统养分变化分析与营养诊断施肥研究[J].中国热带农业,2009,(1):38-42.
    [104]秦钟.橡胶林土壤水分平衡的研究.华南热带农业大学硕士论文,2002,5.
    [105]秦钟,周兆德,陶忠良.橡胶林水分的分配特征[J].热带作物学报,2003,24(2):6-10.
    [106]Pushparajah E. Nitrogen cycle in rubber (Hevea) cultivation. Nitrogen Cycling in South East Asian Wet Monsoonal Ecosystems Proceedings of a regional workshop arranged by the SCOPE/UNEP[J]. International Nitrogen Unit of the Royal Swedish Academy of Sciences and the Chiang Mai Univ, Thailand,1981,101-108.
    [107]中国热带农业科学院,华南热带农业大学(1998).中国热带作物栽培学[M].北京:中国农业出版社1998版:93-94,122-126.
    [108]林钊沐,黎仕聪,茶正早,等.我国热带土壤植胶后肥力变化与胶树平衡施肥.见:周健民主编.农田养分平衡与管理[M].南京:河海大学出版社2000版,407-413.
    [109]王巧环,刘志崴,王甲因.海南农垦胶园土壤养分现状及平衡施肥[J].热带农业科学,1999,5:8-14.
    [110]何向东,吴小平.海南垦区胶园肥力演变探讨[J].热带农业科学,2002,22(1):16-21.
    [111]张少若主编.热带作物营养与施肥[M].北京:中国农业出版社1996版:114-118.
    [112]橡胶栽培研究所生理农化室.胶园土壤养分含量和叶片养分含量的相关关系[J].热带作物研究,1982,1:14-18.
    [113]廖金凤.海南橡胶树枝和叶中的微量元素含量[J].中山大学学报(自然科学版),1999,38(supply.):121-125.
    [114]管东生,罗琳..海南热带植物叶片化学元素含量特征[J].林业科学,2003,39(2):28-32.
    [115]Nguyen Thi Hue.Variation of Hevea leaf nutrient content with leaf age and leaf Ca[J]. Symposium on natural rubber Hevea brasiliensis Volume-1-General, soils and fertilization, and breeding-and selection sessions, Ho Chi Minh City, Vietnam,1997,62-70.
    [116]Abraham J, Nair R B, Punnoose K I, et al. Leaf age and nutrient status of Hevea brasiliensis[J]. Indian Journal of Natural Rubber Research,1999,10(1/2):66-74.
    [117]Lau C H, Wong C B. Correction of leaf nutrient values for assessment of Hevea nutrition [J].Plant-Nutrition from Genetic Engineering to Field Practice:Proceedings of the Twelfth International Plant Nutrition Colloquium, Perth, Australia,1993,281-283.
    [118]Gafur M A, Osman K T, Rashid H. Growth of rubber plants in relation to N P K levels of soil and leaf in Raozan rubber estate, Chittagong, Bangladesh[J]. Bangladesh Journal of Botany,2000,29(1): 71-73.
    [119]Alves R N B, Ventorim N. Variation in nutrient content of rubber (Hevea) plants due to N, P, K, Mg application in the nursery[J]. Pesquisa Agropecuaria Brasileira Brazil,1991,26(1):137-147.
    [120]Viegas I de J M, Sampaio M do C T, Costacurta C R, et al. Effect of calcium levels on dry matter production and macronutrients concentration in the tissue of young plants of rubber (Hevea spp) [J]. Revista de Ciencias Agrarias,2001,17 (35):25-40.
    [121]Pushparajah E, Sivanadyan K, Subramaniam A, et al. Influence of fertilisers on nutrient content, flow and properties of Hevea latex[J]. International Rubber Conference,1975,10.
    [122]Prasannakumari P, Joseph M, George S, Punnoose K I. Movement of applied potassium in a sandy clay loam soil under rubber (Hevea brasiliensis) plantation[J]. Natural Rubber Research,2004,17(2): 168-171.
    [123]George E S, Nair R B, Chitra M, et al. Influence of soil inorganic phosphorus fractions on leaf phosphorus status in Hevea brasiliensis[J]. Indian Journal of Natural Rubber Research,2001,14(1): 75-78.
    [124]Karthikakuttyamma M, Satisha G C, Suresh P R, et al. Biomass production and nutrient budgeting of Hevea brasiliensis in South India[J]. Indian Journal of Natural Rubber Research India,2004,17(2): 108-114.
    [125]Meng QingYan, Wang HongYan, Wang ZhaoQian. K cycle of rubber tea chicken agroforestry model in tropical areas of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002,18(1):115-117.
    [126]马骥.农户粮食作物化肥施用量及其影响分析-以华北平原为例[J].农业技术经济,2006(6):36-42.
    [127]石喜明.植物论考[J].日本北海道大学图书刊行,1987.
    [128]#12
    [129]米国华,张福锁.玉米氮营养高效生理、遗传与育种.见马锋.植物营养研究-进展与展望[M].北京:中国农业大学出版社,2000:42-57.
    [130]王艳,米国华,陈范骏,等.玉米自交系氮效率基因型差异的比较研究[J].应用与环境生物学报,2002,8(4),361-365.
    [131]陈新平,邹春琴,刘亚萍,等.菠菜不同品种累积硝酸盐能力的差异及其原因[J].植物营养与肥料学报,2000,6(1):30-34.
    [132]刘宏斌,李志宏,张维理,等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-291.
    [133]宋桂云,徐正进,冯永祥,等。低N胁迫对不同穗型水稻品种产量性状的影响[J].耕作与栽培,2005,(1):34-35.
    [134]Banziger M,Betran F J,Lafitte H R.Efficiency of high-nitrogen selection environments for improving maize for low-nitrogen targeten vironments[J].Crop Sci,1997,37:1110-1117.
    [135]王艳,米国华,陈范骏,等.玉米自交系氮效率基因型差异的比较研究[J].应用与环境生物学报,2002,8(4),361-365.
    [136]Heuberger H.Nitrogen efficiency in tropical maize(Zea may L.)indirect selection criteria with in special emphasis on morphological root characteristics[J].Germany:Univ of Hannover,1998.
    [137]张定一,张永清,杨武德。不同基因型小麦对低氮胁迫的生物学响应[J]。作物学报,2006,32(9):1349-1354.
    [138]WangY, Mi G-H, Zhang F-S。 Genotypic differences in nitrogen uptake by maize inbrelines its relation to root morphology[J].Acta EcolSin,2003,23(2):297 302.
    [139]RenS-J, Zhang L-M, Shangguan Z-P. The effect of nitrogen nutrition on coordinate growth of root and shoot of winter wheat[J].Acta Bot Boreali Occident Sin,2003,23(3):395-400.
    [140]曹敏建,衣莹,佟占昌等.耐低氮胁迫玉米的筛选与评价[J].玉米科学,2000,8(4):64-69.
    [141]张凤路,D.Beck.耐旱和低氮胁迫玉米种质筛选技术[J].玉米科学,2001,9(2):14-17.
    [142]华南农业大学.土壤学(第二版)[M].北京:农业出版社,1986.169-188.
    [143]黄宗道,黎仕聪.海南岛西部植胶区亩产干胶150-200公斤的橡胶丰产栽培技术研究[J].热带作物学报,1982,3(1):1-14.
    [144]何向东,陆行正,罗伯业,等.海南橡胶树专用复合肥养分配比的研究[J].热带作物研究,1992,(1):14-25.
    [145]华元刚,林清火,林钊沐。氮素供应对橡胶树根系生长的影响[J]。中国农学通报,2006,22(6):421-424.
    [146]徐志远,秦智伟,周秀艳.氮肥利用研究现状及培育耐低氮胁迫蔬菜品种的探讨[J].东北农业大学学报,2007,38(5):706-710.
    [147]Zhai B-N, SunC-M, WangJ-R, Li S-X. Effects of nitrogen deficiency on the growth and development of winter wheat roots[J].Acta Agron Sin,2003,29(6):913-918.
    [148]Zou C-Q, Li Z-S, Li J-Y. Study on difference in morphological and physiological characters of wheat varieties to potassium[J].Plant Nutr Fert Sci,2001,7(1):36 43.
    [149]WangJ-A, ZhangD-Y, JiaW-L, LiangQ-Y). Variation in response of wheat genotypes to potassium[J].JTriticeae Crops,2000,20(3):35 39.
    [150]Itoh S, Barber SA. Phosphorus uptake bysixplant species as related to root hairs[J].AgronJ,1983,75: 457-461.
    [151]Li Y-Y, ShaoM-A. Physio-ecological response of springwheat roottowater and nitrogen[J].PlantNutrFertSci,2000,6(4):383-388.
    [152]Ma X-M, Wang Z-Q, Wang X-C, WangS-L. Effects of nitrogen forms on roots and N fertilizer efficiency of differentwheat cultivarswith specialized end-uses[J].Chin J ApplEcol,2004,15(4):655-658.
    [153]ZhangZ-L. Laboratory Guides of Plant Physiology[M]. Beijing:Higher Education Press,1992. 88-93.
    [154]Li Y-F,Luo A-C,Wang W-M.An approach to the screening index for low phosphorous tolerant rice genotype[J].Chin J ApplEcol,2005,16(1):119-124.
    [155]OUF CHR BΦckman OLA KAARSTAD.Agriculture and Fertilizer[J].Agricultural Group, Norsk Hydro a.s.Oslo, Nor-way,1990,10:135-138.
    [156]王庆仁,李继云,李振声.植物高效利用土壤难溶态磷的研究动态及展望[J].植物营养与肥料学报,1998,4(2):107-116.
    [157]Bolland M D A, Gilkes R J. The chemistry and agronomic effectiveness of phosphate fertilizers// Rengel Z. Nutrient Use in Crop Production. New York:The Haworth Press,1998:139-163.
    [158]中华人民共和国国家统计局.中国统计年鉴2005[M].北京:中国统计出版社,2005.
    [159]鲁如坤.土壤磷素水平和水体环境保护[M].磷肥与复肥,2003.
    [160]Plax ton W C. Plant response to stress biochemical adaptations to phosphate deficiency[M]. Good man R M. Encyclopedia of Plant and Crop Science. New York:Marcel Dicker, Inc,2004:976-980.
    [161]Dai G-X, Deng G-F, Zhou M. Advances in low phosphorus stress on rice[J]. Guangxi Agric Sci,2006,37(6):671-675.
    [162]王秀荣,严小龙,卢俊仁.菜豆叶片特征与磷效率关系初探[J].植物营养与肥料学报,1999,5(1):89-92.
    [163]曹黎明,潘晓华.水稻不同耐低磷基因型的评价指标分析[J].上海农业学报,2000,16(4):31-34.
    [164]曹黎明,潘晓华.水稻耐低磷基因型种质的筛选和鉴定[J].江西农业大学学报,2000,22(2):162-168.
    [165]潘晓华,刘水英,李锋,李木英.低磷胁迫对不同水稻品种幼苗生长和磷效率的影响[J].江西农业大学学报(自然科学版),2002,26(3):297-230.
    [166]刘亚,李自超,米国华,等.水稻耐低磷种质的筛选与鉴定[J].作物学报,2005,31(2):238-242.
    [167]李永夫,罗安程,王为木,等.耐低磷水稻基因型筛选指标的研究[J].应用生态学报,2005,16(1):119-124.
    [168]郭再华,贺立源,黄魏,等.耐低磷水稻筛选与鉴定[J].植物营养与肥料学报,2006,12(5):642-648.
    [169]明凤,米国华,张福锁,等.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141
    [170]孙海国.不同基因型小麦适应缺磷胁迫的根系形态及生理特征研究[D].北京:北京农业大学,1999.6.
    [171]SunH-G, Zhang F-S, Yang J-F.Characteristics of root systemof wheat seedlings and their relative grain yield[J].ActaAgricBoreali-Sin,2001,16(3):98-104.
    [172]李绍长,白萍,龚江.作物磷效率研究进展[J].石河子大学学报(自然科学版),2002,6(3):25l-254.
    [173]李绍长,龚江,王军.玉米自交系苗期耐低磷基因型的筛选[J].玉米科学,2003,11(3):85-89.
    [174]张吉海,高世斌,潘光堂.玉米苗期耐低磷基因型的选与鉴定[J].玉米科学,2006,14(5):20-25.
    [175]刘鸿雁,黄建国,魏成熙,等.磷高效基因型玉米的筛选研究[J].土壤肥料,2004(5):25-29.
    [176]向葵,杨克诚.四川盆地及盆周山区玉米地方种质耐低磷胁迫研究[J].华北农学报,2008,23(2)132-137.
    [177]王春丽,田国伟,汤继华,等.不同玉米自交系对磷胁迫反应初探[J].河南农业大学,2005,39(1):10-14.
    [178]王艳,孙杰,王荣萍,等.玉米自交系磷效率基因型差异的筛选[J].山西农业科学,2003,31(1):7-10.
    [179]张丽梅,贺立源,李建生,等.玉米自交系耐低磷材料苗期筛选研究[J].中国农业科学,2004,37(12):1955-1959.
    [180]王秉忠.橡胶栽培学(第三版)[M].海南:华南热带农业大学出版社,2000.16,46,164,180,189.
    [181]刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究,1994,2(1):16-23.
    [182]张福锁.土壤与植物研究新动态(第一卷)[M].北京:北京农业大学出版社,1 992.23-30.
    [183]Khasawneh F E, et al. Reaction of Ammonia and polyphosphate fertilizer in soil[J]. Ⅰ. Modeling of phosphorus. SSSAP.1974,38:446-451.
    [184]熊毅,李庆逵.中国土壤(第二版)[M].北京:科学出版社,1987.39-66.
    [185]林清火,罗微,林钊沐.磷肥在砖红壤中淋溶特征的研究初报[J].热带作物学报,2004,25(1):58-63.
    [186]罗微,林钊沐,茶正早,等.热带作物磷肥根际生物有效性研究进展[J].热带农业科学,2004,24(5):85-92.
    [187]陆行正,何向东.橡胶树营养诊断指导施肥[J].热带作物学报,1982,3(1):27-39.
    [188]Lynch J P, Deikman J. Phosphorus in Plant Biology:Regulatory Roles inMolecular, Cellular, Organismic, and EcosystemProcesses[J]. American Society of Plant Physiologists Rockville,Maryland.USA.1998,157.
    [189]谢钰容,周志春,廖国华.低磷胁迫下马尾松种源酸性磷酸酶活性差异[J].林业科学,2005,41(3):58-62.
    [190]陈永亮,李修岭,周晓燕.低磷胁迫对落叶松幼苗生长及根系酸性磷酸酶活性的影响[J].北京林业大学学报,2006,28(6):46-50.
    [191]丁洪,李生秀,郭庆元,等.酸性磷酸酶活性与大豆耐低磷能力的相关研究[J].植物营养与肥料学报,1997,3(2):123-128.
    [192]贺军军,林钊沐,华元刚.不同施磷水平对橡胶树根系活力的影响[J].中国土壤与肥料,2009(1):16-19.
    [192]高祥照,马文奇,崔勇,等.我国耕地土壤养分变化与肥料投入状况[J].植物营养与肥料学报,2000,6(4):363-369.
    [193]GEORGE M S, Lu G Q, Zhou W J. Genotypic variation for potassium uptake and utilization efficiency in sweet potato (Ipomoea batatasL.) [J]. Field Crops Research,2002,77 (1):7-15.
    [194]YANG X E, Liu J X, WANG W M, et al.Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (OryzasativaL.) [J]. Nutrient Cycling in Agro ecosystems,2003,67:273-282.
    [195]唐劲驰,曹敏建.2个大豆基因型钾效率的比较研究[J].华南农业大学学报,2005.26(1):7-10.
    [196]HANADI EL D, Norbert C, Bernd S. Potassium efficiency mechanisms of wheat, barley, and sugar beetgrown on a K fixing soil under controlled conditions[J]. Journal of Plant Nutrition and Soil Science,2002,165(6)732-737.
    [197]Liu GD, Liu GL. Screeninghybrid combinations of indicarice forK-efficient genotypes[J].Sci Agric Sin,2002,35(9):1044-1048.
    [198]Liu J X,Yang X E,Wu L H,Yang Y A. Potassium accumulation and translocation in shoots of difference rice genotypes[J].Chinese J Rice Sci,2002,16(2):189-192.
    [199]Liu J X, YangX E, Wu LH, Yang YA. The effects of low potassium stress on the photosynthetic of rice leaves and their genotypic difference[J].Acta Agron Sin,2001,27(6):1000-1006.
    [200]WangWM, YangX E, Li H, Wei Y Z.Effect of low potassium stress on the nutrient uptake and distrbution of two rice varieties with different potassium sensitivity [J]. Chinese J Rice Sci,2003, 17(1):52-56.
    [201]胡泓,王光火,张奇春.田间低钾胁迫条件下水稻对钾的吸收和利用效率[J].中国水稻科学,2004,18(6):527-532.
    [202]姜存仓,高祥照,王运华,等.不同钾效率棉花基因型对低钾胁迫的反应[J].棉花学报,2006,18(2):109-114.
    [203]张永清,毕润成,庞春花,苗果园.不同品种春小麦根系对低钾胁迫的生物学响应[J].西北植物学报,2006,26(6):1190-1194.
    [204]阎洪奎,曹敏建,胡兴波,等.玉米耐低钾胁迫鉴定指标的筛选[J].玉米科学,2003,11(3):70-73.
    [205]刘蓓,曹敏建,闫洪奎.低钾胁迫下不同耐性玉米自交系生理差异的研究[J].玉米科学,2006,14(3):90-92.
    [206]王伟,曹敏建,周春喜等.大豆耐低K胁迫品种(系)的筛选[J].大豆通报,2005,(4):7名.
    [207]王伟,曹敏建,王晓光,等.低钾胁迫对不同钾营养效应型大豆保护酶系统的影响[J].大豆科学,2005,24(2):101-105.
    [208]王伟,李兴涛,曹敏建,等。低钾胁迫对不同效应型大豆光合特性及叶绿素荧光参数的影响[J].大豆科学,2008,27(3):451-455.
    [209]刘春武,李权珍.磷钾肥能提高橡胶树的抗性[J].
    [210]H.R.vonUexkull.橡胶树的需钾量[J].Potassium research Review and Trends,1978.
    [211]陈建,译自Rubber Board Bulletin,橡胶树与钾[J].1985,20(4):4-6.
    [212]徐济春,林钊沐,罗微.矿质营养元素氮磷钾镁对橡胶树光合作用的影响[M].儋州:华南热带农业大学,2007.5.
    [213]刘合芹,蒋高明,牛书丽.光合作用与作物产量的关系[J].
    [214]匡廷云.作物光能利用效率与调控[M].山东:山东科学技术出版社.2004,5.58-89.
    [215]ZAHAR Samsuddin and IVAN ImPens. Comparative net Photosynthetisis of four Hevea Brasiliensis clonal seedings[J]. Expl Agric.1978,14:337-340.
    [216]R Ceulna, R.Gabriels, I ImPens.Comparative study of Photosynthetisis in several Hevea Brasiliensis clones and Hevea speeies under tropical field conditions[J].1984,61(4):273-275.
    [217]S.K.Dey.D.Sobhana, M.R.Sethra, K.R.Vijayaakumar. Photosynthetic rate and its relation with leaf charaeteristics in seedings of Hevea Brasiliensis[J]. Indian Jounal of National Rubber Research.1995,8(11):66-69.
    [218]李美英,魏小弟.橡胶树胶木兼优品种生理特性比较[M].儋州:华南热带农业大学,2003.5.
    [219]陈海坚,谢贵水,姚庆群.橡胶树籽苗芽接苗不同物候期的光合特性[J].热带作物学报,2006,27(3):31-35.
    [220]Nelson, C.J., Buxton, D. R., Shibles, R., et al. Advances in physiology and molecular biology-discussion[J]. International Crop Science Congress. Ames, Iowa, USA, Pp,1992,713-714.
    [221]陆景霖.植物营养学[M].北京:北京农业大学出版社,1994:6.
    [222]郭世荣.无土栽培学[M].北京:中国农业出版社,2003:1.
    [223]中国热带农业科学院橡胶研究所.橡胶树土壤理化性质及叶片养分含量测定实验指导(内部资料).2000.3.
    [224]周晓舟,唐创业.氮磷钾对秋玉米农艺性状和植株养分的影响[J].河南农业科学,2008(9):27-33.
    [225]黄勤楼,陈恩,黄秀声,等.不同氮肥水平下墨西哥玉米的SPAD值与部分农艺性状和品质关系研究[J].福建农业学报,2008,23(1):58-62.
    [226]杨绍聪,吕艳玲,段永华,等.烤烟典型缺钾症表现的农艺性状及相关营养元素分析[J].土壤肥料科学,2008,24(1):312-320.
    [227]徐关印,刘保明,韩宝坤,等.不同供磷水平对小麦植株蔗糖含量和农艺性状的影响[J].核农学报,2005,19(3):219-221.
    [228]周珺,曹建华,林位夫,等.低N、P、K胁迫对巴西橡胶树实生苗部分农艺性状的影响[J].中国农学通报,2010,26(5):299-303.
    [229]刘平东,刘克勋,高己杨,等.橡胶树营养诊断对症配方肥料在割胶生产上的施用效果[J].云南热作科技,2001,24(1):36-37.
    [230]周珺,林位夫等.低N、P、K胁迫对橡胶树实生苗新生叶蓬N、P、K含量的影响[J].植物科学研究进展暨中国热带特色植物科学学术研讨会论文集,2009.12:32-38.
    [231]曹建华,蒋菊生,林位夫.不同割制对橡胶树胶乳矿质养分流失的影响[J].生态学报,2008,28(6):2563-2570.
    [232]王忠.植物生理学[M].北京:中国农业出版社,2000.12.
    [233]汤章成.现代植物生理学实验指导[M].北京:科学出版社,1999:145-167.
    [234]惠红霞,许兴,李前荣..Exogenous betaine improves the photosynthesis of Lycium barbarumunder salt stress[J].西北植物学报,2003,23(12):2137-2422.
    [235]赵福庚,何龙飞,罗庆云.植物逆境生理生态学[M].北京:化学工业出版社,2004.6.
    [236]丁灿,林位夫.新引种油棕种质评价及其遗传多样性分析[D].华南热带农业大学,2006.6.
    [237]张定一,张永清,杨武德,等.不同基因型小麦对低氮胁迫的生物学响应[J].小麦研究2006,27(1):1-9.
    [238]郭盛磊,阎秀峰,白冰,等.落叶松幼苗光合特性对氮和磷缺乏的响应[J].应用生态学报,2005,16(4):589-498.
    [239]夏乐,于海秋,曹敏建,等.低钾胁迫对玉米光合特性及叶绿素荧光特性的影响[J].玉米科学2008,16(6):71-74.
    [240]Jiang De'an;Xu Yinfa.Internal Dominant Factors for Declination of Photo-synthesis during Rice Leaf Senescence[J].浙江农业大学学报,1995,21(5):533-538.
    [241]邓穗生,陈业渊,林玲.AP番荔枝光合特性的研究[C].中国热带作物学会第七次全国会员代表大会,2005.42-46.
    [242]王丽娜,克热木·伊力,侯江涛.水分胁迫对扁桃砧木叶片脯氨酸、可溶性蛋白质、质膜透性、相对含水量的影响[J].新疆农业大学学报,2006,29(3):53-58.
    [243]宫丽丹,安锋,林位夫.橡胶树实生苗模拟胁迫下抗旱性综合评价[J].热带作物学报,2008,29(2):126-130.
    [244]李振侠,徐继忠,高仪.铁胁迫对苹果砧木根系活性氧含量及保护酶活性的影响[J].华北农学报,2005,20(5):67-69.
    [245]周珺,林位夫,王军,等.缺N胁迫下巴西橡胶实生苗叶片SPAD值、N素营养及农艺性状的变化[J].亚热带植物科学,2010,39(1):29-33.
    [246]黄瑞冬.高粱叶片硝酸还原酶活性及含氮量与产量相关性分析[J].沈阳农业大学学报,2008,39(5):611-614.
    [247]叶全宝.施氮水平和栽插密度对水稻生育中后期硝酸还原酶活性的影响[J].植物生理学通讯,2005,41(1):41-44.
    [248]金松南.喷施KNO3对新高梨实生苗硝酸还原酶活性和氮素积累的影响[J].果树学报,2005,22(4):315-318.
    [249]宋海星.不同节位玉米叶片硝态氮含量及硝酸还原酶活性[J].陕西农业科学,2005(3):72-73.
    [250]黄勤楼.SPAD值与杂交狼尾草施氮水平和农艺性状的关系[J].热带作物学报,200829(2):159-163.
    [251]邬飞波.利用叶绿素计对短季棉氮素营养诊断的初步研究[J].作物学报,1999,25(4):483-488.
    [252]Guler S, et al. Relationships among chlorophyll-meter reading value, leaf N and yield of cucumber and tomato[J]. Acta Horticulturae,2007,72(9):307-311.
    [253]Cho Y Y, et al. Estimation of individual leafarea,fresh weight,and dry weight of hydroponically growncucumbers (Cucumis sativus L.) using leaf length, width, and SPAD value [J]. Scientia Horticulturae,2007,111(4):330-334.
    [254]李海波,夏铭,吴平.低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J].植物学报,2001,43(11):1154-1160.
    [255]孙世友.氮胁迫下不同效率玉米基因型的生理特性[J].河北农业科学,2006,10(1):26-28.
    [256]刘建祥,杨肖娥,吴良欢,等.不同水稻基因型地上部钾素累积和转运规律的研究[J].中国水稻科学,2002,16(2):189-192.
    [257]范曾丽,王三根.不同基因型玉米自交系在低磷胁迫下的生理生化特性比较初探[J].西华师范大学学报(自然科学版),2005,26(3):257-261.
    [258]Isebrands,J G,Ceulmans,R and Wiard, B.Genetic variation in photosynthetic traits among Populus clones in relation to yield[J].Plant Physiol. Biochem,1988,26:427-437.
    [259]Sharkawi,M;Cock,J H.Relationship between biomass,root-yield and single-leaf photosynthesis in field-grown cassava[J].Field Crops Research,1990,25:183-201.
    [260]B.Gall smith.Correlations between vegetative and yield characteristics and photosynthetic rate and stomatal conductance in the oil palm(Elaeis guineensis Jacq.) [J].Journal of oil palm research,1993,5(1):12-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700