用户名: 密码: 验证码:
‘新高’梨花粉败育的细胞学和生理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨(Pyrus)属于典型的自交不亲和性植物,生产中需要合理配置授粉树,才能达到预期的产量和品质。在栽培的品种中,一些雄性败育的品种,如‘新高’、‘爱宕’和‘黄金梨’等,增加了授粉树选配的问题和生产管理上的困难。为克服梨雄性不育给生产上带来的负面影响和利用雄性不育资源在解决梨花粉直感效应及改善品质方面的潜在价值,本试验以雄性不育‘新高’梨和雄性可育‘丰水’梨为材料,开展梨雄性不育机理的研究。为此,本试验在对‘新高’梨雄性不育性进行鉴定的基础上,研究其花粉败育的时期和特征;并以此为依据,从细胞和亚细胞水平以及荧光物质的分布特性等方面研究了‘新高’花粉败育的细胞学机制;分析花蕾发育过程中矿质营养变化,对Ca~(2+)及其影响Ca~(2+)分布的酶进行了细胞化学定位,以探讨其分布的变化与花粉败育的关系;最后对花蕾中的激素及其影响IAA的酶和多胺进行分析,以从生理角度进一步揭示‘新高’花粉败育的机制。研究主要结果如下:
     1.‘新高’花药皱缩,发白,虽可以正常开裂,但花粉很少。在少数花药的横切面上虽然可看到微量花粉,但花粉染色很浅,且不规则,没有生活力。‘新高’花粉母细胞能正常进行减数分裂产生四分体;在小孢子产生后,发育缓慢,小孢子壁薄,加厚不明显;随着单核小孢子的液泡化,小孢子粘连降解,或小孢子细胞壁破损,细胞质、细胞核降解消失,很少见到二核花粉。说明‘新高’属于小孢子退化类型的雄性不育品种,小孢子退化主要发生在单核小孢子中期到晚期。
     2.在花粉母细胞减数分裂前,‘新高’花粉母细胞和花药壁的发育与‘丰水’没差异,药壁包含表皮、药室内壁、中层和绒毡层,花粉母细胞被胼胝质包围。‘新高’四分小孢子染色很浅,胼胝质解体后,‘新高’较‘丰水’小孢子浅染,外粉壁发育迟缓而显得较薄。单核中期大部分小孢子收缩变形,且大小不等,细胞质解体,大部分不见细胞核。随后,小孢子壁破损,内含物外流,小孢子逐渐解体成为空壳或仅留下小孢子壁降解的残余物。在游离小孢子形成时,‘新高’绒毡层出现了不均匀的染色,其它花药壁结构与‘丰水’差异不明显。
     3.‘新高’在小孢子母细胞时期出现包裹小孢子母细胞的胼胝质厚薄不均匀,部分不完整,胞内线粒体等细胞器的结构模糊,内质网分布少等早期异常现象;在四分体小孢子内小囊泡分布少,线粒体等细胞器的膜呈透明状,之后小孢子液泡膜破裂,细胞质开始解体,线粒体、质体、内质网等细胞器相继解体或退化,核仁解体,最后出现了同心环状的膜状体,以及细胞质及细胞核降解的残骸。而‘丰水’小孢子母细胞和雄配子体的线粒体结构清晰,液泡膜完整,且含有丰富的内质网、核糖体和高尔基体等细胞器,此外在四分体小孢子膜内分散着大量的小囊泡,这些小泡可能与原外壁的形成有关。
     4.‘新高’四分小孢子表现出局部形成原外壁,或质膜和原外壁分离等不良现象,同时在胞内有很少的小囊泡。在单核小孢子时期,外壁上不能沉积孢粉素或只有表面沉积孢粉素,形成了透明状的外壁或无基足层的外壁,即使有的可以形成完整的外壁,但较正常孢子的外壁薄。而‘丰水’在四分小孢子时期形成了良好的原外壁,在雄配子体发育过程中,其外壁迅速发育。在花粉成熟时,花粉壁由薄的内壁及由基足层、基柱、覆盖层共同组成的外壁构成。两个品种的小孢子母细胞或四分体时期的胼胝质均能正常形成,并能及时降解,没有差异;‘丰水’小孢子外壁的自发荧光物质随雄配子体的发育而逐渐增多,在单核小孢子后期,小孢子外壁上除萌发的孔沟外均匀地沉积大量的自发荧光物质。‘新高’在单核小孢子早期小孢子外壁的荧光物质与‘丰水’差异不大,之后从局部到整个小孢子表面呈透明状,随之变形和相互粘连,有的小孢子表面荧光物质呈网状分布等异常表现。
     5.‘新高’和‘丰水’小孢子母细胞时期的绒毡层细胞都含有大量的线粒体、内质网等细胞器;随着减数分裂的进行,两个品种的绒毡层细胞质收缩,细胞间和内切相面形成了许多空腔,细胞内高尔基体和分泌小泡增多,内质网膨胀形成槽库结构;四分体时期,‘丰水’绒毡层内分泌小囊泡和槽库结构的内质网进一步增多,并向药室分泌大量的乌氏体,而‘新高’绒毡层细胞内的部分细胞器消失,内质网垛叠,线粒体等细胞器边缘呈透明状,并产生了大量的小液泡;在小孢子发育的过程中,‘新高’并没有像‘丰水’一样出现结构清晰的内质网、线粒体等细胞器,而且出现了一些形态各异、结构模糊的细胞器;在绒毡层细胞解体时,‘丰水’绒毡层细胞内主要为油体等结构,并呈极性分布。而‘新高’细胞内还含有槽库结构的内质网,并和其它结构一起呈无序分布。‘新高’和‘丰水’绒毡层中自发荧光物质都产生于小孢子母细胞时期,以后荧光增强。在四分体小孢子即将释放单核小孢子时,‘丰水’绒毡层细胞表面分布大量的自发荧光物质颗粒,而‘新高’表面的自发荧光物质颗粒较少。
     6.‘新高’结果枝和结果母枝中Fe、Zn、Cu、Ca、Mg和K含量较‘丰水’低,尤其是结果枝中ca和zn的含量差异更大,只有Mn的差异不显著。从四分体时期开始到单核小孢子后期,‘新高’和‘丰水’梨在花蕾中各矿质营养含量总体上呈逐渐下降的趋势,但‘新高’中Fe、zn、cu、Mg和Ca含量均低于‘丰水’,差异达到显著水平,Mn含量在单核花粉期后显著地高于‘丰水’,K的差异不明显。
     7.运用焦锑酸钾沉淀法,对‘新高’和‘丰水’花药发育过程中Ca~(2+)进行了细胞化学定位研究。‘新高’和‘丰水’小孢子母细胞膜表面均有Ca~(2+)淀颗粒的分布。在四分体时期,‘丰水’小孢子表面积累了大量的Ca~(2+)沉淀颗粒,而在‘新高’中基本没有Ca~(2+)沉淀颗粒。随着胼胝质的解体,在‘丰水’小孢子的液泡、外壁以及细胞膜等部位均积累了Ca~(2+)沉淀颗粒,‘新高’小孢子中的Ca~(2+)沉淀颗粒则更多地分布在细胞质以及一些细胞器上。‘新高’小孢子中的Ca~(2+)常分布与其花粉败育有关。从小孢子母细胞开始,‘丰水’花药绒毡层的径切向面和内切向面均分布着大小不等的Ca~(2+)沉淀颗粒。随着小孢子的产生和发育,Ca~(2+)沉淀颗粒分布的量逐渐增多。在单核晚期,Ca~(2+)沉淀颗粒又减少。但‘新高’在四分体时期绒毡层中Ca~(2+)沉淀颗粒明显比‘丰水’要少,而单核小孢子时期Ca~(2+)分布较‘丰水’多。
     8.应用铅沉淀法,分析了花药发育过程中Ca~(2+)-ATPase的分布。‘丰水’小孢子母细胞膜上基本上没有Ca~(2+)-ATPase的分布,只是在一些细胞器上有少量的分布;单核小孢子发育过程中,‘丰水’小孢子质膜及内壁上的Ca~(2+)-ATPaS逐渐增加,但在胞质内分布较少。从小孢子母细胞时期开始,在‘丰水’绒毡层细胞膜和液泡膜等细胞器以及乌氏体上分布有大量的Ca~(2+)-ATPase,随绒毡层的解体而逐渐减少。自四分小孢子开始,‘新高’和‘丰水’花药Ca~(2+)-ATPase就有差别:‘新高’四分小孢子细胞膜几乎没有Ca~(2+)-ATPase的分布,随小孢子的发育质膜上Ca~(2+)-ATPase虽逐渐增多,但比‘丰水’明显少;‘新高’绒毡层膜以及乌氏体有明显Ca~(2+)-ATPase分布,除小孢子母细胞时期外,与‘丰水’的差异不明显。
     9.‘新高’梨花蕾中IAA含量从四分体后极显著地低于‘丰水’,在单核花粉早期和单核花粉晚期仅为‘丰水’的22.7%和27.0%,‘新高’梨IAA含量的亏缺可能是导致‘新高’败育的原因之一;‘新高’梨在花粉发育的前期IAA氧化酶活性显著地高于‘丰水’,而两个品种POD活性变化一致,并且活性的差异不显著,说明POD不是导致‘新高’IAA含量的亏缺的关键酶;‘新高’梨ABA含量从四分体以后却显著地高于‘丰水’。
     10.‘新高’花蕾发育过程中游离态的Put和Spd变化幅度不大,‘丰水’则在单核花粉到二核花粉时期出现高峰,其含量是‘新高’的3-5倍;‘新高’中游离态的Spm也显著地低于‘丰水’。‘丰水’中高氯酸可溶共价结合态Put、Spd和Spm含量逐渐增加,‘新高’在花粉败育期或败育前期出现不同于‘丰水’的高峰,此种形态多胺含量的增加可能影响到游离态多胺含量的增加,而影响到花粉的发育。‘新高’和‘丰水’中高氯酸不可溶结合态多胺含量的变化基本一致。‘丰水’中不同种类的多胺均以游离态为主,‘新高’以高氯酸可溶结合态为主。
     综上所述,本研究从细胞形态、亚细胞水平、细胞化学和生理生化水平上首次对‘新高’雄性不育机理进行了系统的研究。明确了‘新高’花粉败育的时期和主要细胞学机制,探明了‘新高’雄性不育在细胞化学和某些生理生化方面的败育机理。为从分子水平来研究‘新高’雄性不育的机理和人工调控育性的表达提供了理论依据。
Pear (Pyrus) belongs to gametophytic self-incompatibility, and allogamy among somevarieties also occur incompatibility. So, the suitable pollination trees and artificalsupplementary pollination are employed to meet expectant yield and quality. Some malesterile varieties of pear in production, for example 'Niitaka', 'Atagi', 'whangkeumbae', andso on, increase difficulties in choice of pollination tree and management. In order toconquer negative influence of male sterile cultivars, utilize potential cast of male sterileresource to solve pollen xenia effect and improve fruit quality, male sterile mechanism ofpear was investigated with male sterile 'Niitake' and male fertile 'Housui' (Pyrus pyrifolaiNakai). In the present study, transmission electron microscope, fluorescent and opticalmicroscope and some modem analytic equipment were employed, and the technology offluorescence labeling and cyto-chemistry was introduced. Based on identification of malesterility of 'Niitaka', pollen abortive stage and cytological characteristics, and distributionof fluorescent material were studied during pollen abortion. Moreover, Ca~(2+) andCa~(2+)-ATPase in anther were located to indentify the relationship between their distributionand pollen abortion. In addtion, hormones and polyamines in floral bud were analyzed tofurther study physiological mechanism of male sterility in pear. Main results of presentstudy are as follows:
     1. Anther of 'Niitaka' appeared shrinkage and whitening, and could normally take placedehiscence, but had a small quantity of pollen. There was a lack of pollen on transversesection of anther, or a few pollens were found on a few sections, but these pollens appearedlight dyeing, abnormal shape and lower germination rate. The microspore mother cell couldnormally occur meiosis and produce tetrad; Development of microspore was slow, and wallof microspore was thin and slowly thicken after microsporogenesis; Microspore adhered toeach other, or wall, cytoplasm and nucleus of microspore was disintegrated with microspore vacuolization, and two-called pollen was not observed. It was suggested that 'Niitaka'belong to male sterile cultivar of microspore degenerated form, pollen abortion of 'Niitaka'appeared from middle unimicrospore stage to late unimicrospore stage.
     2. Technology of paraffin section was used to observe anther development. There was notdifference of microspore mother and anther wall of 'Niitaka' and 'Housui' before meiosis,and anther wall were composed of epidermis, endothecium, middle layer and tapetum,microspore mother cell was surrounded by callose wall. Dyeing of microspore of 'Niitaka'was very light in tetrad, and was still light after callose wall disintegrated. Wall ofmicrospore slowly thickened and was very thin. Most microspores shnmk, deformed andappeared different size, cytoplasm was disintegrated, and nucleus disappeared. Microsporebecame hollow shell or debris with wall damaged and inclusion spilled. Tapetal cellappeared irregular dyeing at the stage of microspore just separated from tetrad, and othercomposition of anther wall disappeared difference between 'Niitaka' and 'Housui'.
     3. Microsporocyte and male gametophyte of 'Housui' had perfect mitochondria,integrated vacuole membrane and rich endoplasmic reticulum, ribosome and Golgi bodyunder transmission electron microscope. There were abundant vesicles in microspore attetrad. Callose wall which surrounded microsporocyte of 'Niitake' appeared irregulardistribution, microsporocyte showed abnormal appearance, for example indiscerniblemitochondria structure, a small quantity of endoplasmic reticulum and so on; There were afew vesicle and some organdies of transparent membrane like mitochondria in microsporeof tetrad. Cytoplasm begun to disintegrate with vacuole membrane damaged, followingmitochondria, plastid and endoplasmic reticulum disintegrated, and nucleolus wasdegenerated. At last, there were some membrane bodies of concentric ring and debris ofcytoplasm and nucleus degenerated in microspore.
     4. Microspore of 'Housui' could form perfect primexine at the tetrad stage, and couldrapid produce exine with male gametophyte development. Wall of mature pollen werecomposed of thin intine and exine including foot layer, baculum and tectum. Microspore of'Niitaka' appeared a portion of primexine or primexine separated from membrane at thetetrad stage, and there were a small quantity of vesicle. Microspore showed lacksporopollenin in exine or a little sporopollenin on the surface of exine, so exine oftransparency or lack foot layer was formed. Although some microspores could formintegrated exine, exine was thinner than that of normal microspore. Two cultivars disappeared difference in callose wall of formation and disintegration, which surroundedmicrosporocyte and microspore at tetrad stage. Auto-fluorescent material of microsporewall gradually increased with male gametophyte development in 'Housui', andauto-fluorescent material homogeneously distributed on wall of microspore except forcolporate at late microspore stage. There was not obvious difference in auto-fluorescentmaterial on wall of microspore between 'Housui' and 'Niitaka' at early microspore stage,microspore surface appeared transparency from portion to whole with auto-fluorescentmaterial decrease, and microspore deformed and adhered to each other, auto-fluorescentmaterial showed reticular distribution on the surface of some microspore which had beendisintegrated.
     5. Tapetal cell of 'Niitaka' and 'Housui' had abundant mitochondria and endoplasmicreticulum at microsporocyte stage; cytoplasm of tapetal cell shrunk with rnicrosporocytemeiosis of 'Niitaka' and 'Housui', lots of cavity was formed in intercellular space and innersurface of tapetum with tapetal cell shrinkage. Golgi body and vesicle gradually increasedin tapetal cell, endoplasmic reticulum became dilated cistamae. The number of excretivevesicle and endoplasmic reticulum with cistarae further increased in tapetal cell of 'Housui',and tapetal cell excreted lots of ubish body for locule at tetrad stage. There was someabnormal appearance in tapetal cell of 'Niitaka' at tetrad stage, including part organellesdegenerated, stacked endoplasmic reticulum, mitochondria of transparent edge and a lot ofvacuoles. Tapetal cell of 'Niitaka' did not have perfect mitochondria and endoplasmicreticulum as tapetal cell of 'Housui' had, and had deformed and indiscernible organelleswith microspore vacuolization; lipid body appeared polar distribution in tapetal cell of'Housui' when tapetal cell disintegrated. Endoplasmic reticulum with cistarae and othermaterial appeared irregular distribution in tapetal cell of 'Niitaka'. Auto-fluorescentmaterial of tapetum appeared at microsporocyte, and fluorescent density strengthened withtapetal development in two cultivars. A mass of auto-fluorescent material which wasaccumulated on the surface of tapetal cell of 'Housui' was released and regularly distributedon the surface of microspore. But auto-fluorescent material of 'Niitaka' was less than thatof 'Housui', irregularly distributed on the surface of microspore.
     6. The contents of iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg) andpotassium (K) in basal bearing shoot and bearing shoot of 'Niitaka' were lower than thoseof 'Housui', especially the differences of the content of Ca and Zn in bearing shoot were even more between two cultivars, but the differences of the manganese (Mn) content wasnot significant. Mineral nutrition content in floral bud of 'Niitaka' and 'Housui' appeareddescendant trend from tetrad stage to late uninucleate microspore stage, and the contents ofFe、Zn、Cu、Mg and Ca of 'Niitaka' was significantly lower than those of'Housui', the Mncontent was significantly higher than those of 'Housui, the difference of K content was notsignificant.
     7. Potassium antimontate was used to locate Ca~(2+) in 'Niitaka' and 'Housui' anther. Theamount and distribution of calcium precipitates changed during pollen development andwere different between 'Niitaka' and 'Housui'. The calcium precipitates accumulated on thesurface of microsporocyte of 'Niitaka' and 'Housui'. Lots of calcium precipitates appearedon the surface of microspore of 'Housui' at tetrad stage, but did not appeared on the surfaceof microspore of 'Niitaka'. The calcium precipitates gradually accumulated on thecytoplasmic membrane, vacuole membrane and exine of microspore of 'Housui' aftercallose wall disintegrated, but the most calcium precipitates were distributed in cytoplasmand some organelles of microspore of 'Niitaka'. The calcium precipitates appeared on thesurface of tapetal cell of 'Housui' at microsporocyte stage, and gradually increased withmicrosporogenesis and development, decreased at late uninucleate microspore stage. Thecalcium precipitates on the surface of tapetal cell of 'Niitaka' were less than those of'Housui' at tetrad stage, but were more than those of 'Housui' at uninucleate microsporestage.
     8. Lead nitrate was used to locate Ca~(2+)-ATPase in 'Niitaka' and 'Housui' anther. Theamount and distribution Ca~(2+)-ATPase changed during pollen development and weredifferent between 'Niitaka' and 'Housui'. Ca~(2+)-ATPase did not appear on microsporocytemembrane and a small amount Ca~(2+)-ATPase appeared some organelles membrane; theamount of Ca~(2+)-ATPase on cytoplasmic membrane and intine of microspore graduallyincreased during microspore development, but was less in cytoplasm. A large amount ofCa~(2+)-ATPase distributed on the cytoplasmic membrane, vacuole membrane and ubischbody of tapetal cell of 'Housui' from microeporocyte stage, the amount of Ca~(2+)-ATPasedecreased in disintegrating tapetum. The anthers were difference in Ca~(2+)-ATPasedistribution as compared with the same kind of cells at the similar developmental stage. TheCa~(2+)-ATPase did not appear on cytoplasmic membrane of microspore of 'Niitaka' at tetradstage. The amount of Ca~(2+)-ATPase on cytoplasmic membrane of microspore gradually increased, but was less than that of "Housui'; Ca~(2+)-ATPase was distributed on cytoplasmicmembrane and ubisch body of tapetum of 'Niitaka', and the amount of Ca~(2+)-AYPase wassimilar between 'Niitaka' and 'Housui' except microsporocyte stage.
     9. Indole-3-acetic acid (IAA) content in floral bud of 'Housui' was very significantlyhigher than that of 'Niitaka' after tetrad stage. At the stage of pollen abortion, namely fromearly uninucleate pollen stage to late uninucleate pollen stage, IAA content of "Housui"was 3.70- 4.47 folds of 'Niitaka'. IAA deficiency of 'Niitaka' might be one of reason thatleads to pollen abortion; IAA oxidase activity in floral bud in prophase of microsporedevelopment of 'Niitaka' was significantly higher than that of 'Housui'. Change of PODactivity of both pear cultivars was very similar, and difference of POD activity was notsignificant, suggesting that POD was not key enzyme that leads to IAA deficiency.Abscisic acid (ABA) content of 'Niitaka' was significantly higher than that of'Housui' fromtetrad to binucleate stage.
     10. The variational range of contents of both free Putrescine (Put) and Spermidine (Spd)in 'Niitaka' was small during floral bud development, whereas, variation of free Put andSpd content of 'Housui' showed a peak from early uninucleate pollen stage to lateuninucleate pollen stage. The free Put and Spd contents in Housui were higher than those of'Niitaka' at different developmental stage, especially at the stage of pollen abortion, thefree Put and Spd contents were 3-5 folds of 'Niitaka'. Free Spermine (Spm) content in'Niitaka' was significantly lower than that of 'Housui'. The contents of perchloric acidcovalently soluble conjugated (PSCC) Put, Spd and Spm of 'Housui' gradually increased,but the contents of PSCC Put, Spd and Spin in 'Niitaka' showed a peak that did not appearin 'Housui' during pollen abortion or ahead. The increase of PSCC polyamines in 'Niitaka'might result in the decrease of free polyamines and affect on pollen development.Variations of the content of perchloric acid covalently insoluble conjugated (PISCC)polyamine in two cultivars were similar. Total contents of different forms of Put, Spd andSpin did not have significant differences before pollen abortion, but were significant lowerin 'Niitaka' than that of 'Housui' after pollen abortion. The free Put, Spd and Spin were thepredominant forms in total contents in 'Housui', however, the predominant forms in Niitakawere PSCC Put, Spd and Spm.
     In summary, the male sterile mechanism of 'Niitaka' was well characterized atmorphologic, ultra-structural, tyro-chemical, physiological and biochemical level. The present research clarified the stage of abortion of male sterile material and its maincytological mechanism, and further found out its abortive mechanism by way of physiologyand cyto-ehemistry. All these studies provided the basis for further research of molecularmechanism of'Niitaka' and the regulation of fertility expression.
引文
1. 曹雅娟,王慧.连翘绒毡层发育中的内质网活动[J].植物学报,1994,36(3):221-225
    2. 曹玉芬,奚伟鹏.韩国梨生产和育种简况[J].中国果树,2003,(3):57-58
    3. 常桂菊,王保仁.甘蓝型油菜萝卜雄性不育系花粉败育的细胞学研究[J].湖南师范大学学报,1985,(4):63-65.
    4. 陈军方.太谷核不育基因ms2的分于生物学研究[D].四川农业人学博士学位论文,2003,10.
    5. 陈懋琳,汪隆植.萝卜小孢子发生和雄配子体发育的细胞形态学观察[J].南京农业大学学报,1988,11(3):14-19.
    6. 陈伟程,段韶芬.玉米 C 型胞质雄性不育系花药发育的细胞学观察[J].作物学报,1988,14(3):177-181.
    7. 陈晓斌,曹有龙,贾勇炯,等.白肋烟雄性不育性的细胞形态学研究[J].四川人学学报(自然科学版),2000,37(6):924-929.
    8. 陈朱希昭.太谷核不育小麦花药绒毡层细胞发育和退化过程的亚显微结构.北京大学学报(自然科学版),1985(4):64-74
    9. 陈竹君,张明方,汪炳良,等.榨菜胞质雄性不育及其农艺性状的研究[J].园艺学报,1995,22(1):40-46.
    10. 陈祖铿,王伏雄,周 馥.知母绒毡层和鸟氏体细微结构的研究[J].植物学报,1988:30:1-5.
    11. 崔辉梅,曹家树,张明龙,姚祥坦.白菜和芜菁Ogura犁雄性不育系与保持系的获得及其细胞学观察[J].园艺学报,2004,31(4):467-471.
    12. 崔辉梅.白菜与芜菁Ogura雄性不育系的获得及其创建过程中的遗传学研究[D].浙江大学博士学位论文,2003.12
    13. 董庆华,利容千,乇建波,等.萝卜雄性不育系花药发育的细胞形态学研究[J].武汉大学学报(自然科学版),1996,42(2):207-212.
    14. 董庆华,利容千,王建波.菜薹细胞质不育系小孢子发生的细胞形态学研究[J].园艺学报,1997,24(2):150-154.
    15. 董庆华,利容千,王建波.萝卜雄性不育系花药发育组织化学的初步研究[J].武汉植物学研究,1997,15(1):10-14.
    16. 冯纯大,张金发,刘金兰,等.棉花雄性不育性研究进腱[J].棉花学报,1998,10(4):168-177.
    17. 符庆功.白菜核不育两用系基因组AFLP差异片段筛选、克隆及序列分析[D].浙江大学硕士学位论文,2003.5
    18. 高夕全,张子学,夏凯,等.雄性不育辣椒中几种内源植物激素的含量变化(简报)[J].植物生理学通讯,2001,37(1):31-32.
    19. 耿三省,王志源,蒋建箴,等.辣椒雄性不育系小孢子发生的细胞学观察[J].园艺学报,1994,21(2):165-169.
    20. 龚明,李英,曹宗巽.植物体内的钙信使系统[J].植物学通报,1990,7(3):19-29.
    21. 关和新,文宗振,朱英国.水稻红莲型粤泰不育花药ATPase超微结构定位[J].中国农业科学,2003,36(6):610-614.
    22. 关和新,朱英国,蓝盛银,等.水稻马协不育与可育花药ATPase定位(简报)[J].实验生物学报,2001,34(4):323-327.
    23. 关和新,朱英国.光敏核不育水稻花药ATPase定位研究[J].中国农业科学,2002,35(9):1040-1043.
    24. 郭洁,陈睦传,汪德耀.甜菊花药壁的超微结构及功能研究[J].实验生物学报,1989,22:269-277.
    25. 郭晶心,孙日飞,宋家祥,等.大白菜雄性不育系小孢子发生的细胞形态学研究[J]。园艺学报,2001,25(5):409-414.
    26. 韩爱华,尹克林,宋来庆,等.‘新梨7号’雄性不育特性及其败育的细胞学研究[J].西南农业大学学报(自然科学版),2004,26(1):64-67
    27. 韩笑冰,利容千,徐乃瑜,等.小麦不同胞质不育系花粉败育的细胞学比较研究[J].作物学报,1996,22(6):646-653
    28. 何长征,萧浪涛,刘志敏,等.植物激素与雄性不育关系的研究进展[J].中国农学通报,2002,18(3):65-69.
    29. 何天明,张琦.‘新梨7号’小孢子败育的解剖学观察[J].果树学报,2002,19(2):94-97.
    30. 何之常,徐乃瑜.不同细胞质雄性不育系小麦叶片中IAA和Cpox的研究[J].中国农业科学1995,28(增刊):7-13.
    31. 侯磊.棉花洞A雄性不育系及保持系花药发育的mRNA差别显示[D].西南农业大学硕士学位论文.2001.
    32. 胡适宜,王模善,徐丽云.小麦雄性不育系与保持系的小孢子发育的电子显微镜研究[J].植物学报,1977,19(3):167-171.
    33. 胡适宜,朱澈,著.被子植物有性生殖图谱[M].北京:科学出版社,2000:6;图版29.
    34. 胡适宜.小麦雄性不育系和保持系小孢子发育的电子显微镜观察[J].北京大学学报(自然科学版),1977,(2):XX
    35. 胡适宜著.被子植物胚胎学[M].北京:人民教育岀版社,1982:29-30.
    36. 黄浩,柳李旺,陈崇顺,等.萝卜CMS不育系与保持系小孢子发生的细胞学研究.植物研究[J].2004,24(3):305-402
    37. 黄纯农,徐敏源,庄元忠.乙烯利诱导的雄性不育小麦花粉发育的电子显微镜的研究[J].植物学报,1981,23(1):12-16.
    38. 黄浩.萝卜细胞质雄性不育细胞学与分子标记的初步研究[D].南京农业大学硕士学位论文,2004.
    39. 黄厚哲,楼士林,王士聪,等.植物生长素亏损与雄性不育的发生[J].厦门大学学报(自然科学版),1984,23(1):82-97.
    40. 黄少白,周燮.水稻细胞质雄性不育与内源GA_(1+4)和IAA的关系[J].华北农学报,1994,9(3):16-20.
    41. 霍光华,罗来水,肖德兴,等.桃花器官发育后期营养元素含量与雄性育性的关系[J].园艺学报,2000,27(5):364-366.
    42. 霍光华,肖德兴,辜青青,等.桃花器官发育中蛋白氨基酸变化与花粉育性的关系[J].江西农业大学学报,1999,21(4):469-475
    43. 季良越,季洪强,罗福和,等.玉米基因雄性不育系(ms2/ms2)小孢子败育的细胞学研究[J].作物学报,1997,23(5):545-548.
    44. 简令成,王红.钙(ca~(2+))在植物抗寒中的作用[J].细胞生物学杂志,2002,24(3):166-171.
    45. 姜奇彦,张改生,王军卫,等.二角型小麦雄性不育系花粉败育的细胞学研究[J].西北植物学报,2004,24(6):986-990.
    46. 李宝江,黄海帆,蒋丽君.梨花粉育性和交配亲和性的研究[J].沈阳农业大学学报,1991,22(4):317-322.
    47. 李德鸿,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换[J].植物生理学报,1996,22(3):320-326.
    48. 李荣伟,李合生.PGMS水稻育性转换中的多胺含量变化(简报)[J].植物生理学通讯,1997,33(2):101-104.
    49. 李祥义,邓景扬.太谷核不育小麦雄性败育过程的细胞形态学研究[J]作物学报,1983,9(3):151-156.
    50. 李小琴,万邦惠,刘纪麟,等.玉米新不育胞质WBMs小孢子败育的细胞学观察[J].中国农业科学,2004,37(9):1261-1264.
    51. 李艳花,卫保国,李贵全,等.大豆光敏雄性不育系88-428 B Y花粉败育的细胞学观察[J].大豆科学,2004,(1):6-10.
    52. 李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花药组织内源激素的关系[J].农业生物技术学报,1996,4(4):307-313.
    53. 李英贤,张爱民.植物雄性不育激素调控的研究进展[J].中国农学通报,1995,11(3):25-28.
    54. 李正理.植物组织制片学[M].北京科学岀版社,1978
    55. 利容千,王建波,汪向明.光周期对光敏核不育水稻小孢子发生利花粉发育的超微结构的影响[J].中国水稻科学,1993,7(2):65-70.
    56. 利容千,朱英国,孟祥红,等.水稻红莲-粤泰不育系花粉与药隔组织ca~(2+)的分布[J].作物学报, 2001,27(2):230-235
    57. 利容千.几种农作物雄性不育的细胞学研究[J].武汉大学学报(自然科学版),1978,(1):83-96.
    58. 廖祥儒,郭中伟,杜建芳.低温和PEG预处理对小麦愈伤组织形成及IAA氧化的影响[J].植物学通报,2000,17(3):257-259.
    59. 林顺权,郑芝波,关雄.激素与多胺的变化与龙眼花性分化的关系(英文)[C].第一届国际龙眼荔枝学术研讨会论文集.广州:华南农业大学,2000.
    60. 林月婵,张志宇,何国藩.水稻雄蕊超微结构的研究.Ⅰ.花粉壁形成过程中超微结构的变化[J].中山大学学报,1979,3:82-87.
    61. 刘俊,吉晓佳,刘友良.HPLC分析和鉴定多胺[J].植物生理通讯,2002,38(6):596-598.
    62. 刘炳仑.关于孢粉素的研究进展[J].植物学通报,1985,3(3):13-18
    63. 刘春光,吴郁文,张翠兰,等.小麦D型细胞质雄性不育系雄配子发育的细胞形态学特征和同工酶的研究[J].遗传学报,1995,22(3):199-205
    64. 刘金兰,聂以春,黄观武,等.棉花洞A型核雄性不育材料花粉发育的细胞形态学观察[J].棉花学报,1994,6(2):70-73.
    65. 刘录祥,黄铁城.作物化学杂交育种理论与实践[J].中国农学通报,1989,(2):17-23.
    66. 刘宁.麦冬花粉的发育、精子结构及绒毡层的变化[D].中国科学院植物研究所博士论文,1991,34-40.
    67. 刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].中国农业出版社.2000
    68. 卢永根,冯九焕,刘向东,等.水稻(OryzasativaL.)花粉及花药壁发育的超微结构研究[J].中国水稻科学,2002,16(1):29-37
    69. 卢永根,张桂权.水稻(Oryza sativa L.)正常和无花粉花药绒毡层解体过程孢粉素行为的比较观察[J].中国水稻科学,1988,2(2):61-70
    70. 吕洪飞,余象煜.杉木小孢子囊败育过程中的胼胝质壁和孢粉素的消长[J].西北植物学报,1999,19(1):108-112
    71. 吕世友,李严舫,陈祖铿.花粉发育的研究进展[J].植物学通报,2001,18(3):340-346.
    72. 罗来水,肖德兴,霍光华,等.桃树雄性不育的初步研究[J].江西农业大学学报,1999,21(4):463-468
    73. 罗来水,肖德兴,霍光华,等.桃雄性不育的表现形式及其败育途径[J].果树科学,2000,17(2):89-96.
    74.骆炳山,李德红,屈映兰,等.乙烯与光敏核不育水稻育性转换关系[J].中国水稻科学,1993,7(1):1-6.
    75. 马力耕,徐小冬,崔素娟,等.细胞外钙调素对花粉萌发和花粉管伸长的影响.科学通报,1997,42(24):2648-2652.
    76. 孟金陵,刘定富,罗鹏,等.植物生殖遗传学[M].北京:科学出版社,1997,147-167.
    77. 孟祥红,于建波,利容千.光敏胞质不育小麦花药发育过程中ATP酶的定位研究[J].作物学报,2000,26(6):851-860.
    78. 孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中ca~(2+)-ATPase分布的影响[J].植物学报,2000,42(5):446-454
    79. 孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca~(2+)布的影响[J].植物学报,2000,42(1):15-22.
    80. 牛佳田.花药壁及其中绒毡层的结构与功能[J].生物学通报,1995,30(8):8-9.
    81. 彭远英,彭正松,俞可芳.凋亡细胞的超微结构变化[J].细胞学杂志,2003,280-283
    82. 秦泰辰.杂种优势利用原理和方法[M].江苏科学技术出版社.1981.
    83. 邱义兰.莴苣有性生殖过程中钙的分布动态及功能[D].厦门大学博士学位论文,2004,7.
    84. 沈元月,王东昌.‘川中岛’白桃雄性不育小孢子发育的细胞形态学[J].应用与环境生物学报,2002,8(4):435-437
    85. 史公军,侯喜林,胡 巍.细胞质雄性不育白菜败育过程中激素和多胺含量的变化[J].西北植物学报,2004,24(11):2109-2112.
    86. 粟翼玟,赵双宜,张燕君,等.萝卜雄性不育系小孢子发生的细胞形态学研究[J].园艺学报,1995,22(4):348-352
    87. 孙大业,郭艳林,马力耕,等.细胞信号转导[M].北京:科学出版社,2001,92-116
    88. 孙日飞,吴飞燕,司家钢,等.大白菜雄性不育两用系小孢子发生的细胞形态学研究[J].园艺学报,1995,22(2):153-156.
    89. 汤泽生.棉花雄性不育论文集[M].四川省科学技术出版社,1989.
    90. 唐冬英.辣椒雄性不育恢复基冈的RAPD标记与内源激素含量研究[D].湖南农业大学,2002
    91. 田长恩,段俊,梁承邺,等.水稻细胞质雄性不育系及其保持系幼穗发育过程中内源激素的变化[J].热带亚热带植物学报,1998,6(2):137-143.
    92. 田长恩,梁承邺,黄疏文,等.油菜细胞质雄性不育系及其保持系花蕾发育过程中的多胺代谢[J].作物学报,1999,25(5):602-607.
    93. 田长恩.多胺在离体培养的植物组织形态建成中的作用[J].植物生理学通讯,1992,28(3):230-232.
    94. 田惠桥,远彤.钙在被子植物受精过程中的作用[J].植物生理学报,2000,26:369-380.
    95. 仝月奥,周厚基.果树营养诊断[M].农业出版社.北京:1982,77-102.
    96. 童哲,邵慧德,赵玉锦,等.光敏核不育水稻中调节育性的第二信使[M].见:袁隆平主编.两系法杂交水稻研究论文集,北京:农业岀版社,1992:176-181.
    97. 王红,孙德兰,卢存福,等.抗寒锻炼对冬小麦幼苗质膜ca~(2+)-ATPase的稳定作用[J].植物学报,1998,40(12):1098-1101
    98. 千东吕.‘川中岛’白桃雄性不育小孢子发育的细胞形态学[J].应用与环境生物学报,2002, 8(4):435-437.
    99. 王静如.桃雄性不育的研究[J].果树科学,1985,(4):28-21.
    100. 王开发,杨振京,张盛隆.花粉中的孢粉素[J].养蜂科技,1999,(5):11-13
    101. 王俐,祁新红,刘根齐,等.高粱雄性不育系热激前后线粒体的变化与育性的关系[J].遗传学报,2000,27(9):834-838
    102. 王淑华,魏毓堂,冯辉,等.大白菜雄性不育株和可育株花蕾生理生化特性比较分析[J].沈阳农业大学学报,1998,29(2):132-137.
    103. 王伟,谭敦炎,田允温,等.S351-1西瓜雄性不育的细胞学研究[J].西北植物学报,1998,18(3):361-365.
    104. 王熹,闽瑞芬,蒋志荣,等.乙烯利诱导水稻雄性不育的生理效应[J].植物生理学报,1981,7(1):11-17.
    105. 王新华.胡萝卜雄性不育研究概述[J].北方园艺,1995,1:4-6.
    106. 王毅,娄成后.棉花花粉壁的发育[J].作物学报,1994,20(3)277-284
    107. 王永清,曾志红,陈学群,等.芥菜雄性不育系小孢子败育细胞学观察[J].西南农业学报,1999,12(4):1-4.
    108. 吴鹤鸣,佘建明.羊角椒雄性不育系与保持系的细胞学观察[J].江苏农业学报,1988,4(2):35-38.
    109. 吴世斌,周开元,万建辉.稻类雄性不育系的花粉败育途径研究[J].植物学报,1994,36(10):751-754.
    110. 吴颂如,陈婉芬,周燮.酶联免疫法(ELISA)测定内源植物激素[J].植物生理学通讯,1988,(5):53-57.
    111. 席湘媛.大葱雄性可育系及雄性不育系的花粉发育的比较研究[J].植物学报,1991,33(10):770-775.
    112. 夏涛,刘纪麟.玉米细胞质雄性不育性与乙烯的关系[J].华北农学报,1996,11(3):68-72.
    113. 夏涛,刘纪麟.生长素和玉米素与玉米细胞质雄性不育性关系的初步研究[J].作物学报,1994,20(1):26-36.
    114. 夏涛,刘纪麟.玉米细胞质雄性不育的细胞学研究[J].作物学报,1989,15(2):97-103.
    115. 夏涛,刘纪麟.玉米细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国农业科学,1988,21(5):39-43.
    116. 夏玉先,唐尚格.棉花473A育性表达中花约脱落酸和玉米素+玉米素核苷含量变化[J].棉花学报,1995,7(3):169-171.
    117. 向太和,梁海曼,钟华鑫.水稻胚性悬浮细胞系建立过程中生理生化变化[J].作物学报,1997,23(3):353-358.
    118. 肖德兴,陈祖铿.黑松花粉个体发育的研究[J].植物学报,1990.32:847-851.
    119. 肖德兴.马尾松花粉中的淀粉粒和胼胝质[J].实验生物学报,1994,27(1):37-43.
    120. 谢潮添,杨延红,葛丽丽,等.白菜核雄性不育花药超微结构的研究[J].实验生物学报,2005,38(6):501-512.
    121. 徐孟亮,黄少白,刘艺芳,等.湖北光敏核不育水稻幼穗发育中内源IAA的变化[J].华中农业大学学报,1990,9(4):381-386.
    122. 阎春兰,苗琛,王建波.热胁迫对辣椒花药发育过程中Ca~(2+)分布的影响[J].武汉植物学研究,2002,20(2):100-104
    123. 杨逞,李德明.氮、锌营养与青花菜花球发育过程中核酸及钙调素的关系[J].园艺学报,2001,28(4):312-316.
    124. 杨建昌,朱庆森,王志琴.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系[J].作物学报,1997,23(4):387-391.
    125. 杨景成,于元杰,齐延芳,等.小麦D型细胞质雄性不育系和保持系小孢子发育的超微结构观察[J].作物学报,2001,27(1):91-96.
    126. 杨晓云,曹寿椿.不结球白菜波里马胞质雄性不育的细胞形态学研究[J].南京农业大学学报,1997,20(3):36-43.
    127. 姚雅琴,杨天章.小麦药壁表皮细胞与药室内壁细胞超微结构[J].西北农业大学学报,1996,24(4)
    128. 姚雅琴,张改生,刘宏伟,等.K型和T型小麦雄性不育花粉粒形态与细胞化学定位[J].中国农业科学,2002,35(2):123-126.
    129. 姚雅琴,张改生.K型小麦雄性不育系及其保持系花药小孢子不同发育期ATP酶活性变化[J].中国农业科学,2000,33(3):97-99.
    130. 余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药发育的细胞形态学研究[J].武汉植物学研究,1990,8(3):209-216.
    131. 袁亦楠,朱德蔚,连勇,等.番茄雄性不育突变体小孢子发育的细胞学研究[J].华北农学报,2000,15(3):61-65.
    132. 张花,何之常,徐乃瑜.不同细胞质雄性不育小麦阳离子过氧化物酶和IAA-氧化酶活性的研究[J].武汉大学学报(自然科学版),1996,42(6):719-723.
    133. 张锦晖.玉兰花粉个体发育及绒毡层动态.中国科学院植物研究所硕士论文[D],1991,45-50.
    134. 张丽,沈向群,官国义.水萝卜雄性不育系及保持系小孢子发生的细胞形态学观察[J].沈阳农业大学学报,2000,31(2):166-168.
    135. 张明永,粱承邺,黄毓文等.水稻细胞质雄性不育系与保持系的呼吸途径比较[J].植物生理学报,1998,24(1):55-58.
    136. 张能刚,周燮.三种内源酸性植物激素与农垦58S育性转换的关系[J].南京农业大学学报,1992,15(3):117-125.
    137. 张绍铃,谢文暖,陈迪新,等.8种果树的花粉量、萌发率及其花粉管生长差异的分析[J].上海农业学报,2003,19(3):67-69
    138. 张天真,潘家驹.陆地棉473A核雄性不育系小孢子败育的细胞学研究[J].南京农业大学学报,1991,14(3):158-160.
    139. 张天真.陆地棉.1355A和104-7A不育系的细胞学研究[J].棉花学报,1995,11(3):73-75.
    140. 张英涛,杨海东,陈朱希昭.绒毡层研究进展[J].植物学通报,1995,13(4):6-13.
    141. 赵前程,耿宵,陈雪平,等.花椰菜雄性不育系小孢子发育过程及其POD活性[J].华北农学报,2002,17(2):108-111.
    142. 赵玉锦,童哲,陈华君,等.内源植物激素与光敏核不育水稻农垦58S育性的关系[J].植物学报,1996,35(12):320-326.
    143. 郑国錩.生物显微技术[M].北京:人民教育出版社,1985.
    144. 郑茂钟,杨延红,郭娟,邱义兰,谢潮添,田惠桥.烟草花药发育过程中钙动态分布的初步观察[J].厦门大学学报(自然科学版),2004,43(增刊):127-133
    145. 朱晓红,曹显祖.花药中生长素的积累与过氧化物酶活性的关系[J].植物生理学通讯,1996,32(4).254-257.
    146. Aarts M, Rachel H, Kriton K, et al. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes [J]. The Plant Journal, 1997, t2(3): 615-623.
    147. Aarts M, Dirkse W G, Stiekema W J. Transposon tagging of a male sterility gene in Arabidopsis [J]. Nature, 1993, 363:715-717.
    148. Ahokas H. Cytoplasmic male sterility in barley: Evidence for the involvement of cytokinins in fertility restoration [J]. Proceedings of the National Academy of science. 1982, 79:7608-7609.
    149. Amane M, Lumaret R, Hany V, et al. Chloroplast DNA variation in cultivated and wild olive (Olea europaea L.) [J]. Theor. Appl. Genet, 1999, 99(1-2): 133-139
    150. Aribaud M, Cane M, Martin-Yanguy J. Polyamine's metabolism and in vitro cell multiplication and differentiation of chrysanthemum leaf explants [J]. Plant Growth Regul, 1994 a, 15: 143-155.
    151. Aribaud M, Martin-Tanguy J. Polyamine metabolism in normal and sterile Chrysanthemum morifolium [J]. Phytochem, 1994 b, 37: 927-932.
    152. Askedund P. Modulation of an intracellular calmodulin-stimulated Ca~(2+) pumping ATPase in cauliflower by trypsin: the use of green-5 N to measure Ca~(2+) transport in membrane vesicles[J]. Plant Physiol. 1996,110:813-822
    153. Badenes M L, Hurtado M A, Sanz F, et al. Searching for molecular markers linked to male sterility and self-compatibility in apricot[J]. Plant Breed, 2000, 119(2): 157-160
    154. Bagni N. Polyamines and plant growth and development [M]. In: Bachrach U. and Heimer Y M, the Physiology of Polyamines. CRC Press Incorporation, Boca Raton, Florida, 1989 107-120.
    155. Baltz R, Domon C, Datta T N, Pillay, et al. Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein [J]. Plant J., 1992, 2(5):713-721.
    156. Banga S S, Labana K S. Production of F1 hybrids using ethylene-induced male sterility in Indian mustard Brassica Juncea Coss[J]. Journal of Agric Cambridge, 1983, 101:453-455.
    157. Baydar Hasan. Effects of gibberellins acid on male sterility, seed yield and oil and fatty acid syntheses of sunflower (Carthamus tinetorius L.) [J]. Turkish journal of Biology, 2000, 240): 159-168.
    158. Bedinger PA. The remarkable biology of pollen [J]. Plant cell, 1992, 4:879-887.
    159. Bedinger P A. Traveling in Style: the cell biology of pollen [J]. Trends in cell Biology, 1994, 4:132-138
    160. Besnard G, Khadari B, Villemur P, Bervil1e. Cytoplasmic male sterility in the olive (Olea europaea L.) [J]. TheorAppl. Genet, 2000,100:1018-1024
    161. Bhatia D S, Malik C P. Callose-chemistry, biosynthesis, distribution and function: Advance in Pollen-spore [J]. Research, 1993, XX: 145-160.
    162. Biasi R, Falasca G, Altamura M M, et al. Reproductive morphogenesls in Kiwifruit in relation to polyamlnes [J]. Acta Hortlculturae, 1997, 44(4): 479-484
    163. Biasi R, Falasca G, Speranza A, et al. Biochemical and ultrastructural features related to male sterility in the dioecious species in Actinidia deliciosa [J]. Plant Physiol. Bioch., 2001, 39(5):395-406
    164.13radford M M. A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye binding [J]. Annals Biochem., 1976, 72:248-254.
    165. Brauer D, Schubert C, Tsu S I. Characterization of a Ca~(2+) translocating ATPase from corn root microsomes [J]. Physiol. Plant, 1990, 78:335-344.
    166. Breda N P, Heather A O, Kenneth A F, et al. Characterization of three male-sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis [J]. Sex Plant Reprod., 1996, 9:1-16.
    167. Brighigna L, Papini A. The ultra-structure of the tapatum of Tillandsia albida Mezet purpus [J]. Phytomorphology, 1993, 43(3-4):261-274
    168. Brini M, Carafoli E. Calcium signalling: a historical account, recent developments and future perspectives [J]. Cell Mol. Life Sci., 2000, 57(3): 354-370
    169. Burgos L, Ledbetter C A. Observations on inheritance of male sterility in apricot [J]. Hort. Science, 1994, 29(2):127
    170. Burtin D, Martin-Tanguy J, Tepfer D. DL-Difluoromethy lornithine, a specific irreversible inhibitor of putrescine biosynthesis, induces a phenotype in tobacco similar to that ascribed to the root inducing, left-hand transferred DNA of Agrobacterium rhizogenes [J]. Plant Physiol, 1991,1 95: 461-468.
    171. Bush D S. Calcium regulation in plant cells and its role in signaling [J]. Ann.. Rev. Plant Physiol. Plant Mol. Biol, 1995,46:95-122.
    172. Bush D S. Regulation of Cytosolic calcium in plants [J]. Plant Physiol, 1993, 103:7-13
    173.Chaparro J X, Werner D J, O'Malley D, et al. Targeted mapping and linkage analysis of morphological, isozyme and RAPD markers in peach [J]. Theor Appl. Genet, 1994, 87:805-815
    174. Chapman G P. The tapetum [M]. International Review of Cytology, 1987, 107:111-125.
    175. Chaubal R, Zanella C, Trimnell M R, et al. Two male-sterile mutants of Zea Mays (Poaceae) with an extra cell division in the anther wall [J]. Amer. J. Bot, 2000, 87(8): 1193-1201.
    176. Chaudhury A M. Nuclear genes controlling male fertility [J]. The Plant Cell, 1993, 5:1277-1283.
    177. Chen Z K, Xiao D X, Wang F H. Dynamics of the starch and callose during pollen development of Pinus taeda L [J]. Cathaya, 1994, 6:187-198.
    178. Chrystensen J E, Hornerh T J R, Lersten N R. Pollen wall and tapetal orbicular wall development in Sorghun bicolor (Gramineae) [J]. Amer. J. Bot., 1972; 59:43-58.
    179. Clement C, Chavant M. Anther starch variations in Lilium during pollen development [J]. Sex Plant Report., 1994,7(6):347-356.
    180. Colhoun C W, Steer M W. Microsporogenesis and the mechanism of cytoplasmic male sterility in maize [J]. Annals of Botany, 1981, 48: 417-424.
    181. Colhoun C W, Steer M W. The Cytological effects of the gametocides ethylene and RH-531 on microsporogenesis in barley [J]. Plant, Cell and Environment, 1983, 6:21-29.
    182. Costa G, Bagni N. Effect of polyamines on fruit-set of apple [J]. Hort. Science, 1983, 18: 59-61.
    183. Cvikrova M, Mala J, Hrubcova M, et al. Effect of inhitiition of biosynthesis of phenylpfooanolds on sessile oak somatic embryogenesis[J]. Plant Physiol. Biochem., 2003,41: 251-259.
    184. Dauphin-Guerin, Teller B G, Durand B. Different endogenous cytokinins between male and female Mercurialis annuaL[J]. Planta, 1980, 148:124-129.
    185. Dawson J, Wilson Z A, Aarts M G M. Microspore and pollen development in six male sterile mutant of Arabidopsis thaliana [J]. Can. J. Bot., 1993, 70:629-638
    186. Dirlewanger E, Pronier V, Parvery C, et al. Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers [J]. Theor Appl. Genet, 1998, 97(5/6): 888-895
    187. Donald P B. Ca~(2+) transporting ATPase of the Plant Plasma membrane [J]. Plant Physiol, 1990, 94:397-400
    188. Echlin P. The role of the tapetum during microsporogenesis of angiosperms [M]. In pollen: development and physiology. Ed. J. Heslop-Harrason, 1971, 41-61 London: Butterworths.
    189. Edwardson J R. Cytoplasmic differences in T-type cytoplasmic male-sterile corn and its maintainer [J].Amer. J. Bot, 1962, 49 (2): 184-187.
    190. Elizabeth T, Maritin T J. Floral induction and floral development of strawberry [J]. Plant Growth Regul, 1995, 17: 157-165.
    191. Engelke T, Hulsmamm S, Tatlioglu T. A comparative study of microsporogenesis and anther wall development in different type genic and cytoplasmic male sterilities in chives [J]. Plant Breeding, 2002, 121:254-258.
    192. Evans P T, Malmberg K L. Do polyamines have roles in plant development [J]? Annu. Rev, Plant Physiol. Mol. Biol., 1989,40: 235-269.
    193. Falchuk K H, Hardy C, Ulpino L, et al. RNA metabolism, manganese, and RNA Polymerases of zinc sufficient and zinc deficient Euglena gracili [J]. Proc. Nat. Acad. Sci. USA, 1978, 75:4175-4179.
    194. Fei H, Sawhney V K. MS32-regulated timing of callose degradation during microsporogenesis in Arabidopsis is associated with the accumulation of stacked rough ER in tapetal cells [J]. Sex Plant Reprod, 1999,12:188-193
    195. Feijo J A, Malho R, Pais M S S .A cytochemical study on the role of ATPase during pollen germination in Agapanthus umbelatus [J]. Sex Plant Reprod., 1992, 5:138-145.
    196. Ficker E, Taglialatela M, Wible B A, et al. Spermine and spermidine as gating molecules for inward rectifier K~+ channels [J]. Science, 1994, 266: 1068-1072.
    197. Fisher D B, Jensen W A, Ashton M E. Histochemical Studies of pollen: Storage pockets in the endoplasmic reticulum [J]. Histochemic, 1968, 13:169-182
    198. Flores H E, Filner P. Polyamine catabolism in higher plants: characterization of pyrroline dehyrogenase [J]. Plant Growth Regul, 1985, 3: 277-291.
    199. Flores H E, Protacio C M, Sings M W. Primary and secondary metabolism of polyamines in plants [M]. In: Poulton J.E, Romeo J.T. and Cohen E.E. (eds), Plant Nitrogen Metabolism. Plenum Press, New York, NY, 1989, pp 329-393.
    200. Flores H E, Protacio C M. Polyamine metabolism in plant cell and organ culture[M], in: Flores H E, Arteca R N, Shannon J C (Eds.), Polyamines and Ethylene: Biochemistry, Physiology and Interactions, American Society of Plant Physiologists, MD, 1990, pp. 126-137.
    201. Framkel, R. Agricultural genetics [M] (Ed. Moav, R.), John Willey and Sons, N.Y., 1973, 71-84.
    202. Gaillard C, Moffatt BA, Blacker M et al. Male sterility associated with APRT deficiency in Arabidopsis thaliana results from a mutation in the gene APT1 [J]. Molecular and General Genetics, 1998,257(3):348-353.
    203. Galston A W, Kaur-Sawhney R. Polyamines in plant physiology [J]. Plant Physiol, 1990, 94: 406-410.
    204. Goldberg R B, Beales T P, Sanders P M. Anther development: basic principles and practical applications. Plant Cell, 1993, 5:1217-1229
    205. Grant I, Beversdorf W D, Peterson R L. A comparative light and electron microscopic study of microspore and tapetal development in male fertile and cytoplasmic male sterile oilseed rape (Brassic napus) [J]. Can. J. Bot, 1986, 64:1055-1068.
    206. Guo D P, Sun Y Z, Chen Z J. Involvement of polyamines in cytoplasmic male sterility of stem mustard (Brassica juncea var. tsatsai) [J]. Plant Growth Regui, 2003,41: 33-40.
    207. Hamdi S, Teller G, Louis J P. Master regulatory genes, auxin level, and sexual organogenesis in the dioecious plant Mercurialis annua [J]. Plant Physiology, 1987, 85:393-399.
    208. Hamdi S. Regulation of IAA-oxidase activities correlation with sex genes, sterility determinants and IAA levels in Mercurialis annua [J]. Plant Physiology and Biochemistry, 1988, 26:639-644.
    209. Havelange A, Lejeune P, Bernier A, et al. Putrescine export from leaves in relation to floral transition in Sinapis alba [J]. Plant Physiol., 1996, 96: 59-65.
    210. Helper P K, Wayne R O. Calcium and plant development [J]. Annu. Rev. Plant Physiol, 1985, 36: 397-439.
    211. Hernould M, Suharson S, Litvak S. Male sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat [J]. Proc. Natl. Acad. Sci. USA, 1993, 90:2370-2374.
    212. Heslop-Harrison J, Dickinson H G. Time relationship of sporollenin synthesis associated with tapetum and microspores in Lilium. Planta, 1969, 84:199-214.
    213. Hinman R L, Lang J. Peroxidase-catalyzed oxidation of indole-3-acetic acid [J]. Biochem., 1965, 4(1): 144-158.
    214. Holdaway-Clark T L, Feijo J A, Hachett G R, et al. Pollen tube growth and the intracellular Cytosolic calcium gradient oscillate in phase while extracellular calcium in flux is delayed [J]. Plant cell, 1997,9:1999-2010.
    215. Horner H. Microsporogenesis in normal and cytoplasmic male sterile pepper [J]. American Journal of Botany, 1973, 60(4 supplement).
    216. Horner H, Rogers M A. A comparative light and electron-microscopic study of microsporogenesis in male-fertile and cytoplasmic male-sterile pepper (Capsicuman nuum) [J]. Can. J. Bot., 1974, 52:435-441.
    217. Izhar S, Frankel R. Mechanism of male sterility in Petunia: the relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis [J]. Theor. Appl. Genet, 1971, 41: 104-108.
    218. Jacobsen S E, Olszewski N E. Characterization of the arrest in anther development associated with gibberellins deficiency of the gib-1 mutant of tomato [J]. Plant Physiology, 1991, 97:401-414.
    219. Jaffe L A, Weisenseel M H, Jaffe L F. Calcium accumulations with in the growing tips of pollen tubes [J]. Cell Biol., 1975, 67: 488-492
    220. Jensen W A. Botanical histochemistry [M]. W H Freeman and Company San Francisco and London, 1962; 203-204
    221. Kakkar R K, Rai V K. Plant polyamines in flowering and fruit ripening [J]. Phytochem., 1993, 33(6): 1281-1288.
    222. Kakkar R K, Sawhney V K. Polyamine research in plants - a changing perspective [J]. Physiol. Plant. 2002, 116:281-292.
    223. Kaul M L H. Male sterility in higher plants (Monographs on theoretical and applied genetics) [M]. 1988, 10, Springer Verlag Berlin.
    224. Kaur-Sawhney R, Applewhite P B. Endogenous protein bound polyamines: correlation with regions of cell division in tobacco leaves, internodes and ovaries [J]. Plant Growth Regul, 1993,12: 223-227
    225. Keijzer C J, Willense M T M. Tissue interactions in the developing locule of Gasteria verrucosa during microsporogenesis [J].Acta Bot. Need, 1988, 37:493-508
    226. Kini A V, Seetharam A, Joshi S S. Mechanism of pollen abortion in cytoplasmic of sunflower [J]. Cytologia, 1994, 38:425-454
    227. Kitagishi K, Obata H. Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice Plants with reference to protein synthesis [J]. Soil Sci. Plant Nutr., 1986, 32:397-405.
    228. Knight H, Trewavas A J, Knight M R. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation [J]. Plant Cell, 1996, 8:489-503
    229. Knox. R. B. The pollen grain [M]. In: BM Johri (ed) Embroiogy of Anglosperms. Spring-Verlag Berlin Heidelberg New York Tokyo. 1984.
    230. Kobayashi, A, Sakamoto A, Kubo K, et al. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in Petunia [J]. Plant J., 1998,13:571-576.
    231. Kojima K. Changes of ABA, IAA and GAs levels in reproductive organs of citrus [J]. Japan Agricultural Research, 1997, 31 (4):271 -280.
    232. Kong H Y, Jia G X. Calcium distribution during pollen development of Larix principis-rupprech tii [J]. Acta Botanica Sinica, 2004, 46(1): 69-76.
    233. Kotzahasis K, Christakis M D, Ronbelakis K A. A narrow-bore HPLC method for the identification and quantization of free conjugated and bound polyamines [J]. Analytical Biochem., 1993, 214:484-489.
    234. Kultunow A M, Btennan P, Bond J E, et al. Evaluation of genes to reduce seed size in Arabidopsis and tobacco and their application to Citrus [J]. Mol. Breed, 1998, 4(3):235-251
    235. Kumar A, Altabella T, Taylor M A, et al. Recent advances in polyamine research [J]. Trends Plant Sci., 1997,2:124-130.
    236. Laser K D, Lersten N R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms [J]. Bot .Rev., 1972, 38(3): 425-454
    237. Lee S L J, Earle E D, Gracen V E. The cytology of pollen abortion in S cytoplasmic male-sterile corn anthers [J]. American Journal of Botany, 1980,67(2): 237-245.
    238. Lee S L J, Gracen V E, Earle E D. The cytology of pollen abortion in C-cytoplasmic male-sterile corn anthers [J] American Journal of Botany, 1979, 66(6):656-667.
    239. Li D D, Shi W, Deng XX. Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene [J]. Plant Cell Rep., 2002,21: 153-1560
    240. Lombardo G, Carraro L.Tapetal ultrastructural changes during pollen development. I .Studies on Antirrhinum majus [J]. Caryologia, 1976 a, 29:113-125
    241. Lombardo G? Carraro L.Tapetal ultrastructural changes during pollen development. II .Studies on Pelargonium zonale and Kalanchoe Obtusa [J]. Caryologia. 1976 b, 29:339-349
    242. Maki S, Hideaki T, Yoshihiko T. Study of sugi (Cryptomeria japonica D. Don) with male-sterility gene using CAPS markers [J]. J. For. Res., 2005, 10: 61-66.
    243. Malmberg R L, Mcindoo J. Abnormal floral development of a tobacco mutant with elevated polyamine levels [J]. Nature, 1983,305:623-625.
    244. Malmberg R L, Watson M B, Galloway G L, et al. Molecular genetic analysis of plant polyamines [J]. Crit. Rev. Plant Sci., 1998, 17: 199-224
    245. Marcel A, Martin-Tanguy J. Polyamine metabolism in normal and sterile Chrysanthemum morifolium [J]. Phytochemistry, 1994,37 (4): 927-932.
    246. Mariani C, De Beuckeleer M, Truettner 1, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene [J]. Nature, 1990, 347:737-741.
    247. Martin-Tanguy J, Corbineau F, Burtin D et al. Genetic transformation with a derivative of rolC from Agrobacterium rhizogenes and treatment with an aminoisobutyric acid produce similar phenotypes and reduce ethylene production and the accumulation of water insoluble ployamine-hydroxycinnamic acid conjugates in tobacco flowers [J]. Plant Sci., 1993, 93: 63-76.
    248. Martin-Tanguy J, Perdrizet E, Prevost J, et al. Hydroxycinnamic acid amides in fertile and cytoplamic male sterile lines of maize [J]. Phytochem., 1982, 21: 1939-1945.
    249. Martin-Tanguy J. Conjugated polyamines and reproductive development: biochemical, molecular and physiological approaches [J]. Physiol. Plant, 1997, 100: 675-688.
    250. Martin-Tanguy J, Deshayes A, Perdrizet E, et al. Hydroxycinnamic acid amides in zea mays: distribution and change with cytoplasmic male sterile [J]. FEBS Lett, 1979, 108:176-178.
    251. Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches) [J]. Plant Growth Regul., 2001, 34:135-148.
    252. Martin-Tanguy J. The occurrence and possible function of hydroxycinnamoyl acid amides in plants [J]. Plant growth Regulation, 1985, 3:381-399.
    253. Mascarenhas J P. Gene activity during pollen development [J]. Annu.. Rev. Plant Physiol. Mol. Biol., 1990, 41:317-338.
    254. Means A R, Dedman J C. Calmoduin: an intracellular calcium receptor [J]. Nature, 1980, 285(8): 73-77.
    255. Mepham R H, Lane G R. Formation and development of the tapetal periplasmodium in Tradescantia bracteata [J]. Protoplasrna, 1969; 68:175-192.
    256. Minorsky P V. A heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer of injury [J]. Plant Cell Environ., 1985, 8:75-94
    257. Minorsky P V. Temperature sensing by Plants: a review and hyperthesis [J]. Plant Cell Environ., 1989, 12:137-143
    258. Monroy A F, Dhindsa R S. Low temperature signal transduction: induce of cold acclimation specific genes of alfalfa by calcium at 25℃ [J]. Plant Cell, 1995, 7:321-331
    259. Murthi A N, Weaver J B. Histological studies on five male-sterile strains of upland cotten [J]. Crop Sci., 1974, 14:658-663.
    260. Nagal R, Ishima Y, Kukita F, Takenaka T. Calcium and magnesium contents of ectoplasm and endoplasm of Phytarum Polycephalum Plasmomum [J]. protoplasma, 1975, 86:169-174
    261. Nakajima M, Yamaguchi I, Kizawa S. Semi-quantification of GA_1, and GA_4 in male sterile anthers of rice by radio immunoassay [J]. Plant and cell Physiology, 1991, 32:502-513
    262. Nakaw Y, Asada K. Hydrogen peroxide is scavenged by ascorbata specific peroxidase in Spinach Chlorophylls [J]. Plant Cell Physiol., 1981, 22:867-880.
    263. Nave E B, Sawhney V K. Enzymatic changes in post-meiotic anther development in Petunia hybrida. Anther ontogeny and isozyme analyses [J]. J. Plant Physiol., 1986, 125:451-456.
    264. Ogura H M. Study on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds [J]. Mem, Fdc, Agric, Kagoshuma Univ, 1968, 6:39-78.
    265. Owen H A, Makaroff C A. Ultra-structure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. Ecotype Wassilewskija (Brassicaceae) [J]. Protoplasma, 1995, 185:7-21.
    266. Pacini E, Franchi G G, Hesse M. The tapetum: its form, function, and possible phylogeny in Embryophyta[J].Plant Syst.Evol., Evoi, 1985, 149: 155-185.
    267. Pacini E, Taylor P E, Singh M B, et al. Development of plastids in pollen and tapetum of rye-grass, Lolium perenne [J].Ann. Bot, 1992, 70:179-188
    268. Papini E. Tapetum and microspore function [M]. In: Blackmore S, Knox RB (eds) Microspore: evolution and ontogeny. Academic Press, San Diego, 1990, 213-237.
    269. Paul M, Sanders P M. Anther developmental defects in Arabidopsis thaliana male-sterile mutants [J]. Sexual Plant Reproduction, 1999 11:297-322.
    270. Piffanelli P. Ross J H E, Murphy D J. Biogenesis and function of the lipidic structures of pollen grains [J]. Sex Plant Reprod., 1998, 11:65-80.
    271. Polowick P L, Sawhney V K. An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). Tetrad to early binucleate microspore stage [J]. Can. J. Bot., 1993, 71:1039-1047.
    272. Ponchet M, Martin-tanguy J, Marais A, et al. Hydroxycinnamoyl acid amides and aromatic amines in inflorescences of some Aracea species[J]. Phychem, 1982, 21:2865-2869.
    273. Poovaiah B W, Reddy A S N, Mofadden J J. Calcium messenager system: role of protein phosphorylation and inositol phospholipids [J]. Physiol. Plant, 1987, 69:569-573.
    274. Poovaiah B W, Reddy A S N. Calcium and signal transduction in plants [J]. Crit. Rev. Plant Sci., 1993, 12:185-211
    275. Prask J A, Plocke D J. A role for zinc in the structural integrity of cytoplasmic ribosomes of Euglena gracilis [J]. Plant Physiol, 1971,48:150-155.
    276. Preuss D, Lemieux B, Yen G, et al. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization [J]. Genes Dev. 1993, 7, 974-985.
    277. Rastogi R, Sawhney V K. Polyamines and flower development in the male sterile stamenless-2 mutant of tomato (Lycopericon esculentum Mill). I. Level of polyamines and their biosynthesis in normal and mutant flowers [J]. Plant Physiol., 1990, 93:439-445.
    278. Regan S M, Moffatt B A. Cytochemical analyses of pollen development in wild-type Arabidopsis and a male sterile mutant [J]. Plant Cell, 1990,2:877-889.
    279. Reznickova S A, Dickinson H G Ultrastructural aspects of storage lipid mobilization in the tapetum of Lilium hybrida var. in chantment [J]. Planta, 1982, 155:400-408.
    280. Reznickova S A.Histochemical study of reserve nutrient substances in anther of Lilium candidu [J]. C. R. Acad. Bulg. Sci., 1987, 31:1067-1070.
    281. Rita B, Giuseppina F, Anna S, et al. Biochemical and ultra structural features related to male sterility in the dioecious species Actinidia deliciosa [J]. Plant PhysioL Biochem., 2001, 39: 395-406.
    282. Rowley J R, Walles B. Origin and structure of ubisch bodies in Pinus sylvestris [J]. Acta. Soc. Bot. Polon. 1987, 56:215-227.
    283. Sanders P M, But A Q, Goldberg R B. Anther developmental defects in Arabldopsis thallana Male-sterile mutants. Sex Plant Reprod., 1999, 11:297-322.
    284. Sawhney V K, Bhadula S K. Microsporogenesis in the normal and male-sterile stamenless mutant of tomato ( Lycopersicon esculentum) [J]. Can. J. Bot, 1988, 66:2013-2021.
    285. Sawhney V K, Shukla A. Male sterile in flowering Plants: Are growth substances involved? [J]. Amer. J. Bot., 1994, 81(12):1640-1647.
    286. Scott D H, Weinberger J H. Inheritance of pollen sterility in some peach varieties [J]. Proc. Am. Soc. Hortic. Sci., 1944,9:187-188
    287. Sheu-Ling J L, Gracen V E, Earle E D. The cytology of Pollen abortion in C-cytoplasmic male-sterile corn anthers [J]. Amer. J. Bot., 1979, 66(6):656-667
    288. Shukla A, Sawhney V K. Abscisic acid: one of the factors affecting male sterility on Brassica napus [J]. Physiol, Plant, 1994, 91:522-528.
    289. Shukla A, Sawhney V K. Cytokinins in genic male sterile line ofBrassica napus [J]. Physiol. Plant, 1992, 85:24-29.
    290. Shukla A, Sawhney V K. Metabolism of dihydrozeatin in floral buds of wild-type and a genic male sterile line of rapeseed (Brassica napus L.) [J]. Journal of experimental botany, 1993, 44(6):1497-1505.
    291. Singh S, Sawhney V K, Pearcc D W. Temperature effects on endogenous indole-3-acetic acid levels in leaves and stamens of the nomal and male sterile 'stamenless-2' mutant of tomato (Lycopersicon esculentum) [J]. Plant Cell & Enviro., 1992, 15:373-377.
    292. Singh S, Sawhney V K, Pearee D W. Temperature effects on endogenous indole-3-acetic acid levels and stamen of the normal and male sterile stemenless-2 mutant of tomato (LycoPerrsicon esculentum Mill) [J]. Plant Cell Environment, 1992 a, 85:23-29.
    293. Singh S, Sawhney V K. Cytokinins and abscisic acid in roots of the normal and stamenless-2 mutants of tomato [J]. Report of the tomato genetic cooperative, 1992 b, 42:34-35.
    294. Singh S, Sawhney V K. Cytokinins in a normal and the ogura cytoplasmic male-sterile line of rapeseed (Brassica napus L.). Plant Science. 1992 c, 86:147-154.
    295. Singh S, Sawhney V K. Endogenous hormones in seeds, germination behaviour and early seedling characteristics in a normal and ogura cytophsmic male sterile line of rapeseed (Brassica napus L.) [J]. J. Exper. Bot., 1992 d, 43(6): 1497-1505.
    296. Singh V P, Kobabe G. Cyto-morphological investigations on male-sterility in Allium schoenoprasum L. Indian [J]. J Genet. Plant Breed, 1969,29: 241-262.
    297. Skorupska H T, Desamero N V, Palmer R G Developmental hormonal expression of apetalous male-sterile mutations in soybean Glycine max (L.) [J]. Men. Annals of Biology, 1994, 10(1): 152-164.
    298. Slocum R D, Galston A W. Changes in polyamines biosynthesis associated with post fertilization growth and development in tobacco ovary tissues [J]. Plant Physiol, 1985, 79:336-343.
    299. Slocum R D, Kaur-Sawhney R, Galston A W. The physiology and biochemistry of polyamines in plants [J].Arch. Biochem. Biophys., 1984,235: 283-303.
    300. Slocum R D, Roux J. An improved method for the subcellular localization calcium using a modificaion of the antimonate precipitation technique [J]. J. Histochem, 1982, 30(7):617-629
    301. Spena A, Estruch J J, Prinsen E, et al. Anther-specific expression of the rolB gene of Agrobacterium rhizogenes increases IAA content in anthers and alters anther development and whole flower growth [J]. Theoretical and applied genetics, 1992, 84:520-526.
    302. Steer M W. Differentiation of the tapetum in Avena: The cell surface [J]. J. Cell Sci., 1977, 25:125-138.
    303. Steiglitz H. Role of β-1,3-glucanase in postmeiotic microspore release [J]. Dev. Biol, 1977, 57:87-97.
    304. Sun T P, Kaimaya Y. The Arabidopisis GAL locus encodes the cylasscent-kaurene synthetase A of gibberellins biosynthesis [J]. Plant Cell, 1994, 6(10):1509-1518.
    305. Tabor C W, Tabor H. Polyamines [J]. Annu. Rev. Biochem., 1984, 53: 749-790.
    306. Takegami M H, Yoshioka, M, Tanaka I, et al. Characteristics of isolated microsporocytes from Liliaceous plants for studies of the meiotic cell cycle in vitro Trillium kamtschaticum. Lilium [J]. Plant & Cell Physiology, 1981, 22: 1-10.
    307. Tanaka I, Ito M. Control of division patterns in explanted microspores of Tulipa gesneriana [J]. Protoplasma, 1981, 108,329-340.
    308. Tandler C J, Libanati C M, Sancjis C A. The intracellular localization of inorganic cations with potassium pyroantimonate. Electron microscope and microprobe analysis [J]. J. Cell Biol, 1970, 45:355-366.
    309. Tarenghi E, Martin-Tanguy J. Polyamines, floral induction and floral development of strawberry (Fragaria ananassa Duch) [J]. Plant Growth Regul, 1995, 17: 157-165.
    310. Taylor P E, Glover J A, Lavithis M, et al. Genetic control of male fertility in Arabidopsis thaliana: structural analyses of post meiotic developmental mutants [J]. Planta, 1998,205: 492-505
    311. Thakur R P, Rao V P. Effectiveness of ethylene as a male gametocide in Pearlmillet and its influence on ergot [J]. Plant Breeding.1988, 101:107-113.
    312. Tian C E, Liang C Y, Huang Y W et al. Preliminary study on the relationship between Polyamine and ethylene during paniele development in cytoplasmic male-sterile rice [J]. Acta Phytophysiological Sinica.1999, 25(1): 1-6.
    313. Tian H Q, Kuang A, Musgrave M E, et al. Calcium distribution in fertile and sterile anthers of a photoperiod-sensitive genic male-sterile rice [J]. Planta, 1998, 204: 183-192.
    314. Tiburcio A F, Altabella T, Borrell A, et al. Polyamine metabolism and its regulation [J]. Physiol. Plant, 1997, 100:664-674.
    315.Tirlapur U K, Cresti M. Computer-assisted video image analysis of spatial variations in membrane-associated Ca~(2+) and calmodulin during pollen hydraion, germination and tip growth in Nicotiana tabacum L [J]. Ann. Bot., 1992 a, 69:503-508.
    316. Tirlapur U K, willemse M M. Changes in calcium and calmodulin levels during microsporogenesis, pollen development and germination in Gasteria verrucosa [J]. Sex Plant Reprod, 1992 b, 5:214-223
    317. Uehara K, Kunta S, Shashi N, Oharoto T. Ultrastuctural study on microspore wall morphogenesis in Tsoetes Japonica [J].Amer. J. Bot., 1991,78(9):1182-1190
    318. Vallee B L, Falchuk K H. The biochemical basis of zinc Physiology [J]. Physiol. Rev., 1993, 73:79-118.
    319. Vander Heiden M G, Chandel N S, Williamson E K, et al. Bcl-xl regulates the membrane potential and volume homeostasis of mitochondria [J]. Cell, 1997,91:627-637
    320. Vodkin M, Vodkin L O. A conserved zinc finger domain in higher Plants [J]. Plant Mol. Biol, 1989, 12:593-594.
    321. Warmke H E, Shen-Ling J L. Mitochondrial degeneration in Texas cytoplasmic male sterile corn anthers [J]. TheJ. Heredity, 1977, 68:213-222.
    322. Warmke H E, Shen-Ling J L. Pollen abortion in T cytoplasmic male sterile corn (Zea mays L.): a suggested mechanism [J]. Science, 1978, 200:561-563.
    323. Wei J, Harry T, Horner, Reid G, et al. Genetics and cytology of a new genic male-sterile soybean [Glycine max (L.) Merr [J]. Sex Plant Reprod, 1997, 10:13-21.
    324. Werner D J, Creller M A. Genetic studies in peach: Inheritance of sweet kernel and male serility [J]. J. Amer. Soc. Hort. Sci., 1997,122(2):215-217
    325. Wiermann R. Stage-specific phenylpropanoid metabolism during pollen development. In regulation of secondary product and plant hermone metabolism [M] (ed). M. Luckner, K. Schreiber. 1979, 231-239. Oxford: Pergamon.
    326. Willemot C. Stimulation of phospholipids biosynthesis during frost hardening of winter wheat [J]. Plant Physiol., 1975, 55:356-359.
    327. Willemse M T M. Calcium and calmodul in distribution in the tapetum of Gasteria Verrucosa during anther development [J]. Plant Syst. Evol, 1993, 7:107-116.
    328. Worrall D, Hird D L, Hodge R, et al. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco [J]. Plant Cell, 1992,4: 759-771.
    329. Yamamoto M, Okudai N, Matsumoto R. Segregation for aborted anthers in hybrid seedlings using Citrus nobilis×C. deliciosa cv. Encore as the seed parent [J]. J. Japan Soc. Hort. Sci., 1992 a, 60:785-789
    330. Yamamoto M, Okudai N, Matsumoto R. Study on the inheritance of aborted anthers in citrus using seed parents having aborted anthers [J]. J. Japan Soc. Hort. Sci., 1992 b, 60:791-797
    331. Yamamoto M, Matsumoto R, Okudai N, et al. Aborted anthers of Citrus result from gene-cytoplasmic male sterility [J]. Scientia Hortic, 1997, 70:9-14
    332. Yang W C, Ye D, Xu J, et al. The SPOROCYTELESS gene of Arabidopsis required forinitiation of sporogenesis and encodes a noval nuclear Protein [J]. Genes & development, 1999, 13:2108-2117.
    333. Ye X S, Avdiushko S A, Kuc J. Effect of polyamines on in vitro phosphorylation of soluble and plasma membrane proteins in tobacco, cucumber and Arabidopsis thaliana [J]. Plant Sci., 1994, 97: 109-118.
    334. Zenkteler M. Microsporogenesis and tapetal development in normal and male sterile carrot (Daucas Carota) [J].Amer. J. Bot., 1962, 49(4):341-348.
    335. Zhang C H, Guine F C, Moffatt B A. A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile mutant atpl-3 [J]. Protoplasma, 2002, 219:59-71

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700