用户名: 密码: 验证码:
根际氧供应对水稻根系生长的影响及其与产量形成的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以IR45765-3B(深水稻)、中旱221(旱稻)和中浙优1号(水稻)为材料,以溶解氧在线测定控制仪设置不同的根际氧浓度进行水培试验;同时以秀水09、两优培九和国稻6号为材料,在田间进行超微气泡水增氧灌溉和普通水灌溉对比试验,研究根际氧供应对不同生态类型水稻根系生长的影响及其与产量形成、养分吸收利用的关系,以期为基于水稻根际氧调控的高产理论创新与技术集成提供依据。主要研究结果如下:
     1、不同根际氧浓度处理下,IR45765-3B、中旱221和中浙优1号的最大根长均随根际氧浓度升高而增长。每株不定根数、根干重、每株根系TTC还原力和根系活跃吸收面积等随根际氧浓度变化则因品种而异,IR45765-3B表现为4mg/l处理下最高,处理间由高到低的顺序为:4mg/l,2mg/l,CK,6mg/l,8mg/l;中旱221表现为随根际氧浓度的升高而增加,在8mg/l处理达到最高,处理间由高到低的顺序为:8mg/l,6mg/l,4mg/l,2mg/l,CK;中浙优1号则表现为随根际氧浓度升高而增加,在6mg/l处理下达到最高,当根际氧浓度达到8mg/l时又有所降低,处理间由高到低的顺序则为:6mg/l,4mg/l,2mg/l,CK,8mg/l。
     2、不同品种水稻剑叶齐穗期光合特性和灌浆期衰老进程对根际氧浓度的响应存在明显差异。IR45765-3B、中旱221和中浙优1号齐穗期剑叶的净光合速率分别在4mg/l、8mg/l和6mg/l处理下最高,分别为22.4、25.6和29.3μmol·m-2s-1,分别比对照高10.3%、29.3%和13.1%。在花后21天内3个品种剑叶叶绿素、可溶性蛋白含量和SOD活性等指标对根际氧浓度的响应与净光合速率一致,而且随时间推移变化幅度相对较小。
     3、IR45765-3B、中旱221和中浙优1号单株产量分别在4mg/l、8mg/l和6mg/l处理下最高,分别为29.0、27.2和36.6克/株,分别比对照增加了18.4%、61.8%和46.3%。齐穗期每株不定根数(X1)和根体积(X3)是影响水稻产量高低的主要根系性状,回归方程为y=7.602+0.029X1+0.431X3。
     4、不同根际氧浓度下水稻氮素和磷素吸收特性在品种间差异明显。IR45765-3B的氮、磷吸收效率在4mg/l处理下最高,中浙优1号则在6mg/l处理最高,中旱221的氮吸收效率在8mg/l处理下最高,磷吸收效率则是在6mg/l处理最高。齐穗期每株不定根数(X1)和根干重(X4)是影响水稻氮积累的主要根系性状,回归方程为y=0.020+0.001X1+0.091X4;而每株不定根总长度(X2)和根干重(X4)是影响水稻磷积累的主要根系性状,回归方程为y=0.009+0.002X2+0.021X4。
     5、超微气泡水增氧处理在生育前期提高了秀水09、国稻6号和两优培九的分蘖成穗率,而使有效穗分别提高了12.1%、6.0%和6.7%;在齐穗期提高了剑叶光合能力、灌浆期延缓了叶片衰老而使结实率分别提高了5.9%、5.7%和6.4%;从而使秀水09、国稻6号和两优培九产量分别提高了7.34%、9.13%和7.49%。
Hydroponic culture experiment of different oxygen concentrations in rhizosphere and fieldexperiment of different aerobic irrigation modes were conducted to compare the effects of oxygenconcentrations in rhizosphere on growths and activities in roots of different rice cultivars, and to studythe relationship between oxygen concentration and nutrient uptake and grain yield of rice cultivars.IR45765-3B (deepwater rice cultivar), Zhonghan221(upland rice cultivar) and Zhongzheyou1(lowland rice cultivar) were used in hydroponic culture experiment, Xiushui09(inbred japonica rice),Guodao6(indica hybrid)and Liangyoupeijiu(indica hybrid) were used in field experiment. Oxygenconcentrations in rhizosphere in hydroponic culture experiment were regulated by on-line controller ofdissolved oxygen. Aerobic irrigation modes in field experiment were comparative tests about aeratedirrigation mode by super-micro bubble water and common irrigation mode. The results in this trial couldlay foundation for high-yield cultivation technique and high yield theory relating to regulation ofoxygen in rhizosphere of rice. The main conclusions in this study are as follows:
     1. The maximum root length for IR45765-3B, Zhonghan221and Zhongzheyou1was increasedwith the increase of oxygen concentration in rhizosphere. The responses of adventitious roots per plant,dry weight of root, TTC deoxidizing ability in root and active absorption area of root to oxygenconcentrations in rhizosphere were varied in varieties. The above indicators for IR45765-3B got thehighest values at the oxygen concentration of4mg/l in rhizosphere, followed by2mg/l, CK and6mg/l,and the above indicators for IR45765-3B got the lowest values at the oxygen concentration of8mg/l inrhizosphere. The indicators relating to root in Zhonghan221were increased with the increase of oxygenconcentration in rhizosphere. That was to say, indicators relating to root in Zhonghan221were up to thehighest values at8mg/l of oxygen concentration in rhizosphere, followed by6mg/L,4mg/l,2mg/L,and CK. The indicators relating to root in Zhongzheyou1tended to rise with the increase of oxygen inrhizosphere, and generally peaked at the concentration of6mg/l, and decreased when the oxygenconcentration in rhizosphere was up to8mg/l.
     2. The responses of photosynthetic characteristics in rice flag leaf at full heading stage and agingprocess in rice flag leaf at grain filling stage were varied with varieties. The net photosynthetic rate inflag leaf for IR45765-3B, Zhonghan221and Zhongzheyou1at full heading stage got the highest valuesat4mg/l,8mg/l and6mg/l of oxygen concentration in rhizosphere, respectively. The highest value ofnet photosynthetic rate in flag leaf for IR45765-3B, Zhonghan221and Zhongzheyou1was22.4,25.6and29.3μmol·m-2s-1, respectively; the corresponding values were increased by10.3%,29.3%and13.1%compared with CK, respectively. The variations in the chlorophyll content, soluble protein,soluble sugar, MDA and SOD activity were consistent with net photosynthetic rate in the flag leafwithin21days after flowering, and the variations were small with the growth of plants.
     3. Grain yield per plant for IR45765-3B, Zhonghan221and Zhongzheyou1got the highest valueat4mg/l,8mg/l and6mg/l of oxygen concentration in rhizosphere, respectively; the highest value was29.0,27.2and36.6g/plant, respectively. The above highest value was increased by18.4%,61.8%and 46.3%in comparison with CK, respectively. The adventitious roots per plant (X1) and root volume (X3)at full heading stage were main characters affecting grain yield, and the regression equation was y=7.602+0.029X1+0.431X3.
     4. There were significant differences in the absorptive characteristics of nitrogen and phosphorousamong varieties. The nitrogen absorption efficiency and phosphorous absorption efficiency forIR45765-3B and Zhongzheyou1got the highest value at4mg/l and6mg/l of oxygen concentration inrhizosphere, respectively. However, nitrogen absorption efficiency and phosphorous absorptionefficiency for Zhonghan221got the highest value at8mg/l and6mg/l of oxygen concentration inrhizosphere, respectively. The adventitious roots per plant (X1) and root dry weight (X4) at full headingstage were main characters affecting nitrogen accumulation of rice plant, and the regression equationwas y=0.020+0.001X1+0.091X3. Root length of adventitious roots per plant (X2) and root dry weightper plant (X4) at full heading stage were main characters affecting phosphorous accumulation of riceplant, and the regression equation was y=0.009+0.002X2+0.021X4.
     5. In field experiment, the effective tillers for Xiushui09, Guodao6and Liangyoupeijiu insuper-micro bubble water treatment were significantly increased compared to common irrigation mode.Effective panicles for Xiushui09, Guodao6and Liangyoupeijiu in super-micro bubble water treatmentwere increased by12.1%,6.0%, and6.7%, respectively. The photosynthetic capacities in flag leaf ofabove three cultivars at full heading stage were enhanced compared to control, and treatment withsuper-micro bubble water delayed the senescence of leaves at rice grain filling stage. Then the settingpercentage for Xiushui09, Guodao6and Liangyoupeijiu was increased by5.9%,5.7%, and6.4%comparing with control, respectively, and the grain yield for Xiushui09, Guodao6and Liangyoupeijiuwas increased by7.3%,9.3%, and7.5%comparing with control, respectively
引文
1.陈贵,周毅,郭世伟,等.水分胁迫条件下不同形态氮素营养对水稻叶片光合效率的调控机理研究.中国农业科学,2007,40(10):2162-2168.
    2.陈国林,王人民,王兆骞.不同灌溉方式对水稻产量与生理特性的影响.生态学杂志,1998,17(3):20-26.
    3.程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865.
    4.陈际型.钾素营养对水稻根系生长和养分吸收的影响.土壤学报,1997,34(2):182-188.
    5.崔澂,倪文,毛协亨,等.水稻的水分生理与合理灌溉的研究-Ⅳ.水分条件和氮素营养对水稻产量与有关生理过程的影响及其相互关系.作物学报,1964,3(3):271-282.
    6.蔡昆争,骆世明,段舜山.水稻根系的空间分布及其与产量的关系.华南农业大学学报(自然科学版),2003,24(3):1-4.
    7.陈致泰,李世刚,韩光瑶,等.微气泡纯氧曝气技术用于河湖复氧治理.水科学与工程技术.2008,(1):17-19.
    8.川田信一郎,水稻的根系.北京:农业出版社.1984
    9.丁昌璞.中国自然土壤、旱作土壤、水稻土的氧化还原状况和特点.土壤学报,2008,45(1):66-75.
    10.董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异.作物学报,2003,29(6):871-877.
    11.董桂春,王余龙,王坚刚,等.不同类型水稻品种间根系性状的差异.作物学报,2002,28(6):749-755.
    12.代贵金,华泽田,陈温福,等.杂交粳稻,常规粳稻,旱稻及籼稻根系特征比较.沈阳农业大学学报,2008,39(5):515-519.
    13.代贵金,岩石真嗣,三木孝昭,等.不同耕作与施肥方法对水稻根系生长分布和活性的影响.沈阳农业大学学报,2008,39(3):274-278.
    14.傅志强,黄璜,何保良,等.水稻植株通气系统与稻田CH4排放相关性研究.作物学报,2007,33(9):1458-1467.
    15.范淑秀,陈温福.超高产水稻品种叶绿素变化规律研究初报.沈阳农业大学学报,2005,36(1):14-17.
    16.郝艳淑,姜存仓,夏颖,等.植物钾的吸收及其调控机制研究进展.中国农学通报,2011,27(1):6-10.
    17.何芳禄,何之常.水稻伤流强度的研究.武汉大学学报(理学版),1979,(4):6-11.
    18.黄耀祥.水稻超高产育种研究.作物杂志,1990,4(24): l-2.
    19.戢林,李廷轩,张锡洲,等.氮高效利用基因型水稻根系形态和活力特征.中国农业科学,2012,45(23):4770-4781.
    20.孔祥生,易现峰.植物生理学实验技术.北京:中国农业出版社,2008.
    21.林贤青,朱德峰,李春寿,等.水稻不同灌溉方式下的高产生理特性.中国水稻科学,2005,19(4):328-332.
    22.凌启鸿,陆卫平.水稻不同层次根系的功能及对产量形成作用的研究.中国农业科学,1984,(4):3-l1
    23.凌启鸿,陆卫平,蔡建中,等.水稻根系分布与叶角关系的研究初报.作物学报,1989,15(2):123-131.
    24.刘法谋.根际氧水平对不同类型水稻形态与生理特性的影响.[硕士学位论文].北京:中国农业科学院,2011.
    25.刘立军,薛亚光,孙小淋,等.水分管理方式对水稻产量和氮肥利用率的影响.中国水稻科学,2009,23(3):282-288
    26.刘哲,马殿荣,陈温福.不同施氮水平对水稻根系生理特性的影响.垦殖与稻作,2006,(3):58-59
    27.刘学,朱练峰,陈琛,等.超微气泡增氧灌溉对水稻生育特性及产量的影响.灌溉排水学报,2009,28(5):89-91.
    28.李奕林.水稻根系通气组织与根系泌氧及根际硝化作用的关系.生态学报,2012,32(7):2066-2074.
    29.李合松,黄见良,邹应斌,等.双季稻超高产栽培条件下根系特性的研究.激光生物学报,1999,8(3):194-200.
    30.李娟,章明清,林琼,等.水稻根长动态模拟和生长特性研究.福建农业学报,2009,24(3):217-221.
    31.聂艳丽,郑毅,林克惠.根分泌物对土壤中磷活化的影响.云南农业大学学报,2002,17(3):281-286.
    32.彭世彰,郝树荣,刘庆,等.节水灌溉水稻高产优质成因分析.灌溉排水,2000,19(3):3-7.
    33.钱永德,李金峰,郑桂萍,等.垄作栽培对寒地水稻根系生长的影响.中国水稻科学,2005,19(3):238-242.
    34.石庆华,李木英.水稻根系特征与地上部关系的研究初报.江西农业大学学报,1995,17(2):110-115.
    35.沈波,王熹.两个亚种间杂交稻组合的根系生理活性.中国水稻科学,2002,16(2):146-150.
    36.宋纯鹏.植物衰老生物学.北京:北京大学出版社,1998.
    37.田娟,刘凌,丁海山,等.淹水土壤土-水界面磷素迁移转化研究.环境科学,2008,29(7):1818-1823.
    38.王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995.
    39.王贵民,陈国祥,张美萍,等.高产杂交水稻剑叶全展后主要光合生理特征的研究.核农学报,2008,22(5):697-700.
    40.王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响.作物学报,2008,34(5):803-808.
    41.汪晓丽,封克,盛海君,等.不同水稻基因型苗期NO3-吸收动力学特征及其受吸收液中NH4+的影响.中国农业科学,2003,36(11):1306-1311.
    42.汪强,樊小林,刘芳,等.断根和覆草旱作条件下水稻的产量效应.中国水稻科学,2004,18(5):437-442.
    43.徐应明,王德荣.灌溉水中溶解氧含量对水稻生长的影响.农业环境保护,1993,12(3):140-142.
    44.徐春梅,王丹英,陈松,等.增氧对水稻根系生长与氮代谢的影响.中国水稻科学,2012,26(3):320-324
    45.徐海洋,曾凡华,徐士清.不同灌溉方式对水稻产量的影响.现代农业科技,2013,(3):20-20.
    46.徐芬芬,曾晓春,石庆华,等.不同灌溉方式对水稻根系生长的影响.干旱地区农业研究,2007,25(1):102-104.
    47.许文燕,龙继锐,马国辉,等.液体硅钾肥对杂交晚稻抗倒伏性和物质生产的影响初探.中国农学通报,2011,27(18):24-28.
    48.许明,贾德涛,马殿荣,等.北方超级粳稻根系生理,叶片光合性能特点及其相互关系.作物学报,2010,36(6):1030-1036.
    49.杨守仁.杨守仁水稻文选.沈阳:辽宁科学技术出版社,1998.
    50.杨知建,成诗瑜.低温下土壤水分对籼稻及粳稻根系生长的影响.湖南农业大学学报(自然科学版),2002,28(5):369-372.
    51.俞慎,李振高.稻田生态系统生物硝化-反硝化作用与氮素损失.应用生态学报,1999,10(5):630-634.
    52.俞爱英,林贤青,曾孝元,等.不同灌溉方式对水稻分蘖成穗规律及产量影响研究.灌溉排水学报,2007,26(1):66-68,85.
    53.周汉钦,林青山.超高产特优质水稻根系特点初探.广东农业科学,1997(6):11-14.
    54.朱练峰,刘学,禹盛苗,等.增氧灌溉对水稻生理特性和后期衰老的影响.中国水稻科学,2010,24(3):257-263.
    55.郑景生,林文,姜照伟,等.超高产水稻根系发育形态学研究.福建农业学报,1999,14(3):1-6.
    56.曾翔,李阳生,谢小立,等.不同灌溉模式对杂交水稻生育后规根系生理特性和叶光合特性的影响.中国水稻科学,2003,17(4):355-359.
    57.翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系.中国科学(c辑),2002,32(3):211-217.
    58.张杰,梁永超,娄运生,等.镉胁迫对两个水稻品种幼苗光合参数、可溶性糖和植株生长的影响.植物营养与肥料学报,2005,11(6):774-780.
    59.张荣萍,马均,王贺正,等.不同灌水方式对水稻结实期一些生理性状和产量的影响.作物学报,2008,34(3):486-495.
    60.张自常,李鸿伟,曹转勤,等.施氮量和灌溉方式的交互作用对水稻产量和品质影响.作物学报,2013,39(1):84-92.
    61.张丰转,金正勋,马国辉,等.水稻抗倒性与茎秆形态性状和化学成分含量间相关分析.作物杂志,2010(4):15-19.
    62.章明清,李娟,孔庆波,等.水稻根长增长和养分吸收动态及其模拟模型.植物营养与肥料学报,2011,17(3):554-562.
    63.章永松,林成永,罗安程.水稻根系泌氧对水稻土磷素化学行为的影响.中国水稻科学,2000,14(4):208-212.
    64.章秀福,王丹英,邵国胜.垄畦栽培水稻的产量,品质效应及其生理生态基础.中国水稻科学,2003,17(4):343-348.
    65.赵锋,徐春梅,张卫建,等.根际溶氧量与氮素形态对水稻根系特征及氮素积累的影响.中国水稻科学,2011,25(2):195-200.
    66.赵全志,乔江方,刘辉,等.水稻根系与叶片光合特性的关系.中国农业科学.2007,40(5):1064-1068.
    67.赵全志,黄丕生,凌启鸿,等.水稻颖花伤流量与群体质量的关系.南京农业大学学报,2000,23(3):9-12.
    68.赵世杰,史国安,董新纯.植物生理学实验指导.北京:中国农业出版社,2002.
    69. Aceves-Novarro E, Stolzy L H, and Mehuys G H. Combined effect of low oxygen and salinity ongermination of a semidwarf Mexican wheat. Agronomy Journal.1975,67(4):530-532.
    70. Alberda T. Growth and root development of lowland rice and its relation to oxygen supply. Plantand Soil,1953,5(1):1-28.
    71. Anaya M G, Stolzy L H. Wheat response to different soil water-aeration conditions. Soil ScienceSociety of America Journal,1972,36(3):485-489.
    72. Anderson W B, Kemper W D. Corn Growth as Affected by aggregate stability, soil tempearture,and soil moisture. Agronomy Journal,1964,56(5):453-456.
    73. Armstrong W, Drew M C. Root growth and metabolism under oxygen deficiency. In: Waisel Y,Eshel A, Kafkafi U, eds. Plant roots: the hidden half. New York: Marcel Dekker,2002,729-761.
    74. Aubertin G M, Ricman R W, Letey J. Plant ethanol content as an index of the soil-oxygen status.Agronomy Journal,1966,58(3):305-307.
    75. Bergman H F. Oxygen deficiency as a cause of disease in plants. The Botanical Review,1959,25(3):417-485.
    76. Bruckert S, Villemin P, Kubler B. Potassium forms in aerated and anoxic soils of differentmanagement and potassium fertilizer history. Plant and Soil,1992,147(2):225-233.
    77. Brian R. Maricle,Raymond W. Lee. Root respiration and oxygen flux in salt marsh grasses fromdifferent elevational zones. Marine Biology,2007,151:413-423.
    78. Campbell C A, Ferguson W S. Influence of air temperature, light intensity, soil moisture stress andsoil aeration on moisture use by wheat. Canadian Journal of Plant Science,1969,49(2):129-137.
    79. Cannell R Q,Belford R K,Blackwell P S,et al. Effects of waterlogging on soil aeration and on rootand shoot growth and yield of winter oats (Avena sativa L.). Plant and Soil,1985,85(3):361-373.
    80. Carter C E. Redox potential and sugarcane yield relationship. Transactions of the ASAE [AmericanSociety of Agricultural Engineers],1980,23(4):924-927.
    81. Chen G X, Liu S H, Zhang C J.Effects of drought on photosynthetic characteristics of flag leavesof a newly developed super-high-yield rice hybrid.Photosynthetica,2004,42(4):573-578.
    82. Cline R A, Erickson A E. The effect of oxygen diffusion rate and applied fertilizer on the growth,yield, and chemical composition of peas. Soil Science Society of America Journal,1959,23(5):333-335.
    83. Colmer T D. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration inupland, paddy and deep‐water rice. Annals of Botany,2002,91(2):301-309.
    84. Crawford R M M and Margaret A B. Tolerance of anoxia and the regulation of glycolysis in the treeroots, in: Cannell, M G R and Last F T, eds. Tree physiology and yield improvement. London:Academic Press,1976,430-441.
    85. Crawford R M M and Margaret A B. Tolerance of anoxia and the metabolism of ethanol in treeroots. New Phytologist.1977,79(3):519-526
    86. Crawford R M M. Biochemical and ecological similarities in marsh plants and diving animals.Naturwissenschaften.1978,65(4):194-201.
    87. Das D K, Jat R L. Influence of three soil-water regimes on root porosity and growth of four ricevarieties. Agronomy Journal,1977,69(2):197-200.
    88. Drew M C, Sisworo E J, Saker L R. Alleviation of waterlogging damage to young barley plants byapplication of nitrate and a synthetic cytokinin, and comparison between the effects of waterlogging,nitrogen deficiency and root excision. New Phytologist,1979,82(2):315-329.
    89. Drew M C, Sisworo E J. The development of waterlogging damage in young barley plants inrelation to plant nutrient status and changes in soil properties. New phytologist,1979,82(2):301-314.
    90. Drew M C, Dikumwin E. Sodium exclusion from the shoots by roots of Zea mays and itsbreakdown with oxygen deficiency. Journal of Experimental Botany,1985,36:55-62.
    91. Duan Y H, Zhang Y L, Shen Q R, et al. Nitrate effect on rice growth and nitrogen absorption andassimilation at different growth stages. Pedosphere,2006,16(6):707-717.
    92. D Van Gundy S, Mcelroyfd, Cooper A F, et al. Influence of soil temperature, irrigation and aerationon Hemicycliophora arenaria. Soil Science,1968,106(4):270-274.
    93. Eliasson L. The inhibitory effect of oxygen on the growth of wheat roots. Physiologia Plantarum,1958,11(3):572-584.
    94. Elkins C B, Hoveland C S. Soil oxygen and temperature effect on tetany potential of three annualforage species. Agronomy Journal,1977,69(4):626-628.
    95. Gawlik J, Malichi M, and Stepniewski W. oxygen diffusion rate oxidation-reduction potential andair composition in grassland soils irrigated with sugar plant waste waters. Roczn glebozen,1976,27(4):27-32.
    96. Grineva G M. Alcohol formation and excretion by plant roots under anaerobic conditions. FiziolRast,1963,10:432-440.
    97. Gibbs J, Turner D W, Armstrong W, et al. Response to oxygen deficiency in primary maize roots. II.Development of oxygen deficiency in the stele has limited short-term impact on radial hydraulicconductivity. Functional Plant Biology,1998,25(6):759-763.
    98. Glinski J, Stepniewski W. Model investigations of the effect of soil oxygenation on the emergenceof cereal plants. Folia Societatis Scientiarum Lublinensis,1981,23:45-51.
    99. Glinski J, tepniewski W, Labuda S, et al. Threshold values of ODR and Eh in soil for the emergenceof cultivated plants. Roczn Glebozn,1984,35:2-7.
    100. Gotoh S, Onikura Y. The production of organic acids in the presence of rice straw in relation to thegrowth and yield of rice plant using pot culture technique. Bulletin of Kyushu AgriculturalExperiment Station.1970,13:173-186.
    101. Guinn G. Nutritional stress and ethylene evolution by young cotton balls. Crop Science,1976,16:89-91
    102. Hammond L C, Allaway W H, Loomis W E. Effects of oxygen and carbon dioxide levels uponabsorption of potassium by plants. Plant Physiology,1955,30(2):155.
    103. Harris D G, Van Bavel C H M. Nutrient uptake and chemical composition of tobacco plants asaffected by the composition of the root atmosphere. Agronomy Journal,1957,49(4):176-181.
    104. Heinrichs D H. Root-zone temperature effects on flooding tolerance of legumes. Canadian Journalof Plant Science,1972,52(6):985-990.
    105. Hodge A, Berta G, Doussan C, et al. Plant root growth, architecture and function. Plant and Soil,2009,321(1-2):153-187.
    106. Huck M G. Variation in taproot elongation rate as influenced by composition of the soil air.Agronomy Journal,1970,62(6):815-818.
    107. Huguenin-Elie O, Kirk G J D, Frossard E. Phosphorus uptake by rice from soil that is flooded,drained or flooded then drained. European Journal of Soil Science,2003,54(1):77-90.
    108. Insalud N, Bell R W, Colmer T D, et al. Morphological and physiological responses of rice (Oryzasativa) to limited phosphorus supply in aerated and stagnant solution culture. Annals of Botany,2006,98(5):995-1004.
    109. Jackson, M B. and Campbell D J. Effects of benzyladenine and gibberellic acid on the responses oftomato plants to anaerobic root enviroments and to ethylene. New Phytologist,1979,82(2):331-340.
    110. Jackson M B, Gales K, and Campbell D J. Effect of waterlogged soil conditons on the productionof ethylene and water relationships in tomato plants. Journal of Experimental Botany,1978,29(1):183-193.
    111. Jackson W T. The relative importance of factors causing injury to shoots of flooded tomato plants.American Journal of Botany,1956:637-639.
    112. Jones J W. Effect of reduced oxygen pressure on rice germination. Agronomy Journal,1933,25(1):69-81.
    113. Khanna C R. Leaf senescence and abiotic stresses share reactive oxygen species-mediatedchloroplast degradation. Protoplasma,2012,249(3):469-481.
    114. Kirk G J D. Rice root properties for internal aeration and efficient nutrient acquisition insubmerged soil. New Phytologist,2003,159(1):185-194.
    115. Kramer P J. Causes of injury to plants resulting from flooding of the soil. Plant Physiology,1951,26(4):722.
    116. Kronzucker H J, Siddiqi M Y, Glass A D M, et al. Nitrate-ammonium synergism in rice. Asubcellular flux analysis. Plant Physiology,1999,119(3):1041-1046.
    117. Labanauskas C K, Stolzy L H, Klotz L J, et al. Soil oxygen diffusion rates and mineralaccumulations in citrus seedlings (citrus sinensis var. Bessie). Soil Science,1971,111(6):386-392.
    118. Labanauskas C K, Letey J, Stolzy L H, et al. Effects of soil-oxygen and irrigation on theaccumulation of macro-and micronutrients in citrus seedlings (Citrus sinensis var. Osbeck). SoilScience,1966,101(5):378-384.
    119. Letey J, Lunt O R, Stolzy L H, et al. Plant growth, water use and nutritional response torhizosphere differentials of oxygen concentration. Soil Science Society of America Journal,1961,25(3):183-186.
    120. Luxmoore R J, Stolzy L H. Root porosity and growth responses of rice and maize to oxygen supply.Agronomy Journal,1969,61(2):202-204.
    121. Masayuki F., Tsuyoshi I., Takashi T., et al. Improvement of water quality by removal of suspendedsolids and high-speed biological filtration in closed water body. Journal of Water and EnvironmentTechnology.2003,1(2):233-238
    122. Matthews S. and Whitebread R. Factors influencing preemergance mortality in peas. PlantPathology,1968,17(1):11-17.
    123. Mees G C, Weatherley P E. The mechanism of water absorption by roots. II. The role of hydrostaticpressure gradients across the cortex. Proceedings of the Royal Society of London. SeriesB-Biological Sciences,1957,147(928):381-391.
    124. Meek B D, Owen-bartlett E C, Stolzy L H, et al. Cotton yield and nutrient uptake in relation towater table depth. Soil Science Society of America Journal,1980,44(2):301-305.
    125. Mishra A, Salokhe V M. Rice root growth and physiological responses to SRI water managementand implications for crop productivity. Paddy and Water Environment,2011,9(1):41-52.
    126. Morard P, Silvestre J. Plant injury due to oxygen deficiency in the root environment of soillessculture: A review. Plant and Soil,1996,184(2):243-254.
    127. Murch R S, Paxton J D. Rhizosphere anaerobiosis and glyceollin accumulation in soybean.Phytopathologische Zeitschrift,1979,96(1):91-94.
    128. Ogunremi L T. Influence of bulk density and moisture regime of a permeable soil on theperformance of a lowland rice. Tropical Agriculture,1991,68(2):129-134.
    129. Ohyama T, Kumazawa K. Nitrogen assimilation in soybean nodules: III. Effects of rhizosphere pO2on the assimilation of15N2in nodules attached to intact plants. Soil Science and Plant Nutrition,1980,26(2):321-324.
    130. Osaki M, Matsumoto M, Shinano T, et al. A root-shoot interaction hypothesis for high productivityof root crops. Soil Science and Plant Nutrition,1996,42(2):289-301.
    131. Patrick W H, Sturgis M B. Concentration and movement of oxygen as related to absorption ofammonium and nitrate nitrogen by rice. Soil Science Society of America Journal,1955,19(1):59-62.
    132. Patrick W H, Mikkelsen D S, Wells B R. Plant nutrient behavior in flooded soil. In: Olson R A,Army T J, Hanway J J, Kilmer V J, eds. Fertilizer Technology and Use. Wisconsin: Madison,1971,187–215..
    133. Peng S Z, Hao S R, Liu Q, et al. Study on the mechanics of yield-raising and ality-improving forpaddy rice under water-saving irrigation. Irrigation and Drainage,2000,19(3):3-7.
    134. Pitman M G. Adaptation of barley roots to low oxygen supply and its relation to potassium andsodium uptake. Plant Physiology,1969,44(9):1233-1240.
    135. Ponnamperuma F N. The chemistry of submerged soils. New York and London: Academic PressAdvances in Agronomy,1972,29-96.
    136. Pradhan S K, Varade S B, Kar S. Influence of soil water conditions on growth and root porosity ofrice. Plant and Soil,1973,38(3):501-507.
    137. Raghothama K G. Phosphate acquisition. Annual Review of Plant Biology,1999,50(1):665-693.
    138. Reyes D M, Stolzy L H, Labanauskas C K. Temperature and oxygen effects in soil on nutrientuptake in jojoba seedlings. Agronomy Journal,1977,69(4):647-650.
    139. Rickman R W, Letey J, Stolzy L H. Plant responses to oxygen supply and physical resistance in theroot environment. Soil Science Society of America Journal,1966,30(3):304-307.
    140. Ricard B. Anoxic responses of seedling roots of rice cultivars varying in tolerance to submergence.Russian Journal of Plant Physiology,2003,50(6):799-807.
    141. Rosene H F. Effect of cyanide on rate of exudation in excised onion roots. American Journal ofBbotany.1944,31(3):172-174.
    142. Sahrawat K L. Fertility and organic matter in submerged rice soils. Current Science,2005,88(5):735-739.
    143. Scott T W, Erickson A E. Effect of aerationand mechanical impedance on the root development ofalfalfa, sugar beets and tomatoes. Agronomy Journal,1964,56(6):575-576.
    144. Seng V, Bell R W, Willett I R. Amelioration of growth reduction of lowland rice caused by atemporary loss of soil-water saturation. Plant and Soil,2004,265(1-2):1-16.
    145. Siegel S M. and Rosen L A. Effect at reduced oxygen tension on germination and seedling growth..Physiologia Plantarum.1962,15(3):437-444.
    146. Silberbush M, Gornat B, Goldberg D. Effect of irrigation from a point source (trickling) on oxygenflux and on root extension in the soil. Plant and Soil,1979,52(4):507-514.
    147. Slaton N A, Beyrouty C A, Wells B R, et al. Root growth and distribution of two short-season ricegenotypes. Plant and Soil,1990,121(2):269-278.
    148. Sojka R E, Stolzy L H, Kaufmann M R. Wheat growth related to rhizosphere temperature andoxygen levels. Agronomy Journal,1975,67(5):591-596.
    149. Srivalli B, Sharma G, Khanna‐Chopra R. Antioxidative defense system in an upland rice cultivarsubjected to increasing intensity of water stress followed by recovery. Physiologia Plantarum,2003,119(4):503-512.
    150. Stefano M,Maurizio B. Characteristion of the oxygen fluxes in the division,elongation and maturezones of Vitis roots: influence of oxygen availabilitya. Planta,2002,214:767-774.
    151. Stolzy L H, Van Gundy S D, Labanauskas C K, et al. Response of tylenchulusS emipenetraninfected citrus seedlings to soil aeration and temperature. Soil Science,1963,96(5):292-298.
    152. Trought M C T, Drew M C. The development of waterlogging damage in wheat seedlings(Triticum aestivum L.).2. Accumulation and redistribution of nutrients by the shoot. Plant and Soil,1980,56(2):187-199.
    153. Valoras N, Letey J. Soil oxygen and water relationships to rice growth. Soil Science,1966,101(3):
    210.
    154. Varade S B, Stolzy L H, Letey J. Influence of temperature, light intensity, and aeration on growthand root porosity of wheat. Agronomy Journal,1970,62(4):505-507.
    155. Vartapetian B B, Jackson M B. Plant adaptations to anaerobic stress. Annals of Botany,1997,79(suppl1):3-20.
    156. Waddington D V, Baker J H. Influence of soil aeration on the growth and chemical composition ofthree grass species. Agronomy Journal,1965,57(3):253-258.
    157. Wallihan E F, Garber M J, Sharpless R G, et al. Effect of soil oxygen deficit on iron nutrition oforange seedlings. Plant Physiology,1961,36(4):425.
    158. Watson E R, Lapins P, Barron R J W. Effect of waterlogging on the growth, grain and straw yieldof wheat, barley and oats. Animal Production Science,1976,16(78):114-122.
    159. Wang X B, WU B, Hu B, et al. Effects of nitrate on the growth of lateral root and nitrogenabsorption in rice. Acta Botany Sinica,2002,44(6):678-683.
    160. Wang X Z, Zhu J G, Gao R, et al. Nitrogen cycling and losses under rice-wheat rotations withcoated urea and urea in the Taihu lake region. Pedosphere,2007,17(1):62-69.
    161. Webb T, Armstrong W. The effects of anoxia and carbohydrates on the growth and viability of rice,pea and pumpkin roots. Journal of Experimental Botany,1983,34(5):579-603.
    162. Wiersum L K. Potential subsoil utilization by roots. Plant and Soil,1967,27(3):383-400.
    163. Williamson R E. Effect of soil gas composition and flooding on growth of Nicotiana tabacum L.Agronomy Journal,1970,62(1):80-83.
    164. Williamson R E, Splinter W E. Effects of light intensity, temperature, and root gaseousenvironment on growth of Nicotiana tabacum L. Agronomy Journal,1969,61(2):285-288.
    165. Yang C, Yang L, Yang Y, et al. Rice root growth and nutrient uptake as influenced by organicmanure in continuously and alternately flooded paddy soils. Agricultural Water Management,2004,70(1):67-81.
    166. Yang L, Wang Y, Kobayashi K, et al. Seasonal changes in the effects of free-air CO2enrichment(FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization.Global Change Biology,2008,14(8):1844-1853.
    167. Yu T R. Oxidation-reduction properties of paddy soils. In: Institute of Soil Science, AcademiaSinica, eds. Proceedings of Symposium on Paddy Soils. Heidelberg: Springer,1981:95-106.
    168. Zhang Y S. Scherer H W. Mechanisms of fixation and release of ammonium in paddy soils afterflooding. IV. Significance of oxygen secretion from rice roots on the availability ofnon-exchangeable ammonium-a model experiment. Biology Fertilizer Soils,2002,35(3):184-188.
    169. Zhang Y, Lin X. Relation between Fe-oxides transformation and phosphorus adsorption in theoxicandanoxic layers of two paddy soils as affected by flooding. Journal of ZhejiangUniversity(Agric.&Life Sci.),2002,28(5):485-491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700