用户名: 密码: 验证码:
高羊茅不同基因型抗旱性评价及其生理调节机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是一种限制植物生长的环境因素。研究植物抗旱机理与植物适应干旱胁迫的调节机制,对选育抗旱新品种和缓解水资源短缺具有重大意义。本文以44份来自非洲、欧洲、美洲和澳洲的不同基因型高羊茅(Festucaarundinacea)为材料,首先测定干旱胁迫下的生理差异,结合分子标记结果研究高羊茅抗旱性聚类;其次,以抗旱差异较大的两个高羊茅基因型,分析高羊茅抗旱性能与整株生理、生化、形态特征之间的关系。论文还以美国7个田间抗旱差异较大的高羊茅基因型为材料,研究不同基因型地上部水分利用、根系生长、根系活力的差异,以及干旱响应蛋白质表达的差异。主要研究内容及结果如下:
     1.不同高羊茅基因型抗旱性聚类分析
     44份高羊茅基因型在温室干旱处理了13d。根据两次草坪质量(Turfquality, TQ)、叶片相对含水量(Relative water content, RWC)、电解液渗透率(Electric leakage)、叶绿素含量(chlorophyll content, Chl)、以及蒸散率(Evapotranspiration rate,ET)的试验结果,确定44份材料的抗旱性差异。聚类结果发现12份材料抗旱能力强,15份基因型对干旱敏感。在44份材料中,来自美洲的‘SH-3-AM-US’和欧洲的‘PI598949-EU-IT’抗旱能力均较强,但两者间的遗传差异较大。选择抗旱且有较大遗传差异的基因资源作为育种计划的候选亲本材料,将有助于培育抗旱性能强的品种。
     2.根系抗氧化酶活性与高羊茅抗旱性关系的研究
     抗旱基因型‘Focus’和旱敏感基因型‘PI150156’在温室干旱处理50d。测定TQ、RWC、EL、根系活力(Root Viability, RV)和根系抗氧化酶活性,判断根系抗氧化酶活性与高羊茅抗旱性的关系。TQ、RWC与RV、根系超氧化物歧化酶(Superoxide Dismutase, SOD)和过氧化氢酶(Catlase, CAT)酶活性变化成正相关关系;EL与RV、根系SOD和CAT酶活性成负相关关系,EL与以及根系谷胱甘肽还原酶(Glutathione Reductase, GR)和抗坏血酸还原酶(Ascorbate Peroxidase, APX)酶活性呈负相关性关系。结果说明维持根系底部抗氧化酶(SOD、CAT、GR和APX)活性能促进高羊茅在干旱胁迫下保持较高的草坪质量(用TQ衡量)、冠层水状态(用RWC衡量)、膜质稳定性(用EL衡量)和根系活力(RV),提高高羊茅的抗旱性。
     3.高羊茅水分代谢、光合特征及根系生长与高羊茅抗旱性关系的研究
     试验以‘Focus’和‘PI150156’,7个高羊茅基因型(‘RU5’、‘RU7’、‘RU9’、‘RU10’、‘RU18’、‘RU19’和‘RU21’)为材料,分2个试验分别研究了干旱胁迫下冠层水分代谢指标、光合特征、以及根系形态和根系活力的变化。干旱后期,抗旱基因型的水分利用率(water use effciency, WUE)、蒸散率、以及冠层与空气温度差(canopy-air temperature, CTD)显著高于干旱敏感型;光合作用受到抑制,但抗旱基因型的净光合速率(net photosyntheticrate, Pn)、蒸腾速率(Transpiration rate, Tr)、气孔导度(stomatal conductance,gs)和气孔开度(stomatal aperture, SA)都显著高于干旱敏感基因型;抗旱基因型的深层根系活力(Root viability, RV)、根系干重(Total root weight)与长度(Total root length),以及相对根茎(Specific root length, SRL)均显著高于干旱敏感基因型。结果发现优异的草坪质量、较高的叶片含水量与气孔开放程度(高气孔导度)、更有效的水分利用(高蒸散量和蒸腾速率有效降低了草坪冠层温度,高水分利用率提高了植物水分利用效率)、高光合效率、以及根系活力与根系吸水能力有关。另外,相对根茎值大的根系也是植物应对干旱的策略。
     4.干旱胁迫对高羊茅干旱响应蛋白的影响
     抗旱高羊茅‘RU9’和干旱敏感型‘RU18’干旱处理12d,研究了TQ、RWC、EL、Pn和光化学效率(photosynthesis efficiency, Fv/Fm),以及蛋白表达谱的变化。试验选取干旱第12d与浇水对照的叶片,进行了全蛋白的提取和双向电泳分离。凝胶图像分析发现处理间、材料间共有31个差异蛋白点,质谱结果显示其中的22个蛋白点的主要功能涉及植物代谢、能量合成与分解、蛋白合成和胁迫防御。结合生理指标差异,发现与能量代谢相关的蛋白表达量差异确保‘RU9’在蛋白降解情况下,依然保持较高的光合反应、碳固定途径等重要生理活动。
Drought stress is a major factor limiting turfgrass growth. Understandingmechanisms for drought resistance in turfgrass species is important for selecting andbreeding drought-tolerant cultivars and for water conservation in turfgrass management.The objectives of the dissertation research were1) to determine genetic variations inmajor physiological traits associated with drought tolerance in a collection of tall fescue(Festuca arundinacea) germplasms collected from different geographic regionsworldwide;2) to examine genetic diversity and relationship among germplasm varying indrought tolerance via molecular marker classification and physiological/biochemical traitanalysis; and3) to determine metabolic processes controlled by specific proteinsimparting superior drought tolerance in tall fescue using germplams contrasting indrought tolerance with high genetic diversity and through two-dimensionalelelctropheresis and mass spectrometry. These objectives were addressed by conductingfour independent experiments. The main results of different experiments are summarizedas the following:
     1Clustering analysis of different Tall Fescue genotypes for droughtresistance
     Plants of44accessions of tall fescue were exposed to well-watered conditions ordrought stress for13day. Visual evaluation of turf quality, leaf relative water content,electrolyte leakage, chlorophyll content, and evapotranspiration rate demonstrated widephenotypic variation contributing to drought tolerance in this collection of tall fescuegermplasm. A hierarchical cluster analysis was conducted based on physiological traitsand among44tall fescue accessions. Among the44accessions,12accessions wereclassified as most tolerant,17as moderately tolerant, and15as susceptible. Among the44accessions,‘SH-3-AM-US’from America and‘PI598949-EU-IT’from Europe were genetically distinct but both were classified as drought-tolerant germplasm based onphysiological data. These two accessions could be used as potential parents in breedingdrought-tolerant tall fescue genotypes.
     2Root antioxidant enzyme activities associated with drought tolerancein tall fescue
     Two tall fescue genotypes ‘Focus’ and ‘PI150156’ contrasting in droughttolerance were examined in the greenhouse without irrigation for50days. Evaluation ofwhole-plant drought tolerance in different tall fescue genotypes was based on thevariations in turf quality (TQ) and leaf relative water content (RWC). Root physiologicaltraits, cell membrane stability (expressed as electrolyte leakage, EL), root viability (RV)and the activities of antioxidant enzymes, were determined to evaluate root activitiesassociated with drought tolerance. The results demonstrated that drought-tolerant traits ofleaves (TQ, RWC) were positively associated with root viability and superoxidedismutase (SOD) and catalase (CAT) activities while root membrane stability waspositively associated with root viability and activities of all four antioxidant enzymes(SOD, CAT, glutathione reductase and ascorbate peroxidase). This study suggested thatmaintaining high antioxidant enzyme activities of roots may help to maintain root cellmembrane integrity and root viability, and thus ultimately contribute to better droughttolerance of the whole plant.
     3Water use, photosynthetic traits and root development associatedwith drought resistance in tall fescue genotypes
     The characteristics of water use, photosynthesis, and root morphological features androot viability were examined and compared among different genotypes of tall fescuediffering in drought tolerance. Plants of ‘Focus’, PI150156’,‘RU5’,‘RU7’,‘RU9’,‘RU10’,‘RU18’,‘RU19’, and ‘RU21’ were exposed to drought stress in greenhouse andcontrolled-environment growth chambers. The results demonstrated that the superior turfperformance (higher TQ) and leaf hydration status (higher RWC) under drought stresswere associated with sustained stomatal opening (greater stomatal aperature and stomatal conductance) and water use rate (higher transpiration rate, evapotranspiration rate andwater use efficiency) and maintaining higher photosynthetic rate (Pn), as well as thedevelopment of root system with higher viability (lower root EL) and higher ability ofextraction water. In addition, maintaining photosynthesis under long-term drought stressdepended on larger stomatal aperture, but not stomatal density. Higher specific rootlength or finer roots was positively related to the maintenance of higher TQ and RWC indrought-tolerant genotypes. This study suggested that the combined traits of developingfine (small diameter) and viable roots (lower EL) and leaves with higher stomatalopening are critical for controlling photosynthesis and water use under drought stressconditions.
     4. Identification of proteins associated with drought tolerance in tallfescue
     Drought tolerant‘RU9’and drought sensitive‘RU18’were exposed to droughtstress without irrigation for12days. The TQ, RWC, Pn, photochemical efficiency (Fv/Fm)of two tall feacue genotypes decreased, and EL increased under drought stress. Two-dimensional electrophoresis analysis identified31protein spots differentially expressedin the two genotypes under drought stress compared to their respective well-wateredcontrol plants. Mass spectrophotometry analysis revealed that differential expression ofproteins with functions controlling carbon fixation and glycolytic energy metabolismcould at least partially account for genotypic variations and contributes to superiordrought tolerance in tall fescue.
引文
[1] Ashraf M, Follad M. Roles of glycine betaine and proline in improving plant abioticstress resistance [J]. Environ. Exp. Bot.,2007,59:206-216.
    [2] Marcum K, Engelke M, Morton S, et al. Rooting characteristics and associated droughtresistance of zoysiagrass [J]. Agron. J.,1995,87:534-538.
    [3] Qian Y, Fry J, and Upham W. Rooting and drought avoidance of warm-season turfgrassesand tall fescue in Kansas [J]. Crop Sci.,1997,37:905-910.
    [4] Carrow R N. Drought avoidance characteristics of diverse tall fescue cultivars [J]. CropSci.,1996,36:371-377.
    [5] Huang B, Fry J, Wang B. Water relations and canopy characteristics of tall fescuecultivars during and after drought stress [J]. HortScience,1998,33:837-840.
    [6] Kulkarni M, Borse T, Chaphalkar S. Mining anatomical traits: a novel modellingapproach for increased water use efficiency under drought conditions in plants [J]. CzechJ. Genet. Plant Breed,2008,44:11-21.
    [7] DaCosta M, Huang B. Changes in carbon partitioning and accumulation patterns duringdrought and recovery for colonial bentgrass, creeping bentgrass, and velvet bentgrass [J].J. Am. Soc. Hortic.Sci.,2006,131:484-490.
    [8] Huang B, Eissenstat D. Linking hydraulic conductivity to anatomy in plants that vary inspecific root length [J]. J. Am. Soc. Hortic.Sci.,2000,125:260-264.
    [9] Eissenstat D. Costs and benefits of constructing roots of small diameter [J]. J.Plant Nutr.,1992,15:763-782.
    [10] Huang B, Duncan R, Carrow R. Drought-resistance mechanisms of seven warm-seasonturfgrasses under surface soil drying: II. root aspects [J]. Crop Sci.,1997,37:1863-1869.
    [11] Sheffer K, Dunn J, Minner D. Summer drought response and rooting depth of three coolseason turfgrass [J]. HortScience,1987,22:296-297.
    [12] Huang B, Gao H. Root physiological characteristics associated with drought resistancein tall fescue cultivars [J]. Crop Sci.,2000,40:196-203.
    [13] Ekern P. Evaotraspiration by bermudagrass sod, Cynodon dactybat L. Per,in Hawaii[J]. Agron. J.,1966,58:387-390.
    [14] Boyer J. Leaf enlargement and metabolic rates in com, soybean and sunflower atvarious leaf water potential [J]. Plant physiol.,1970,46:233-235.
    [15] Leaf E, Jones M, Stiles W. The physiological effects of water stress on perennialryegrass in the field [C].Proceedings of the13th International Grassland CongressSectional Papers,1977, Sections1-2:165-184.
    [16] Aronson L, Gold A, Hull R. Cool-season turfgrass responses to drought stress [J]. CropSci.,1987,27:1261-1266.
    [17]徐炳成,山仑,黄占斌.草坪草对干旱胁迫的反应及适应性研究进展[J].中国草地,2001,23(2):55-61.
    [18] Green R, Beard J and Castoff D. Leaf blade sotmatal characterizations andvapotranspiranon rates of12cool-season perennial grasses [J]. HortScience,1990,25(7):760-761.
    [19] Sharp R, Davies W. Regulation by roots and shoots of water stressed maize plant [J].Planta,1989,147:43-49.
    [20] Eagleson P. Ecohydrology: Darwinian expression of vegetation form and function [M].Cambridge: Cambridge University Press&Beijing: China Water Power Press,2008.
    [21] Brosnan J, Ebdon J, Dest W. Characteristics in diverse wear tolerant genotypes ofkentucky bluegrass [J]. Crop Sci.,2002,45:1917-1926.
    [22]郑敏娜,李向林,万里强,等.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响[J].草地学报,2009,17(5):643-649.
    [23] Huang B. Water relations and root activities of Buchloe dactyloides and Zoysiajaponica in response to localized soil drying [J]. Plant Soil,1999,208(2):179-186.
    [24]韩瑞宏,毛凯,干友民,等.干旱对草坪草的影响[J].草原与草坪,2003,5:8-10.
    [25]武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北农学报,2001,16(2):87-93.
    [26] Huang B. Water use physiology of turfgrasse:Turfgrass water conservation[C]. InUniverstity of California Agriculture and Natural Resources,2ndedition.2011,43-55.
    [27]周兴元,曹福亮,陈华.四种暖季型草坪草几种生理指标与抗旱性的关系研究[J].草原与草坪,2003(4):29-32.
    [28]卢少云,陈斯曼,陈斯平,等. ABA、多效唑和烯效唑提高狗牙根抗旱性的效应[J].草业学报,2003,12(3):100-104.
    [29] Huang B, Wang Z. physiological recovery of kentucky bluegrass from drought stress [J].International Turfgrass Society Research Journal,2005,10:867-873.
    [30] Huang B, Duncan R, Carrow R. Drought-resistance mechanisms of seven warm-seasonturfgrass under the surface soil drying: I shoot response [J]. Crop Sci.,1997,37:1858-1863.
    [31]杨文斌,杨茂仁.蒸腾速率、阻力与叶内水势和光强关系的研究[J].内蒙古林业科技,1996,34:53-57.
    [32]李洪山,张晓岚.梭梭适应干旱环境的多样性研究[J].干旱区研究,1995,12(2):15-17.
    [33]汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983(4):1-7.
    [34] Umezawa T, Fujita M, Fujita Y, et al. Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future [J]. Curr. Opin. Biotechnol.,2006,17,113-122.
    [35]尹艺林.脱落酸与植物抗旱性及其机理研究的进展[J].安庆师范学院学报(自然科学版),1996,2(4):61-63.
    [36] Michelle D, Wang Z, Huang B. Physiological adaptation of Kentuchky Bluegrass tolocalized soil drying [J]. Crop Sci.,2004,44:1307-1314.
    [37]杨斌,尚晶,韩洁茹,等.草坪草水分生理研究进展[J].山西农业科学,2011,39(8):914-917.
    [38] Beard J B. Turfgrass: Science and culture [M]. Englewood Cliffs:NJ:Prentice-Hall,1973:10-20.
    [39]徐敏云,谢帆.冷地型草坪草抗旱性及蒸散需水研究综述[J].草业科学,2004,21(5):82-85.
    [40] Huang B, Gao H. Physiological responses of diverse tall fescue cultivars to droughtstress [J]. HortScience,1999,34:897-901.
    [41] Perdomo P, Murphy J, and Berkowitz G. Physiological changes associated withperformance of kentucky bluegrass cultivars during summer stress [J]. HortScience,1996,31(7):1182-1186.
    [42] Kashiwagi J, Krishnamurthy L, Upadhyaya H, et al. Rapid screening technique forcanopy temperature status and its relevance to drought tolerance improvement inchickpea [J]. Journal of SAT Agricultural Research,2008,6:105-109.
    [43] Fu J, Huang B. Involvement of antioxidants and lipid peroxidation in the adaptation oftwo cool-season grasses to localized drought stress [J]. Environ. Exp. Bot.,2001,45:105-114.
    [44] Bonos S, Murphy J. Growth responses and performance of kentucky bluegrass undersummer stress [J]. Crop Sci.,1999,39:770-774.
    [45] Kobata T, Okuno T, Yamamoto T. Contributions of capacity for soil water extractionand water use efficiency to maintenance of dry matter production in rice [Oryza sativa]subjected to drought [J]. JPN. J. Crop Sci.,1996,65(4):652-662.
    [46] Tolk J, Howell T. Water use efficiencies of grain sorghum grown in three USA southernGreat Plains soils [J]. Agricultural Water Management,2003,59(2):97-111.
    [47] Cowan I. Water use and optimization of carbon assimilation [M]. In: Lange OL, NobelPS, Osmond CB, Zeigler H, eds. Physiological plant ecology, Vol. II. Berlin: Springer-Verlag,1982,589-613.
    [48] Jones H. Plants and microclimate: a quantitative approach to environmental plantphysiology [M].2nd edn. Cambridge: Cambridge University Press.1992.
    [49] Jones H. Interaction and integration of adaptive responses to water stress: theimplications of an unpredictable environment [M]. In: Turner NC, Kramer PJ, eds.Adaptation of plants to water and high temperature stress. New York: Wiley,1980,353-365.
    [50] Cowan I. Economics of carbon fixation in higher plants [M]. In: Givnish TJ, ed. On theeconomy of plant form and function. Cambridge: Cambridge University Press,1986,133-170.
    [51] Hubick K, Farquhar G, Shorter R. Correlationbetween water use efficiency and carbonisotope discriminationin diverse peanut (Arachis) germplasm [J]. Aust. J. Plant Physiol.,1986,13:803-816.
    [52] Johnson R, Bassett L. Carbon isotope discrimination and water use efficiency in fourcool-season grasses [J]. Crop Sci.,1991,31:157-162.
    [53] Johnson R. Carbon isotope discrimination, water relations, and photosynthesis in tallfescue [J]. Crop Sci.,1993,33:169-174.
    [54] Ebdon J, Petrovic A, Dawson T. Relationship between carbon isotope discrimination,water use efficiency, and evapotranspiration in kentucky bluegrass [J]. Crop Sci.,1998,38:157-162.
    [55] Ebdon J, Kopp K. Relationships between water use efficiency, carbon isotopediscrimination, and turf performance in genotypes of kentucky bluegrass during drought[J]. Crop Sci.,2004,44:1754-1762.
    [56] Anyia A, Herzog H. Water-use efficiency, leaf area and leaf gas exchange of cowpeasunder mid-season drought [J]. Eur. J. Agron.,2004,20:327-339.
    [57] Kang, S, Shi W, Zhang J. An improved water-use efficiency for maize grown underregulated deficit irrigation [J]. Field Crops Res.,2000,67:207-214.
    [58] Shaheen R, Hood-Nowotny R. Effect of drought and salinity on carbon isotopediscrimination in wheat cultivars [J]. Plant Sci.,2005,168:901-909.
    [59] Beard, J. Turfgrass water stress: Drought resistance components, physiologicalmechanisms, and species–genotype diversity [C]. In: H. Takatoh (ed.). Proc.6th Intl.Turf.Sci.Soc., Jpn. Soc. Turf. Sci. Tokyo.1989,23-28.
    [60]高宁,高辫远,石定燧,等.16种寒地型草坪草抗旱性及评定法初探[J].八一农学院学报,1995(1):68-72.
    [61]胡果生,黄承前,李轩.草坪草耐干热低温性能研究[J].中南林学院学报,1999,19(1):39-43.
    [62]葛晋刚,宋刚,韩艳丽,等.7种暖季性草坪草抗旱性的评价及其生理机制的研究[J].江苏林业科技,2004,31(2):12-15.
    [63] Navari-Izzo F, Quartacci M, Melfi D, et al. Lipid composition of plasma membranesisolated from sunflower seedlings grown under water-stress [J]. Physiol. Plant.,1993,87(4):508-514.
    [64] DaCosta M, Huang B. Changes in antioxidant enzyme activities and lipid peroxidationfor bentgrass species in response to drought stress [J]. J. Am. Soc. Hortic.Sci.,2007,132(3):319-326.
    [65] Breusegem F, Montagu M, Inze D. Engineering stress tolerance in maize [J]. OutlookAgr.,1998,27:115-124.
    [66] Girotti A. Photodynamic lipid peroxidation in biological systems [J]. PhotochemPhotobiol.,1990,51:497-509.
    [67] Hamrouni I, Salah H, Marzouk B. Effects of water-deficit on lipids of safflower aerialparts [J]. Phytochemistry,2001,58(2):277-280.
    [68] Bettaieb I, Zakhama N,Wannes W, et al. Water deficit effects on Salvia officinalis fattyacids and essential oils composition [J]. Sci. Hort-Amsterdam,2009,120(2):271-275.
    [69] Toumi I, Gargouri M, Nouairi I, et al. Water stress induced changes in the leaf lipidcomposition of four grapevine genotypes with different drought tolerance [J]. Biol. Plant.,2008,52(1):161-164.
    [70] Zhong D, Du H, Wang Z, et al. Genotypic Variation in Fatty Acid Composition andUnsaturation Levels in Bermudagrass Associated with Leaf Dehydration Tolerance [J]. J.Am. Soc. Hortic.Sci.,2011136(1):35-40.
    [71] Serraj R, Sinclair T. Osmolyte accumulation: can it really help increase crop yield underdrought conditions?[J]. Plant Cell Environ.,2002,25:333-341.
    [72] Yancey P, Clark M, Hands S, et al. Living with water stress: evaluation of osmolytesystems [J]. Science,1982,217:1214-1222.
    [73] Bohnert H, Jensen R. Strategies for engineering water-stress tolerance in plants [J].Trends Biotechnol.,1996,14:89-97.
    [74]籍越,孔德政,杨芳绒,等.不同品种草坪草抗旱性的初步研究[J].河南科学,2000,18(41):412-414.
    [75]卢少云,陈斯萍,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化[J].园艺学报,2003,30(3):303-306.
    [76] Weimberg R, Lerner H, Poljakoff-Mayber A. Changes in growth and water solublesolute concentrations in Sorghum bicolor stressed with sodium and potassium [J]. Physiol.Plant.,1984,62:472-480.
    [77] Fallon K, Phillips R. Responses to water stress in adapted carrot cell suspensioncultures [J]. J. Exp. Bot.,1989,40:681-687.
    [78] McCue R, Hanson A. Drought and salt tolerance: towards understanding andapplication [J]. Tibtech,1990,8:358-362.
    [79] Rhodes D, Hanson A. Quaternary ammonium and tertiary sulfonium compounds inhigher-plants [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1993,44:357-384.
    [80] Yang W, Rich P, Axtell J, et al. Genotypic variation for glycine betaine in sorghum [J].Crop Sci.,2003,43:162-169.
    [81] Lawor D,Cornic G. Photosynthetic carbon assimilation and associated metabolism inrelation to water deficits in higher plants [J]. Plant Cell Environ.,2002,25:275-294.
    [82] Cornic G, Massacci A. Leaf Photosynthesis Under Drought Stress [J]. Photosynthesisand the Environment,2004,5:347-366.
    [83] Smirnoff N. The role of active oxygen in the response of plants to water deficit anddesiccation [J]. New Phytol.,1993,125:27-58.
    [84] Bowler C, Montagu M, Inze D. Superoxide dismutase and stress tolerance [J]. Annu.Rev. Plant Physiol. Plant Mol. Biol.,1992,43:83-116.
    [85] Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens anddissipation of excess photons [J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1999,50:601-639.
    [86] Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci.,2002,7:405-410.
    [87] Reddy A, Chaitanya K, Vivekanandan M. Drought-induced responses of hotosynthesisand antioxidant metabolism in higher plants [J]. J.Plant Physiol.,2004,161:1189-1202.
    [88] Sharma P, Dubey R. Drought induces oxidative stress and enhances the activities ofantioxidant enzyme in growing rice seedling [J]. Plant Growth Regul.,2005,46:209-221.
    [89] Türkan, Bor M, zdemir F, et al. Differential responses of lipid peroxidation andantioxidants in the leaves of drought-tolerant P. acutifolius gray and drought-sensitive P.vulgaris L. subjected to polyethylene glycol mediated water stress [J]. Plant Sci.,2005,168:223-231.
    [90] Baccio D, Navari-Izzo F, Izzo R. Seawater irrigation: antioxidant defence responses inleaves and roots of a sunflower (Helianthus annuus L.) ecotype [J]. J. Plant Physiol.,2004,161:1359-1366.
    [91] Bian S, Jiang Y. Reactive oxygen species, antioxidant enzyme activities and geneexpression patterns in leaves and roots of Kentucky bluegrass in response to droughtstress and recovery [J]. Sci. Hort-Amsterdam,2009,120:264-270.
    [92] Wang Z, Huang B. Physiological recovery of kentucky bluegrass from simultaneousdrought and heat stress [J]. Crop Sci.,2004,44:1729-1736.
    [93] Hu L, Li H, Pang H, et al. Responses of antioxidant gene, protein and enzymes tosalinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salttolerance [J]. J.Plant Physiol.,2012,169:146-156.
    [94] Rafiee M, Abdipoor F, Lari H. Corn (Zea mays L.) antioxidants response to droughtstress [J]. World Academy of Science, Engineering and Technology,2011,81:412-414.
    [95]潘瑞炽.植物生理学(第5版)[M].北京:高等教育出版社,2004:56-57,84-86.
    [96] Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture not byaffecting ATP synthesis [J]. Trends Plant Sci.,2000,5:187-188
    [97] Flexas J, Bota J, Loreto F, et al. Diffusive and metabolic limitations to photosynthesisunder drought and salinity in C3plants [J]. Plant Biol.,2004,6:269-279.
    [98]应朝阳,吕亮雪,刘国道.草坪草对干旱胁迫的反应概述[J].热带作物学报,2006,27(3):116-122.
    [99] Hu L, Wang Z, Huang B. Photosynthetic responses of bermudagrass to drought stressassociated with stomatal and metabolic limitations [J]. Crop Sci.,2009,49:1902-1909.
    [100] Hu L, Wang Z, Huang B. Diffusion limitations and metabolic factors associated withinhibition and recovery of photosynthesis from drought stress in a C3perennial grassspecies [J]. Physiol. Plant.,2010,139:93-106.
    [101] Lawlor D. Limitation to photosynthesis in water stressed leaves: stomata vs.metabolism and the role of ATP [J]. Ann Bot.,2002,89:1-15.
    [102] Parry M, Andralojc P, Khan S, et al. Rubisco activity: effects of drought stress [J]. AnnBot.,2002,89:833-839.
    [103] Keck R, Boyer J. Chloroplast response to low leaf water potentials: III. differinginhibition of electron transport and photophosphorylation [J]. Plant Physiol.,1974,53:474-479.
    [104] Conic G. Drought stress and high light effects on leaf photosynthes [M]. Baker N R,Bowyer J R, Editors. Photoinhibition of photosynthesis. Oxford, Bios ScientificPublishers,1994:297-313.
    [105] Jack A,Evans D.Instant notes in plant biology [M].北京:科学出版社,2002:140-141.
    [106] Tezara W,Mitche V,Driscoi S,et al.Water stress inhibits plant photosynthesisby decreasing coupling factor and ATP [J]. Nature,1999,401:914-917.
    [107] Gunasekera D,Berkowitz G. Use of transgenic plants with ribulose1,5-bisphosphatecarboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesisunder water stress [J]. Plant Physio1.,1993,103:629-635.
    [108] Munns R, King R. Abscisic acid is not the only stomatal inhibitor in the transpirationstream of wheat plants [J]. Plant Physiol.,1988,88(3):703-708.
    [109]许旭旦. ABA等内源激素与植物的抗旱性[J].植物生理学通讯,1988,(1):1-8.
    [110]丁雷,王学臣.干旱胁迫下ABA对气孔运动的作用机制[J].干旱地区农业研究,1993,11(2):50-56.
    [111]柳小妮.脱落酸与早熟禾的耐旱性[J].甘肃农业大学学报,2002,17(3):279-284.
    [112]王玮,李德全,杨兴洪,等.水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响[J].作物学,2000,26(6):737-742.
    [113] Quarrie S, Jones H. Effects of abscisic acid and water stress on development andmorphology of wheat [J]. J. Exp. Bot.,1977,28(1):192-203.
    [114] Davies W, Metcalfe J, Lodge T, et al. Plant growth substances and the regulation ofgrowth under drought [J]. J. Plant Physiol.,1986,13:105-25.
    [115] Davies W, Tardieu F, Trejo C. How do chemical signals work in plants that grow indrying soil?[J]. Plant Physiol.,1994;104(2):309-314.
    [116] Gowing D, Davies W, Jones H. A positive root-sourced signal as an indicator of soildrying in apple, Malus x domestica Borkh [J]. J. Exp. Bot.,1990,41(12):1535-1540.
    [117] Wang Y, Zhou R, Zhou X. EndogenousLevels of ABA and Cytokinins and theirrelation to stomatal behavior in dayflower (Commelina communis L.)[J]. J. Plant Physiol.,1994,144(1):45-48.
    [118]贺继临,刘鸿先.干旱胁迫下不同抗旱性小麦叶片内源激素含量的变化与抗旱力强弱的关系[J].热带亚热带植物学报,1998,6(4):341-346.
    [119]胡朝晖,杨丽霞,宋涛平,等.水分胁迫对花生幼苗叶片内源激素含量的影响[J].中国农学通报,2009,25(17):133-136.
    [120] Brenner M,Cheikh N. The role of hormones in photosynthate partitioning and filling
    [M]. In: Davies P J(eds). Plant hormones. Kluwer Academic Publishers, The Netherlands,1995,649-670.
    [121] Pustovoitova T.Changes in the Levels of IAA and ABA in Cucumber Leaves underProgressive Soil Drought [J].Russian Journal of Planl Physiology,2004,51(4):513-517.
    [122] Pustovoitova T, Drozdova S, Zhdanova N, et al. Leaf Growth, photosynthetjc rate, andphylohormone conlents in cucumis salivus plants under progressive soil drought [J].Russian Journal of Planl Physiology,2003,51(4):441-443.
    [123] Yokoi S, Bressan R A, Hasegawa P M. Salt stress tolerance of plants [J]. JIRCASWorking Report,2002,25-33.
    [124]刘关君,王大海,郭晓瑞,等.用SDS-PAGE研究NaHCO3处理后西伯利亚蓼不同部位蛋白表达的变化[J].植物研究,2004,7:361-365.
    [125] O' Farrell P H. High resolution two-dimensional electrophoresis of proteins [J]. TheJournal of Biological Chemistry,1975,250(10):4007-4021.
    [126] Gorg A,Weiss W,Dunn M J.Current two-dimensional electrophoresis technologyfor proteomics [J]. Proteomics,2004,4(12):3665-3685.
    [127] Parker R, Flowers T J, Moore A L, et al. An accurate and reproducible method forproteome profiling of the effects of salt stress in the rice leaf lamina [J]. J. Exp. Bot.,2006,57:1109-1118.
    [128] Ali G, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress [J]. J.Proteome Res.,2006,5,396-403.
    [129] Salekdeh G, Siopongco J, Wade L. Proteomic analysis of rice leaves during droughtstress and recovery [J]. Proteomics,2002,2:1131–1145.
    [130] Hajheidari M, Abdollahian-Noghabi M, Askari H. Proteome analysis of sugar beetleaves under drought stress [J]. Proteomics,2005,5:950-960.
    [131] Hajheidari M, Eivazi A, Buchanan B. Proteomics Uncovers a Role for Redox inDrought Tolerance in Wheat [J]. J. Proteome Res.,2007,6:1451-1460.
    [132] Peng Z, Wang M, Li F. A Proteomic Study of the Response to Salinity and DroughtStress in an Introgression Strain of Bread Wheat [J]. Molecular&Cellular Proteomics,2009,8:2676-2686.
    [133] Tanksley S, McCouch S. Seed banks and molecular maps: unlocking genetic potentialfrom the wild [J]. Science,1997,277:1063-1066.
    [134] Bonos S, Huang B. Breeding and genomic approaches to improving abiotic stresstolerance in plants [M]. In B. Huang (ed.) Plant-Environment Interactions. CRC Press,Boca Raton, FL,2006,357-376.
    [135] Budak H, Shearman R, Parmaksiz I, et al. Molecular characterization of buffalograssgermplasm using sequence related amplified polymorphism markers [J]. Theor. Appl.Genet.,2004,108:328-334.
    [136] Ober E, Bloa M, Clark C, et al. Evaluation of physiological traits as indirect selectioncriteria for drought tolerance in sugar beet [J]. Field Crop Research,2005,91:231-249.
    [137] Grativol C, Lira-Medeiros C, Hemerly A, et al. High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Braziliancultivated Jatropha curcas L. accessions [J]. Mol. Biol. Rep.,2011,38:4245-4256.
    [138] UPOV. Guidelines for the conduct of tests for distinctness, homogeneity and stability:barley [S]. UPOV, Geneva,1981.
    [139] K lliker R, Stadelmann F, Reidy B, et al. Genetic variability of forage grass cultivars:A comparison of Festuca pratensis Huds., Lolium perenne L., and Dactylis glomerata L[J]. Euphytica,1999,106:261-270.
    [140] Budak H, Shearman R, Parmaksiz I, et al. Comparative analysis of seeded andvegetative buffalograsses based on phylogenetic relationship using ISSR, SSR, RAPDand SRAP [J]. Theor. Appl. Genet.,2004,109:280-288.
    [141] Moghaddam M, Trethowan R, William H, et al. Assessment of genetic diversity inbread wheat genotypes for tolerance to drought using AFLPs and agronomic traits [J].Euphytica,2005,141:147-156.
    [142] Ebdon J, Petrovic A. Morphological and growth characteristics of low-and high-wateruse Kentucky bluegrass cultivars [J]. Crop Sci.,1998,38:143-152.
    [143] Beard J, Sifers S. Genetic diversity in dehydration avoidance and droutght resistancewithin the Cynodon and Zoysia species [J]. Int.Turf. Soc. Res. J.,1997,8:603-610.
    [144] Huang B, Fry J. Root anatomical, physiological and morphological responses todrought stress for tall fescue cultivars [J]. Crop Sci.,1998,38:1017-1022.
    [145] Karcher D, Richardson M, Hignight K, et al. Drought tolerance of tall fescuepopulations selected for high root/shoot ratios and summer survival [J]. Crop Sci.,2008,48:771-777.
    [146] Huff D. RAPD characterization of heterogenous perennial ryegrass cultivars [J]. CropSci.,1997,37:557-564.
    [147] Craven K, Peterson P, Windham D, et al. Molecular identification of the turf grassrapid blight pathogen [J]. Mycologia,2005,97:160-166.
    [148] Fei S. Recent progresses on turfgrass molecular genetics and biotechnology [J]. ActaHorticulturae (ISHS).,2008,783:247-260.
    [149] Harris-Shultz K, Milla-Lewis S, Zuletab M, et al. Development of simple sequencerepeat markers and the analysis of genetic diversity and ploidy level in a centipedegrasscollection [J]. Crop Sci.,2012,52:383-392.
    [150] Rachmilevitch S, DaCosta M, Huang B. Physiological and biochemical indicators forstress tolerance [M]. In: B. Huang (ed.). Plant-environment interactions.3rd ed. CRCPress, Boca Raton, FL.2006,321-356.
    [151] Blum A, Ebercon A. Cell membrane stability as a measure of drought and heattolerance in wheat [J]. Crop Sci.,1981,21:43-47.
    [152] Bidinger F, Witcombe J. Evaluation of specific drought avoidance traits as selectioncriteria [M]. In: Baker F.W.G.(Ed.), Drought Resistance in Cereals-Theory and Practice.ICSU Press, Paris.1989,151-164.
    [153] Turgeon A. Turfgrass Management [M]. Prentice Hall, Upper Saddle River, NJ,1999.
    [154] Duncan R, Carrow R N. Stress resistant turf-type tall fescue (Festuca arundinaceaSchreb.): Developing multiple abiotic stress tolerance [J]. Int. Turf. Soc. Res. J.,1997,8:653-662.
    [155] Duncan R, Carrow R. Turfgrass molecular genetic improvement for abiotic/edaphicstress resistance [J]. Adv. Agron.,1999,67:233-305.
    [156] Hoagland D, Arnon D. The water culture method for growing plants without soil [J].Calif. Agric. Expt. Sta. Circ.1950,347:1-32.
    [157] Barrs H, P Weatherley.1962. A re-examination of the relative turgidity techniques forestimating water deficits in leaves [J]. Aust. J. Biol. Sci.15:413-428.
    [158] DaCosta M, Wang Z, Huang B. Physiological adaptation of Kentucky bluegrass tolocalized soil drying [J]. Crop Sci.,2004,44:307-1314.
    [159] Hiscox J, Israelstam G. A method for the extraction of chlorophyll from leaf tissuewithout maceration [J]. Can. J. Bot.,1979,57:1332-1334.
    [160] McCann S., Huang B. Evaluation of Drought Tolerance and Avoidance Traits for SixCreeping Bentgrass Cultivars [J]. HortScience,2008,43:519-524.
    [161] Doyle J. DNA protocols for plant-CTAB total DNA isolation [M]. In: Hewitt, G.M.,Johnston, A.(Eds.), Molecular Techniques in Taxonomy. Springer-Verlag, Berlin.1991,283-293.
    [162] Zeng B, Zhang X, Fan Y, et al. Genetic diversity of Dactylis glomerata germplasmresources detected by Inter-simple Sequence Repeats (ISSRs) molecular markers [J].Genetics (Chinese),2006,28:1093-1100.
    [163] Liu W, Zhang X, Li F, et al. Genetic diversity of bermudagrass accessions in south-west China by ISSRs molecular markers and geographic provenance [J]. ActaPrataculturae Sinica,2007,16:55-61.
    [164] Ward J. Hierarchical grouping to optimize an objective function [J]. J. Am. Statist.Assoc.,1963,58:236-244.
    [165] Jaccard P. étude comparative de la distribuition florale dans une portion des Alpes etdes Jura [J]. Bull. Soc. Vaudoise Sci. Nat.,1901,37:547-579.
    [166] Nei M, Li W. Mathematical model for studying genetic variation in terms of restrictionendonucleases [J]. Proc. Natl. Acad. Sci. U.S.A.,1979,76:5269-5273.
    [167] Fry J, Huang B. Applied turfgrass science and physiology. Chapter4: Temperaturestresses [M]. Wiley and Sons, Inc., Hoboken, NJ.2004.
    [168] Jiang Y, Huang B. Responses of photosynthesis and water relations to heat stress aloneor in combination with drought: A comparison of tall fescue and perennial ryegrass [J].HortScience,2001,36:682-686.
    [169] DaCosta M, Huang B. Drought survival and recuperative ability of bentgrass speciesassociated with changes in abscisic acid and cytokinin production [J]. J. Am. Soc. Hortic.Sci.,2007,132:60-66.
    [170] Simon E. Phospholipids and plant membrane permeability [M]. New Phytol.,1974,73:377-420.
    [171] Hamrick J, Godt M. Allozyme diversity in plant species [M]. In Brown, A. H. D., M. T.Clegg, A. L. Kahler and B. S. Weir (eds), Plant Population Genetics, Breeding andGermplasm Resources. Sinauer, Sunderland, Mass.1989,43-63.
    [172] Namaganda M, Lye K, Friebe B, et al. AFLP-based differentiation of tropical AfricanFestuca species compared to the European Festuca complex [J]. TAG Theoretical andApplied Genetics,2006,113(8):1529-1538.
    [173] Flajoulot S, Caillet J, Béguier V, et al. Genetic diversity in tall fescue using AFLPmarkers [M]. In sustainable use of genetic diversity in forage and turf breeding. C.Huyghe, Springer Netherlands,2010,89-94.
    [174] Busti A, Caceres M, Calderini O,et al. RFLP markers for cultivar identification intall fescue (Festuca arundinacea Schreb.)[J]. Genetic Resources and Crop Evolution,2004,51(4):443-448.
    [175] Mian M, Hopkins A, Zwonitzer J. Determination of Genetic Diversity in Tall Fescuewith AFLP Markers [J]. Crop Sci.,2002,42(3):944-950.
    [176] Wang Z, Yuan X, Zheng Y, et al. Molecular identification and genetic analysis for24turf-type Cynodon cultivars by Sequence-Related Amplified Polymorphism markers [J].Scientia Horticulturae,2009,122(3):461-467.
    [177] Bolaric, S, Barth S, Melchinger A, et al. Molecular genetic diversity within and amongGerman ecotypes in comparison to European perennial ryegrass cultivars [J]. PlantBreeding,2005,124(3):257-262.
    [178] Zhao H, Bughrara S, Oliveira J. Genetic diversity in colonial bentgrass (Agrostiscapillaris L.) revealed by EcoRI-MseI and PstI-MseI AFLP markers [J]. Genome,2006,49(4):328-335.
    [179] Boller B, Posselt U, Veronesi F. Fodder Crops and Amenity Grasses, Handbook ofPlant Breeding,2010.
    [180] Buckner R, Powell J, Frakes R. Historical Development [M]. In Buckner R.C. and L.P.Bush, Eds. Tall Fescue. Agron. Monograph20. ASA, CSSA, and SSSA, Madison, WI.1979,31-39.
    [181] Rosielle A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environment [J]. Crop Sci.,1981,21:943-946.
    [182] Manavalan L, Guttikonda S, Tran L. Physiological and Molecular Approaches toImprove Drought Resistance in Soybean [J]. Plant Cell Physiol.,2009,50(7):1260-1276.
    [183] Peleg Z, Fahima T, Abbo S. Genetic diversity for drought resistance in wild emmerwheat and its ecogeographical associations [J]. Plant, Cell and Environment,2005,28:176-191.
    [184] Singh S, Gutierrez J, Molina A, et al. Genetic diversity in cultivated common bean: II.marker-based analysis of morphological and agronomic traits [J]. Crop sci.,1991,31:23-29.
    [185] Gepts P, Osborn T, Rashka K, et al. Electrophoretic anaylysis of phaseolin proteinvariability in wild form and landraces of the common bean, Phaseolous vulgaris:Evidence for multiple centers of domestication [J]. Econ. Bot.,1986,40:451-468.
    [186] Gepts P, Bliss F. Phaseolin variability among wild and cultivated common beans fromColombia [J]. Econ. Bot.,1986,40:469-478.
    [187] Sprecher S, Isleib T. Morphological and phenological diversity between bean genepools. Annu. Rep. Bean Improv. Coop.,32:54-55.
    [188] Nikolaou E, Agrafioti I, Stumpf M, et al. Phylogenetic diversity of stress signallingpathways in fungi [J]. BMC Evol. Biol.,2009,9:44.
    [189] Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci.,2002,7:405–410.
    [190] M ller I, Jensen P, Hansson A. Oxidative modifications to cellular components inplants [J]. Annu. Rev. Plant Biol.,2007,58,459-481.
    [191] Hu L, Li H, Pang H, et al. Responses of antioxidant gene, protein and enzymes tosalinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salttolerance [J]. J.Plant Physiol.,2012,169:146-156.
    [192] DaCosta M, Huang B. Changes in antioxidant enzyme activities and lipid peroxidationfor bentgrass species in response to drought stress [J]. J. Am. Soc. Hortic.Sci.,2007,132:319-326.
    [193] Selote D, Khanna-Chopra R. Antioxidant response of wheat roots to droughtacclimation [J]. Protoplasma,2010,245:153-163.
    [194] Ben Hamed K, Castagna A, Salem E, et al. Sea fennel (Crithmum maritimum L.)under salinity conditions: a comparison of leaf and root antioxidant responses [J]. PlantGrowth Regul.,2007,53:185-194.
    [195] Cairns J, Audebert A, Mullins C, et al. Mapping quantitative trait loci associated withroot growth in upland rice (Oryza sativa L.) exposed to soil water-deficit in fields withcontrasting soil properties [J]. Field Crops Research,2009,114:108-118.
    [196] McCann S, Huang B. Evaluation of drought tolerance and avoidance traits for sixcreeping bentgrass cultivars [J]. HortScience,2008,43:519-524.
    [197] Knievel D. Procedure for estimating ratio of live to dead root dry matter in root coresamples [J]. Crop Sci.,1973,13:124-126.
    [198] Joslin J, Henderson G. The determination of percentages of living tissue in woody fineroot samples using triphenyltetrazolium chloride [J]. Forest Sci.,1984,30:965-970.
    [199] Giannopolitis C, Ries S. Superoxide dismutase. I. Occurrence in higher plants [J].Plant Physiol.,1977,59:309-314.
    [200] Chance B, Maehly A. Assay of catalase and peroxidase [J]. Methods Enzymol.,1955,2:764-775.
    [201] Cakmak I, Strbac D, Marschner H. Activities of hydrogen peroxide-scavengingenzymes in germinating wheat seeds [J]. J. Exp. Bot.,1993,44:127-132.
    [202] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidasein spinach chloroplasts [J]. Plant Cell Physiol.,1981,22:867-880.
    [203] Bradford M. A rapid and sensitivemethod for the quantification of microgramquantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem.,1976,72:248-254.
    [204] Reddy P, Sairanganayakulu G, Thippeswamy M, et al. Identification of stress-inducedgenes from the drought tolerant semi-arid legume crop horsegram (Macrotylomauniflorum(Lam) Verdc.) though analysis of subtracted expressed sequence tags [J]. PlantSci.,2008,175:372-384.
    [205] Mittova V, Volokita M, Guy M, et al. Activities of SOD and the ascorbate-glutathionecycle enzymes in subcellular compartments in leaves and roots of the cultivated tomatoand its wild salt-tolerant relative Lycopersicon pennellii [J]. Physiol. Plant.,2000,110:42-51.
    [206] Bandeo lu E, Eyido an F, Yücel M, et al. Antioxidant responses of shoots and roots oflentil to NaCl-salinity stress [J]. Plant Growth Regul.,2004,42:69-77.
    [207] Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2and isindispensable for stress defense in C3plants [J]. EMBO J.,1997,16:4806-4816.
    [208] Reddy P, Sairanganayakulu G, Thippeswamy M, et al. Identification of stress-inducedgenes from the drought tolerant semi-arid legume crop horsegram (Macrotylomauniflorum(Lam) Verdc.) though analysis of subtracted expressed sequence tags [J]. PlantSci.,2008,175:372-384.
    [209] Foyer C, Lelandais M, Kunert K. Photooxidative stress in plants [J]. Physiol. Plant.,1994,92:696-717.
    [210] Naya L, Ladrera R, Ramos J, et al. The response of carbon metabolism andantioxidant defenses of alfalfa nodules to drought stress and to the subsequent recoveryof plants [J]. Plant Physiol.,2007,144:1104-1114.
    [211] Qian Y, Fry J. Water relations and drought tolerance of four turfgrasses [J]. J. Am. Soc.HortScience,1997,122:129-133.
    [212] Keeley S, Koski A. Dehydration avoidance of diverse Poa pratensis cultivars andcultivar groups in a semi-arid climate [J]. Int. Turfgrass Soc. Res.,2001,9:311-316.
    [213] Richardson M, Karcher D, Hignight K, et al. Drought tolerance and rooting capacityof kentucky bluegrass cultivars [J]. Crop Sci.,2008,48:2429-2436.
    [214] Hays K, Barber J, Kenna M, et al. Drought avoidance mechanisms of selectedbermudagrass genotypes [J]. HortScience,1991,26:180-182.
    [215] White R, Bruneau A, Cowett T. Drought resistance of diverse tall fescuecultivars [J].Int. Turf. Soc. Res. J.,1993,7:607-613.
    [216] Hurd E. Phenotype and drought tolerance in wheat [M]. In J.F. Stone (ed.). Plantmodification for more efficient water use. Elsevier Sci. Publ.Co., Amsterdam.1975,39-55.
    [217] Turner N. Drought resistance and adaptationto water deficits in crop plants [M]. In H.Mussell and R.C. Staples (ed.) Stress physiology in crop plants. Wiley Interscience, Newyoke.1979,343-372.
    [218] Bennett O, Doss B. Effect of soil moisture level on root distribution of cool-seasonforage species [J]. Agron. J.,1960,52:204-207.
    [219] Wan C, Xu W, Sosebee R, et al. Hydraulic lift in drough-tolerant and drought-susceptible maize hybrids [J]. Plant Soil,2000,219:117-126.
    [220] Kashiwagi J, Krishnamurthy L, Upadhyaya H, et al. Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (Cicer arietinumL.)[J]. Euphytica,2005,146:213-222.
    [221] Su K, Bremer D, Keeley S, et al. Rooting characteristics and canopy responses todrought of turfgrasses including hybrid bluegrasses [J]. Agron. J.,2008,100:949-956.
    [222] Youngner V, Marsh A, Strohman R, et al. Water use and quality of warm-season andcool season turfgrasses [C]. In R.W. Sheard (ed.) Proc.4th Int. Turf. Res. Conf. Guelph,ON, Canada.19–23July1981. Intl. Turfgrass Society and Univ. of Guelph, ON, Canada.1981,257-259.
    [223] Carrow R. Drought resistance aspects of turfgrasses in the southeast: Root–shootresponses [J]. Crop Sci.,1996,36:687-694.
    [224] Bonos S, Rush D, Hignight K, et al. Selection for deep root production in tall fescueand perennial ryegrass [J]. Crop Sci.,2004,44:1770-1775.
    [225] Mott K, Parkhurst D. Stomatal responses to humidity in air and helox [J]. Plant, Celland Environment,1991,14:509-515.
    [226] Cowan I. As to the mode of action of guard cells in dry air [M]. In Ecophysiology ofPhotosynthesis (eds E.D. Schulze&M.M. Caldwell), Springer-Verlag, New York.1995,205-229.
    [227] Monteith J. A reinterpretation of stomatal responses to humidity [J]. Plant, Cell andEnvironment,1995,18:357-364.
    [228] Mott K, Buckley T. Stomatal heterogeneity [J]. J. Exp. Bot.,1998,49:407-417.
    [229] Damayanthi M, Mohotti A, Nissanka S. Comparison of tolerant ability of mature fieldgrown tea (Camellia sinensis L.) cultivars exposed to a drought stress in passara area [J].Tropical Agricultural Research,2010,22:66-75.
    [230] Frank A, Berdahl J. Gas exchange and water relations in diploid and tetraploidRussian wildrye [J]. Crop Sci.,2001,41:87-92.
    [231] Xu B, Li F, Shan L, et al. Gas exchange, biomass partition, and water relationships ofthree grass seedlings under water stress [J]. Weed Biol. Manage.,2006,6:79-88.
    [232] Throssell C, Carrow R, Milliken G. Canopy temperature based irrigation schedulingindices for Kentucky bluegrass turf [J]. Crop Sci.,1987,27:126-131.
    [233] Carrow R. Drought resistance aspects of turfgrasses in the southeast:evapotranspiration and crop coefficients [J]. Crop Sci.,1995,35:1685-1690.
    [234] Wraith J, Baker J. High resolution measurement of root water uptake using automatedtime-domain reflectometry [J]. Soil Sci. Soc. Amer. J.,1991,55:928-932.
    [235] Barrs H, Weatherley P. A re-examination of the relative turgidity technique forestimating water deficits in leaves [J]. Aust. J.Biol. Sci.,1962,15:413-428.
    [236] Mohammadkhani N, Heidari R. Water stress induced stomatal closure in two maizecultivars [J]. Res. J. Biol. Sci.,2008,3:750-754.
    [237] Radoglou K, Cabral R, Repo T, et al. Appraisal of root leakage as a method forestimation of root viability [J]. Plant Biosystems-An International Journal Dealing withall Aspects of Plant Biology,2007,141:443-459.
    [238] Sisson W. Carbon balance of panicum coloratum during drought and non-drought inthe northern chihuahuan desert [J]. J. Ecol.,1989,77:799-810.
    [239] Casnoff D, Green R, Beard J. Leaf blade stomatal densities of ten warm-seasonperennial grasses and their evapotranspiration rates [C]. In: H. Takatoh (ed.). Proc.6thIntl. Turfgrass Res. Conf., Tokyo.1989,129-131.
    [240] Farooq M, Kobayashi N, Ito O, et al. Broader leaves result in better performance ofindica rice under drought stress [J]. J.Plant Physiol.,2010,167:1066-1075.
    [241] Fu J, Fry J, Huang B. Tall fescue rooting as affected by deficit irrigation [J].HortScience,2007,42:688-691.
    [242] DaCosta M, Huang B. Deficit irrigation effects on water use characteristics ofbentgrass species [J]. Crop Sci.,2006,46:1779-1786.
    [243] Stoneman G, Turner N, Dell B. Leaf growth, photosynthesis and tissue water relationsof greenhouse-grown Eucalyptus marginata seedlings in response to water deficits [J].Tree Physiology,1994,14:633-646.
    [244] Huang B, Fu J. Photosynthesis, respiration, and carbon allocation of two cool-seasonperennial grasses in response to surface soil drying [J]. Plant Soil,2000,227:17-26.
    [245] Huang B, Fu J. Growth and physiological responses of tall fescue to surface soildrying [J]. Intl. Turfgrass Soc. Res. J.,2001,9:291-296.
    [246] English M, Raja S. Perspectives on deficit irrigation [J]. Agric. Water Manage.,1996,32:1-14.
    [247] Fu J, Dernoeden P. Creeping bentgrass putting green turf responses to two summerirrigation practices: rooting and soil temperature [J]. Crop Sci.,2009,49:1063-1070.
    [248] Liang J, Zhang J, Wong M. Can stomatal closure caused by xylem ABA explain theinhibition of leaf photosynthesis under soil drying?[J]. Photosynthesis Res.,1997,51:149-159.
    [249] Kang S, Zhang J. Controlled alternate partial root-zone irrigation: its physiologicalconsequences and impact on water use efficiency [J]. J. Exp. Bot.,2004,55:2437-2446.
    [250] Zhang J, Schurr U, Davies W. Control of stomatal behaviour by abscisic acid whichapparently originates in the roots [J]. J. Exp. Bot.,1987,38:1174-1181.
    [251] Zhang J, Davies W. Changes in the concentration of ABA in xylem sap as a functionof changing soil water status can account for changes in leaf conductance and growth [J].Plant Cell Envir.,1990,13:277-285.
    [252] Zhang J, Davies W. Increased synthesis of ABA in partially dehydrated root tips andABA transport from roots to leaves [J]. J. Exp. Bot.,1987,38:2015-2023.
    [253] Zhang J, Davies W. Abscisic acid produced in dehydrating roots may enable the plantto measure the water stress status of the soil [J]. Plant Cell Envir.,1989,12:73-81.
    [254] Li D, Meng Q, Zhang J, et al. Water use efficiency of sunflower plants subjected toinfluence of root signals [J]. Acta Phytobiologica Sinica,1997,7(1):35-42.(In Chinese)
    [255] DaCosta M, Huang B. Osmotic adjustment associated with variation in bentgrasstolerance to drought stress [J]. J. Am. Soc. Hortic.Sci.,2006,131:338-344.
    [256] DaCosta M, Wang Z, Huang B. Physiological adaptation of kentucky bluegrass tolocalized soil drying [J]. Crop Sci.,2004,44:1307-1314.
    [257] Weaver J, Himmel W. Relation of increased water content and decreased aeration toroot development in hdrophytes [J]. Plant Physiol.,1930,5:69-92.
    [258] Hopkins, William G. Introduction to plant physiology [M].2nd edition. Wiley andSons, Inc., Hoboken, NJ,1999,512.
    [259] Yordanov I, Velikova V, Tsonev T. Plant response to drought, acclimation, and stresstolerance [J]. Photosynthetica,2000,38:171-186.
    [260] Jackson R, Reginato R, Idso S. Wheat canopy temperature: A practical tool forevaluating water requirements [J]. Water Resour. Res.,1977,13:651-656.
    [261] Komatsu S, Konishi H, Shen S, et al. Rice proteomics: a step functional analysis ofthe rice genome [J]. Mol Cell Proteomics,2003,2:2-10.
    [262] Caruso G, Cavaliere C, Foglia P, et al. Analysis of drought responsive protein inwheat(Triticum durum) by2D-PAGE and MALDI-TOF mass spectrometry [J]. Plant sci.,2009,177:570-576.
    [263] Salekdeh G, Siopongco J, Wade L, et al. Proteomic analysis of rice leaves duringdrought stress and recovery [J]. Proteomics,2002,2:1131-1145.
    [264] Bevan M, Bancroft I, Bent E, et al. Analysis of1.9Mb of contiguous sequence fromchromosome4of Arabodopsis thaliana [J]. Nature,1998,391:485-488.
    [265] Gazanchian A, Hajheidari M, Sima N, et al. Proteome response of Elymus elongatumto severe water stress and recovery [J]. J. Exp. Bot.,2007,58:291-300.
    [266] Xu C, Huang B. Comparative analysis of drought responsive proteins in Kentuckybluegrass cultivars contrasting in drought tolerance [J]. Crop sci.,2010,50:2543-2552.
    [267] Zhao Y, Du H, Wang Z, et al. Identification of proteins associated with water-deficittolerance in C4perennial grass species, Cynodon dactylon×Cynodon transvaalensis andCynodon dactylon [J]. Physiol. Plant.,2011,141:40-55.
    [268]谢国生,柳蒡奎,高野哲夫,等.水稻中与盐碱适应性相关的VBl2不依赖型蛋氨酸合成酶基因的克隆和表达[J].遗传学报,2002,29(12):1078-1084.
    [269] Bouchereau A, Aziz A, Larher F, et al. Polyamines and environmentalchallenges:recent development [J]. Plant Sci.,1999,140:103一125
    [270]周鸿铭,雷娜,鲁亚平.甘氨酸神经递质研究进展[J].生物学杂志,2011,28(1):79-81.
    [271]于同泉,谷建田.逆境中植物体内甜菜碱的积累及其生物学意义[J].北京农学院学报,1994,9(2):161-167.
    [272] Ji K, Wang Y, Sun W, et al. Drought-responsive mechanisms in rice genotypes withcontrasting drought tolerance during reproductive stage [J]. J. Plant Physiol.,2012,169:336-344.
    [273] Roth U, Roepenack-Lahaye E and Clemens S. Proteome changes in Arabidopsisthaliana roots upon exposure to Cd2+[J]. J. Exp. Bot.,2006,57(15):4003-4013.
    [274] Amunts A, Drory O, Nelson N. The structure of a plant photosystem I supercomplex at3.4A resolution [J]. Nature,2007,447:58-63.
    [275] Chitnis P. Photosystem I [J]. Plant Physiol.,1996,111:661-669.
    [276] Meimberg K, Fischer N, Rochaix J, et al. Lys35of PsaC is required for the efficientphotoreduction of flavodoxin by photosystem I from Chlamydomonas reinhardtii [J]. Eur.J. Biochem.,1999,263(1):137-144.
    [277] Chitnis P, Reilly P, Miedel M, et al. Structure and targeted mutagenesis of the geneencoding8-kDa subunit of photosystem I from the cyanobacterium Synechocystis sp.PCC6803[J]. J. Biol. Chem.,1989,264:18374-1838.
    [278] Chitnis P. Photosystem I: Function and physiology [J]. Annu. Rev. Plant Physiol. PlantMol. Biol.,2001,52:593-626.
    [279] Terashima I, Funayama S, Sonoike K. The site of photoinhibition in leaves of Cucumissativus L. at low temperatures is photosystem I, not photosystem II [J]. Planta,1994,193:300-306.
    [280] Sonoike K, Terashima I. Mechanism of photosystem-I photoinhibition in leaves ofCucumis sativus L.[J]. Planta,1994,194:287-293.
    [281] Tjus S, Moller B, Scheller H. Photosystem I is an early target of photoinhibition inbarley illuminated at chilling temperatures [J]. Plant Physiol.,1998,116:755-764.
    [282] He C, Zhang J, Duan A, et al. Proteins responding to drought and high-temperaturestress in Populus×euramericana cv.‘74/76’[J]. Trees,2008,22:803-813.
    [283] Agrawal G, Rakwal R, Yonekura M, et al. Proteome analysis of differentiallydisplayed proteins as a tool for investigating ozone stress in rice(oryza sativa L.)seedlings [J]. Protemics,2002,2:947-959.
    [284] Xiao X, Yang F, Zhang S, et al. Physiological and proteomic responses of twocontrasting Populus cathayana populations to drought stress [J]. Physiol. Plant.,2009,136:150-168.
    [285] Shen S, Jing Y, Kuang T. Proteomics approach to identify wound-response relatedproteins from rice leaf sheath [J]. Proteomics,2003,3:527-535.
    [286]武维华.植物生理学[M].科学出版社,北京,2008.
    [287] Laxalt A, Cassia R, Sanllorenti P, et al. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNAunder biological stress conditions and elicitor treatmentsin potato [J]. Plant Mol. Biol.,1996,30:961-972.
    [288] Yang Y, Kwon H, Peng H, et al. Stress responses and metabolic regulation ofglyceraldehyde-3-phosphate dehydrogenase genes in Arabidopsis [J]. Plant Physiol.,1993,101:209-216.
    [289] Monakhova O, Chernyadev I. Effects of cytokinin preparations on the stability of thephotosynthetic apparatus of two wheat cultivars experiencing water deficiency [J]. Appl.Biochem. Microbiol.,2004,40:573-580.
    [290] Bonhomme L, Monclus R, Vincent D, et al. Leaf proteome analysis of eight Populus×euramericana genotypes: Genetic variation in drought response and in water-useefficiency involves photosynthesis-related proteins [J]. Proteomics,2009,9:4121-4142.
    [291] Flexas J and Medrano H. Drought-inhibition of Photosynthesis in C3Plants: Stomataland Non-stomatal Limitations Revisited [J]. Ann Bot.,2002,89(2):183-189.
    [292] Tezara W, Mitchell V, Driscoll S, et al. Water stress inhibits plant photosynthesis bydecreasing coupling factor and ATP [J]. Nature,1999,401:914-917.
    [293] Watson C and Jennifer A. Isoenzymes of phosphoglycerate kinase: evolutionaryconservation of the structure of this glycolytic enzyme [J]. Biochem. Soc. Trans.,1990,18:187-190.
    [294] Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ. NO way back: nitric oxide andprogrammed cell death in Arabidopsis thaliana suspension cultures [J]. The Plant Journal2000;24:667-677.
    [295] Courtois C, Besson A, Dahan J, et al. Nitric oxide signalling in plants: interplays withCa2+and protein kinases [J]. J. Exp. Bot.,2008,59(2):155-163.
    [296] Thimmanaik S, Kumar S, Kumari G. Photosynthesis and the Enzymes ofPhotosynthetic Carbon Reduction Cycle in Mulberry During Water Stress and Recovery[J]. Photosynthetica,2002,40(2):233-236.
    [297] Scafaro A, Haynes P and Atwell. Physiological and molecular changes in Oryzameridionalis Ng., a heat-tolerant species of wild rice [J]. J. Exp. Bot.,2010,61(1):191–202.
    [298] Pearson G, Hoarau G, Lago-Leston A, et al. An expressed sequence tag analysis of theintertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.)(Heterokontophyta,Phaeophyceae) in response to abiotic stressors [J]. Mar. Biotech.,2010,12(2):195-213.
    [299] Zhang J and Kirkham M. Drought-stress-induced changes in activities of superoxidedismutase, catalase, and peroxidase in wheat species [J]. Plant Cell Physiol.,1994,35(5):785-791.
    [300] Yang W, Liu J, Chen F, et al. Identification of Festuca arundinacea Schreb Cat1catalase gene and analysis of its expression under abiotic stresses [J]. J. Integr. Plant Biol.,2006,48(3):334-340.
    [301] Gogorcena Y, Iturbe-Ormaetxe I, Escuredo P, et al. Antioxidant defenses againstactivated oxygen in pea nodules subjected to water stress [J]. Plant Physiol.,1995,108:753-759.
    [302] Fernandes A, Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes withfunctions far beyond a simple thioredoxin backup system [J]. Antioxidants&RedoxSignaling,2004,6(1):63-74.
    [303] Schafleitner R, Rosales R, Gaudin A, et al. Capturing candidate drought tolerancetraits in two native Andean potato clones by transcription profiling of field grown plantsunder water stress [J]. Plant Physiol. Biochem.,2007,45:673-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700