用户名: 密码: 验证码:
深圳罗湖建成区断裂带岩土体局部区域稳定性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断层破碎带所造成的工程灾害是个极为复杂且具有重大经济意义的课题,如何才能安全有效的在这类地质环境中进行工程建设并保证其稳定性,一直是广大岩土力学和工程地质工作者所必须面对的难题。断层破碎带的缓慢蠕动将引起地面的拉张变形或不均匀沉降,对地面建筑物产生巨大的破坏作用。断裂带的活动性对城市市区的区域稳定性及地面变形问题具有重要影响。
     本文在广泛查阅、研究国内外及当地有关资料的基础之上,以深圳罗湖建成区断裂带岩土体为研究对象,通过对现场实际监测资料总结分析,并结合室内常规单轴、三轴压缩试验、单轴流变试验及有限元数值计算模拟方法对断裂带岩土体变形特性进行了系统研究。依据各项研究分析结果评价了罗湖建成区断裂带岩土体的稳定性,并按其稳定程度对罗湖地区进行了区域划分。
     试验研究及计算分析表明,岩石在单轴受压达到强度极限后,并未完全丧失承载力,而在一定阶段内仍可继续承载;三轴受压时,随着围压的增加,岩石的峰值强度和残余强度均有所增加,峰后山脆性变形向延性变形逐渐转化,同时水对岩石强度会产生弱化作用;岩质材料的岩性越软弱,其流变特性也就愈显著,且岩石在较高应力水平下的流变性能比较明显;断裂位移测量与流变有限元数值模拟都证实了罗湖断裂带的活动性,但是活动性甚微,还不足以引发大面积的地质灾害;罗湖全区可划分为稳定、较稳定及基本稳定三级四个主区及第四分区的三个亚区,从分区图中可清晰的判别断裂带不同区域的稳定程度,这对罗湖地区今后的建筑设计和城市规划具有重要的指导意义。
Research on the engineering disaster caused by faultage fracture zones is of great economic significance and also a complicated subject. How to complete constructions safely, economically and effectively in such geological circumstance is always a challenge to many experts in rock mechanics and engineering geology. Ground tensile deformation and asymmetry settlement caused by the creep of fault zones will bring a tremendous damage to the buildings on the surface. The movement of the faultage fracture zones will also influence the local stability of a city and the ground deformation.After consulting a great amount of domestic and foreign related datum, mainly taking Shenzhen Luohu fracture zones for research object, some systemic research have been done by means of analysis on locale monitoring datum analysis, laboratory routine rheopectic testing and the finite element numerical method. Luohu Jiancheng district is compartmentalized based on evaluations of the stability of rock fault zones in it with the analysis results.The experimental and analytical results show that rocks do not lose the load-carrying capability completely after reaching the peak of strength under uniaxial compression, and can still work. Under triaxial compression, the peak and remained strength of rocks both increase with the confining pressure. After the stress peak the brittle deformation disappears and the plastic deformation occurs, in the meantime water can weaken the strength of rocks; the time-dependent behavior (creep) of rocks is distinct in the region of high stress and when the rock material is soft. The measure of fracture displacements and the numerical simulation of the FEM indicate the possibility of movement of Luohu fracture zones, however, the lever of the movement in the region is relatively low, and will not cause great geological disaster. Luohu district can be divided into stable, relatively stable and basically stable region which include four primary and three secondary ones. The stability lever of different regions can be distinguished easily from the geological division map, which is of great significance to the future construction design and city planning in Luohu district.
引文
[1] First Symposium on Rock Mechanics, Quarterly of the Corolado School of Mines, 2000, 43(1): 131-137
    [2] 冯树仁,佘诗刚等译,葛修润校(布雷迪BHG,布朗ET著),地下采矿岩石力学,北京:煤炭工业出版社,1990
    [3] 郑颍人,沈珠江,岩土塑性力学原理,重庆:中国人民解放军后勤工程学院,1998
    [4] 李通林,谭学术,刘伟,矿山岩石力学,重庆:重庆大学出版社,1991
    [5] 谢和平,岩石和混凝土损伤力学,徐州:中国矿业大学出版社,1990
    [6] 华安增,张子新,层状非连续岩体稳定学,徐州:中国矿业大学出版社,1997
    [7] 徐小荷,余静,岩石破碎学,北京:煤炭工业出版社,1986
    [8] 范广勤,岩石流变学,软岩力学,北京:煤炭工业出版社,1993
    [9] 缪协兴,陈智纯,软岩力学,徐州:中国矿业大学出版社,1995
    [10] 赵阳升,岩石流体力学,北京:煤炭工业出版社,1994
    [11] 李贺,伊光志,许江等,岩石断裂力学,重庆:重庆大学出版社,1988
    [12] 徐志英,岩石力学,第3版,北京:中国水利水电出版社,1993.6
    [13] 叶金汉,岩石力学参数手册,第1版,北京:水利水电出版社,1991.5
    [14] Da Vinci L, Testing the strength of iron wires of various lengths(Notebook.ca.1500). In: W. B. Parsons. Engineers and Engineering in Renaissance, Baltimore: Williams and Wilkins, 1939,661
    [15] Von Karman. Festigkeitsversuche unter allseitigem, Druck. Zeitscht. Ver. Dentsch. Ing. 1911,55:1749—1757
    [16] Mogi K. Effect of the intermediate principal stress on rock failure. J. Geophys. Res. 1967, 72(20): 5117—5131
    [17] Cook. N. G. W, Hojem. J. P.M. A rigid 50-ton compression and tension testing machine. South Africa Mech. Eng. 1966,16:89—92
    [18] 葛修润,任建喜,蒲毅彬等,煤岩三轴细观损伤演化规律的CT动态试验,岩石力学与工程学报,1999,18(5):497—502
    [19] 王恩元,何学秋,煤岩变形破裂电磁辐射的实验研究,地球物理学报,2000,43(1):131—137
    [20] 陶振宇,岩石力学的理论与实践[M],北京:中国水利水电出版社,1981:60~63
    [21] 李先炜,岩块力学性质[M],北京:煤炭工业出版社,1983,181~200.
    [22] Wawersik W R, Fairhurst C. A study of Brittle rock frack fracture in laboratory compression experiments [J]. Int. J. Rock Mech.Min.Sci.,1970,7:561~575
    
    [23] Gowd T N, Rummel F. Effects of confining pressure on the fracture behavior of a porous rock [J].Int. J. Rock Mech.Min.Sci. and Geomech.Abstra.,1980,17:225~229
    [24] Fredrich J T, Evans B, Wong Y F. Effect of grain size on brittle and semibrittle strength; Implications for micromechanical modeling of failure in Compression. J. Geophys. Res. 1990, 95(B7): 907—1092
    [25] 徐松林,吴文,王广印等,大理岩等同压三轴压缩全过程研究Ⅰ:三轴压缩全过程利峰前、峰后卸围压全过程试验[J],岩石力学与工程学报,2001,20(6):763~767
    [26] 尤明庆,复杂路径下岩石的强度和变形特性[J],岩石力学与工程学报,2002,21(1):23~28
    [27] 铃木光(日),杨其中等译,岩体力学与测定,第一版,北京:煤炭工业出版社,1980.7
    [28] 刘雄,岩石流变学概论,第一版,北京:地质出版社
    [29] 杜时贵,岩体结构面的工程性质[M],北京:地震出版社,1999
    [30] 潘别桐,岩体力学[M],武汉:中国地质大学出版社,1990
    [31] 孙广忠,岩体结构力学[M],北京:科学出版社,1988
    [32] 张鲁新,周德培,蠕动滑坡成因及隧道变形机理的分析[J],岩石力学与工程学报,1999,18(2):217~221
    [33] 宋克强,崔中兴等,古刘滑坡的蠕变特性及其预报分析[J],岩土工程学报,1994,16(4):56~64
    [34] R.D.Lama, V.S.Vutukuri, Handbook on Mechanical Properties of Rocks, Vol.Ⅲ Trans Tech Publications, 1978
    [35] 凌贤长,蔡德所,岩体力学[M],哈尔滨:哈尔滨工业大学出版社,2002
    [36] 孙钧,岩土材料流变及其工程应用[M],中国建筑工业出版社,1999
    [37] 王军,基于GIS的深圳罗湖建成区断层稳定性评价系统与方法,河海大学硕士论文,2004.3
    [38] 王淑云,方保镕,王如云.数值分析方法[M],南京:河海大学出版社,1996
    [39] 深圳市黄贝岭F8断层微量位移监测研究报告[R],广东省深圳市地质局,2003.10
    [40] 广东省深圳市罗湖区附近晚更新世以来断裂活动调查报告[R),深圳市地质局,1986.9
    [41] Wallace, R.E., Profiles and ages of young faults scarps, north-central Nevada,Bull.Geol.Soc.Am, 1997,Vol.88,1267-1281.
    [42] Wallace,R.E., Active faults, paleoseismology, and earthquake hazards ha the Western United States, Earthquake Prediction-An International Rwview, Amer.Geopys. 1981,Union,209-216
    [43] Allen,C.R.,Geological criteria for evaluating seismicity, Bull.Geol.Soc.Am., 1975,vol.86,No.8,1041-1057
    [44] Allen,C.R..,The modern San Andreas fault, The Geotectonic Development of Califormia,W.G.Ernst,ed.,Prentice-Hall,Englewood Cliff, 1981, N.J.,511-534
    [4
    
    [45] 松田时彦,王东初译,日本活断层研究的现状及今后课题,地震地质译从,1987,9卷,2期
    [46] 松田时彦,卢振垣译,活断层和地震的地质研究,活断层研究,北京:地震出版社,1983
    [47] 日本活断层研究组,劳秋元译,日本及其周围的活断层,地震地质译从,1981
    [48] 藤田利夫等编集,断层与地震,地质学论集,1976,第12号,日本地质学会
    [49] 丁国瑜,中国内陆活动断裂基本特征的探讨,中国活动断裂,北京:地震出版社,1982
    [50] 深圳市罗湖活动断裂带稳定性及其主要建筑物与地面变形分析研究2002年度报告[R],深圳市勘察研究院,2003.7
    [51] 深圳市区域稳定性评价,北京:地质出版社,1991.6
    [52] 姚卫星,余新陆,颜永平,脆性材料压拉强度比的估计,见:清华大学博士后科学论文集,北京:清华大学出版社,1992
    [53] 王庚荪,袁建新,吴玉山,多裂纹材料单轴压缩破坏机制与强度,岩土力学,1992,13(4):1-13
    [54] 孔圆波,砂岩试样裂纹扩展和宏观断裂的模型探讨,中国矿业大学学报,1991,20(4):93-98
    [55] Hoek E. Brittle fracture propagation in rock under compression, Int J.Fract. Mech,1965,1(2): 136-155
    [56] 俞茂宏,李跃明等,强度理论研究新进展(论文集),西安:西安交通大学出版社,1992
    [57] 杨光,关于“岩土类材料统一强度理论及其应用”一文的讨论,岩土工程学报,1996,18(5):95-97
    [58] 俞茂宏,对“统一强度理论”讨论的答复,岩土工程学报,1996,18(5):97-99
    [59] Wawersik W R. 1973, Time-dependent rock behavior in uniaxial comprossion. proc. 14th Symp. Rock mech., pp.85~106
    [60] 王子潮等,岩石幂次蠕变律常数的试验测定,岩石力学与工程学报,1989,8(3)
    [61] 王子潮等,地壳岩石半脆性非均匀蠕变本构模型,岩石力学与工程学报,1990,9(2)
    [62] 徐平,夏熙伦,三峡工程花岗岩蠕变特性试验研究,岩土工程学报.
    [63] 刘泉声等,三峡花岗岩与温度及时间相关的力学性质试验研究,岩石力学与工程学报,2001,20(5):715~719
    [64] 孙钧,张德兴,李成江,渗水膨胀粘弹塑性同岩压力隧洞的耦合蠕变效应,同济大学学报,1984,6
    [65] 李建林,岩石拉剪流变特性的试验研究,岩土工程学报,2000,22(3):299~303
    [66] 曹树刚,边金等,岩石蠕变本构关系及改进的西原正夫模型[J],岩石力学与工程学报,2002,21(5):632~634
    [67] 邓荣贵,周德培等,一种新德流变模型[J],岩石力学与工程学报,2001,20(6):772~779
    
    [68] 曹树刚,鲜学福,煤岩蠕变损伤特性的实验研究[J],岩石力学与工程学报,2001,20(6):780~784
    [69] Langer M. Rheological behavior of rock masses.Proc.4th congr.Int.Soci. Rock Mech., 1979
    [70] ITO.H et al:A ten-year creep experiment on Small Rock pecimens.Int.J.Rock mech,Min.Soi.&Geomech.Abstr. 1987,24(2)
    [71] Genevois.R et al:Tim e-dependent behavior of Rocks related to their Alteration grade,Int.Congr.6th Rock Mech., 1987
    [72] 孙钧,地下结构围岩-支护系统的流变力学机理及其相互作用的理论与实践——研究报告, 同济大学地下工程系.1986,9
    [73] 孙钧,章旭昌,软弱夹层流变对地下洞室围岩力学效应的粘弹塑性分析,岩土工程学报,1987,9(6):16~26
    [74] 郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75-79
    [75] 夏才初,刘大安,理论流变模型及其统一模型研究[A],中国岩石力学与工程学会第五次学术大会论文集[C],北京:中国科学技术出版社,1998,134-140
    [76] V.L.Kubetsky,裂隙岩石和半固结岩石材料的某些蠕变规律[A],第四届国际岩石力学会议文集[C],北京:冶金工业出版社,1985
    [77] 陈宗基,根据流变学与地球动力学观点研究新奥法[J],岩石力学与工程学报,1988,7(2):97-106
    [78] 林德彰,刘宝琛, 巷道岩体-支护体系线性流变学研究[J],地下工程,1982(9):22-27
    [79] 孙钧,李永盛,岩石流变力学及其工程应用[A],岩石力学新进展[C],沈阳:东北工业出版社,1989
    [80] 范广勤,岩土工程流变力学[M],北京:煤炭工业出版社,1993
    [81] 章根德,何鲜,朱维耀,岩石介质流变学[M],北京:科学出版社,1999
    [82] 哈秋舲,李建林,张永兴等,节理岩体卸荷非线性岩体力学[M],北京:中国建筑工业出版社.1998
    [83] Michel Aubertin, D.E.Gill, B.Ladanyi. Constitutive equation with internal variables for the inelastic behavior of soft rocks. Applied Mech. Rev., ASME, 47(6-2): 97-101
    [84] Y.Sagawa, J.Yamatomi, G.Mogi. A rheology model for non-linear and time-dependent behaviors of rocks. In: Proc. of 8th ISRM Cong. (Tokyo). A.A.Balkema, 1995: 311-314
    [85] You Mingqing, Hua Anzeng. Constitution relation and model of deformation and weakness of rock material. In: Mining Science and Technology. Netherlands: A.A.Balkema, 1996:729-732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700