用户名: 密码: 验证码:
覆岩采动裂隙及其含水性的氡气地表探测机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以工作面开采过程中覆岩采动裂隙及其含水性与氡气浓度之间的相关性为主要研究对象,采用理论分析、计算机数值模拟、实验室物理模拟试验及现场实证等研究方法,对覆岩采动裂隙及其含水性的氡气地表探测机理进行了研究。
     本论文主要研究成果如下:
     (1)尝试将氡气的地球物理化学特性应用于采矿工程领域,首次将放射性测量方法引入到地下煤炭开采覆岩采动裂隙动态发育过程及其含水性方面的探测,进一步拓宽了氡气探测技术的应用领域。
     (2)首次建立了更加符合采矿实际地质情况的地下多层均匀多孔介质中氡气运移数理模型,对地下多层均匀多孔介质中氡气运移规律进行了分析。同时,进一步建立了异常气象条件下地下多层均匀多孔介质中氡气运移数理模型,对异常气象条件下地下多层均匀多孔介质中氡气运移规律进行了分析。
     (3)使用大型三维实体模型设计软件Pro/Engineer Wildfire4.0设计并研制出了国内首个覆岩采动裂隙及其含水性的氡气地表探测综合试验系统。该综合试验系统主要由可调节二维/三维物理模拟试验台架、氡气输出装置和KJD-2000R连续测氡仪等几大部件组成,具有拆装简便,物理模型铺设方便,在同一物理模拟试验台架上可快速实现二维或三维物理模拟试验等优点,克服了传统探测方法物理模拟试验系统复杂和笨重的缺点。
     (4)物理模拟试验结果表明,工作面超前影响范围内的采动裂隙能够给氡气提供良好的运移通道,氡气浓度变化趋势较为明显,氡气对覆岩层内的采动裂隙反应较为敏感,能够及时地反映采动裂隙的动态发育状态,二者之间具有较好的相关性。同时,含水层对氡气在覆岩层中运移影响十分明显,氡气在运移过程中能够以一定的饱和度溶解于含水层中,在溶解到达饱和后,能够沿着覆岩层中的采动裂隙继续向上运移至地表。
     (5)浅埋与深埋两种不同地质条件下氡气地表探测现场实证结果表明,工作面开采过程中对应地表的采动裂缝动态发育状况与氡气浓度变化特征之间具有较好的相关性,进一步验证了氡气地表探测的可行性。提出了氡气异常系数的概念,并以此作为工作面开采过程中覆岩层中基本顶破断氡气地表探测预测指标,初步确定了可以判断基本顶发生破断的氡气异常系数临界值。
The correlation between mining-induced fractures and its aquosity in overlyingstrata and radon concentration had been as main research object, and the method oftheoretical analysis, computer numerical simulation, laboratory physical simulationtest and field demonstration had been adopted to study the mechanism of detectingmining-induced fractures and its aquosity in overlying strata by radon on surface inthis paper.
     Main achievements of this dissertation have been displayed as follows:
     (1) We attempted to apply geophysical and chemical properties of radon to thefield of mining engineering, and firstly introduce the radioactive measurement methodto detect the dynamic evolution characteristics of mining-induced fractures and itsaquosity in overlying strata during underground coal mining, which had furtherbroadened the application fields of radon detection technology.
     (2) Mathematical model of radon migration in underground multilayer uniformporous media according with actual mining geological conditions had been firstly setup, and the migration law of radon in underground multilayer uniform porous mediahad been analyzed. At the same time, the mathematical model of radon migration inunderground multilayer uniform porous media with abnormal meteorologicalconditions had been further built, and the migration law of radon in undergroundmultilayer uniform porous media with abnormal meteorological conditions had beenanalyzed.
     (3) Based on the3D solid model design software Pro/Engineer Wildfire4.0, acomprehensive test system for detecting mining-induced fractures and its aquosity inoverlying strata by radon on surface had been firstly developed in China. Thiscomprehensive test system is mainly composed of adjustable2D/3D physicalsimulation test-bed frame, radon output device and KJD-2000R continuousemanometers and so on, which has the advantages of installation-dismantlementfacility, physical model laying convenience and achieving rapidly2D/3D physicalsimulation experiment, and overcomes the complexity and heavy shortcomings ofphysical simulation test systems for traditional detection methods.
     (4) Physical simulation experiment results show that the mining-inducedfractures in the advance influence scope of coalface can provide favourable migrationchannels for radon, and the change tendency of radon concentration is obvious, radon is very sensitive to the mining-induced fractures in overlying strata, it can timelyreflect the dynamic development state of mining-induced fractures, which has a goodcorrelation between mining-induced fractures and radon. Meanwhile, radon migrationin overlying strata will be obviously affected by aquifer, and it can dissolve in theaquifer with certain degree of saturation during migration process. When thedissolved process reaches maximum status, radon can continue to migrate to thesurface along the mining-induced fractures in overlying strata.
     (5) Field demonstration results of radon detection on surface in differentgeological conditions with shallow and deep buried show that there is a goodcorrelation between dynamic development status of mining-induced cracks on surfaceand radon concentration change features in the process of coalface mining, which hadfurther validated the feasibility of radon detection on surface. Then, the abnormalcoefficient concept of radon had been put forward, and used as the forecast index formain roof breakage in overlying strata by radon detection on surface during coalfacemining process. At last, the critical value of abnormal coefficient for judging mainroof breakage had been preliminarily determined.
引文
[1]周凤起,王庆一.中国能源五十年[M].北京:中国电力出版社,2001.
    [2]张国宝.2010中国国际煤炭发展高层论坛开幕式上的致辞[EB/OL].http://nyj.ndrc.gov.cn/zywx/t20101110_379842.htm,2010-10-27.
    [3]国家发展和改革委员会.节能中长期专项规划[R].北京:中华人民共和国国家发展和改革委员会,2004.
    [4]于祥明.国家能源局煤炭司司长方君实预测:2020年中国煤炭需求将达34亿吨[N].上海:上海证券报,2009-4-21(B4).
    [5]毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999.
    [6]张东升,翟德元,王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[M].徐州:中国矿业大学出版社,2010.
    [7]丁一渠,王守荣.中国西北地区气候与生态环境概论[M].北京:气象出版社,2001.
    [8]杨宏科,范立民.榆神府煤矿区地质生态环境综合评价[J].煤田地质与勘探,2003,31(6):6-8.
    [9]王浩,秦大庸,王研,等.西北内陆干旱区生态环境及其演变趋势[J].水利学报,2004(8):8-14.
    [10] ZHANG Dongsheng, FAN Gangwei, MA Liqiang, et al. Aquifer protection during longwallmining of shallow coal seams: A case study in the Shendong Coalfield of China[J].International Journal of Coal Geology,2011,86(2-3):190-196.
    [11] ZHANG Dongsheng, FAN Gangwei, LIU Yude, et al. Field trials of aquifer protection inlongwall mining of the shallow coal seams in China[J]. International Journal of RockMechanics and Mining Science,2010,47(6):908-914.
    [12] ZHANG Wei, ZHANG Dongsheng, MA Liqiang, et al. Dynamic evolution characteristics ofmining-induced fractures in overlying strata detected by radon[J]. Nuclear Science andTechniques,2011,22(6):568-571.
    [13]马立强,张东升,刘玉德,等.薄基岩浅埋煤层保水开采技术研究[J].湖南科技大学学报,2008,23(1):1-5.
    [14] ZHANG Dongsheng, FAN Gangwei, MA Liqiang, et al. Harmony of large-scale undergroundmining and surface ecological environment protection in desert district-a case study inShendong mining area, northwest of China[J]. Procedia Earth and Planetary Science,2009,1(1):1114-1120.
    [15]张东升,刘玉德,王旭锋.沙基型浅埋煤层保水开采技术及适用条件分类[M].徐州:中国矿业大学出版社,2009.
    [16]张改玲.太平煤矿疏降第四系底部含水层提高开采上限研究[D].泰安:山东科技大学,2005.
    [17]刘瑞新.松散含水层下提高开采上限的研究与实践[J].煤炭科学技术,2010,38(11):56-59.
    [18]苏宝成.华丰煤矿顶板突水机理及防治技术研究[D].泰安:山东科技大学,2005.
    [19]宋颜金,程国强,郭惟嘉.采动覆岩裂隙分布及其空隙率特征[J].岩土力学,2011,32(2):533-536.
    [20]于广明,谢和平,周宏伟,等.结构化岩体采动裂隙分布规律与分形性实验研究[J].实验力学,1998,13(2):145-154.
    [21]张拥军,于广明,路世豹,等.近距离上保护层开采瓦斯运移规律数值分析[J].岩土力学,2010,31(S1):533-536.
    [22]陈荣华,王路珍,孔海陵.数字图像相关法在相似材料模拟试验中的应用[J].实验力学,2007,22(6):605-611.
    [23]贾剑青,王宏图,胡国忠,等.急倾斜工作面防水煤柱留设方法及其稳定性分析[J].煤炭学报,2009,34(3):315-319.
    [24]王志国,周宏伟,谢和平,等.深部开采对覆岩破坏移动规律的实验研究[J].实验力学,2008,23(6):503-510.
    [25]王怀文,周宏伟,左建平,等.光测方法在岩层移动相似模拟实验中的应用[J].煤炭学报,2006,31(3):278-281.
    [26]程久龙.矿山采动裂隙岩体地球物理场特征研究及工程应用[J].中国矿业大学学报,2008,37(6):Ⅰ-Ⅲ.
    [27]钱鸣高,许家林.覆岩采动裂隙分布的“O”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [28]马立强.沙基型浅埋煤层采动覆岩导水通道分布特征及其控制研究[D].徐州:中国矿业大学,2007.
    [29]康永华,王济忠,孔凡铭,等.覆岩破坏的钻孔观测方法[J].煤炭科学技术,2002,30(12):26-28.
    [30]任奋华,蔡美峰,来兴平,等.采空区覆岩破坏高度监测分析[J].北京科技大学学报,2004,26(2):115-117.
    [31]徐智敏,孙亚军.综合探测技术在覆岩破坏观测中的应用研究[J].煤炭工程,2008(3):69-72.
    [32]张连明,周峰,张兆坤.地下岩层裂隙的几种勘察研究方法[J].水文地质工程地质,2003(4):111-114.
    [33]张平松,刘盛东,吴荣新,等.采煤面覆岩变形与破坏立体电法动态测试[J].岩石力学与工程学报,2009,28(9):1870-1875.
    [34]刘盛东,吴荣新,张平松.高密度电阻率法观测煤层上覆岩层破坏[J].煤炭科学技术,2001,29(4):18-22.
    [35]吴荣新,方良成.采用网络并行电法仪探测采煤工作面无煤区[J].安徽理工大学学报(自然科学版),2007,5(2):6-9.
    [36]李术才,王汉鹏,钱七虎,等.深部巷道围岩分区破裂化现象现场监测研究[J].岩石力学与工程学报,2008,27(8):1545-1553.
    [37] SHEMYAKIN I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocksaround underground workings. I. data of in-situ observations[J]. Soviet Mining Science,1986,22(3):157-168.
    [38] SHEMYAKIN I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocksaround underground workings. II. Disintegration of rocks on models of equivalent materials[J].Soviet Mining Science,1986,22(4):223-232.
    [39] SHEMYAKIN I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocksaround underground workings. III. Theoretical notions[J]. Soviet Mining Science,1987,23(1):1-6.
    [40] SHEMYAKIN I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocksaround underground workings. IV. Practical applications[J]. Soviet Mining Science,1988,24(3):297-302.
    [41] ADAMS G D, JAGER A J. Etroscopic observations of rock fracturing ahead of the stopefaces in deep-level gold mines[J]. Journal of the South Africa Institute of Mining andMetallurgy,1980(2):115-127.
    [42]蔡光顺,左建平,李毅,等.中兴矿近距离煤层上覆岩层移动规律研究[J].矿业工程研究,2010,25(2):1-5.
    [43]毛灵涛,安里千,刘庆,等.光栅位移实时监测系统应用研究[J].煤炭科学技术,2007,35(7):100-102.
    [44]李晓,路世豹,廖秋林,等.充填法开采引起的地裂缝分布特征与现场监测分析[J].岩石力学与工程学报,2006,25(7):1361-1369
    [45]程久龙,于师建,郭惟嘉,等.地表隐伏斑裂的综合地球物理方法探测研究[J].矿山测量,1999(3):47-50.
    [46]崔希民,彭小沾,刘文龙,等.地震勘探技术在采动损害鉴定中的应用[J].河北建筑科技学院学报,2006,23(2):63-65.
    [47]康永华,唐子波,王宗胜.鲍店煤矿松散含水层下综放开采的研究与实践[J].煤矿开采,2008,13(1):34-36.
    [48]张文泉,刘伟韬,高延法,等.南屯矿63上10面综采放顶煤开采覆岩移动变形破坏特征研究[J].山东矿业学院学报,1996,15(4):24-29.
    [49]王忠昶,张文泉,赵德深.离层注浆条件下覆岩变形破坏特征的连续探测[J].岩土工程学报,2008,30(7):1094-1098.
    [50]廖学东.倾斜长壁综采条件下覆岩破坏规律初探[J].中州煤炭,1996(1):11-13.
    [51]邢延团,郑纲,马培智.井下仰孔注水测漏法探测导水裂隙带高度的研究[J].煤田地质与勘探,2004(S),186-192.
    [52]张玉军,张华兴,陈佩佩.覆岩及采动岩体裂隙场分布特征的可视化探测[J].煤炭学报,2008,33(11):1216-1219.
    [53]张玉军,李凤明.采动覆岩裂隙分布特征数字分析及网络模拟实现[J].煤矿开采,2009,14(5):4-7.
    [54]胡建华,燕喜军,周科平,等.顶板诱导致裂裂隙数字探测分析[J].矿冶工程,2008,28(2):27-30.
    [55]申宝宏,孔庆军.综放工作面覆岩破坏规律的观测研究[J].煤田地质与勘探,2000,28(5):42-44.
    [56]文学宽. CT探测覆岩破坏高度的试验研究[J].煤炭学报,1998,23(3):300-304.
    [57]孙亚军,徐智敏,董青红.小浪底水库下采煤导水裂隙发育监测与模拟研究[J].岩石力学与工程学报,2009,28(2):238-244.
    [58]徐白山,李智鸿,尹喜玲.综放开采导水裂隙带高度及探测方法研究[J]. CPS/SEGBeijing2009International Geophysical Conference&Exposition,2009.
    [59]谈安彬.直流电法在顶板采动裂隙探测中的应用[J].中州煤炭,2009(8):63-64.
    [60]李建楼,刘盛东,张平松,等.并行网络电法在煤层覆岩破坏监测中的应用[J].煤田地质与勘探,2008,36(2):61-64.
    [61]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [62]陈迪云.室内氡污染与致癌[M].广州:广东科技出版社,2000.
    [63] L. Villalba, L. Colmenero Sujo, M.E. Montero Cabrera, et al. Radon concentrations in groundand drinking water in the state of Chihuahua, Mexico[J]. Journal of EnvironmentalRadioactivity,2005,80(2):139-151.
    [64] A. TRICCA, G. J. WASSERBURG, D. PORCELLI, et al. The transport of U-and Th-seriesnuclides in a sandy unconfined aquifer[J]. Geochimica et Cosmochimica Acta,2001,65(8):1187-1210.
    [65] Dan-Gabriel Calugaru, Jean-Marie Crolet. Identification of radon transfer velocity coefficientbetween liquid and gaseous phases[J]. Comptes Rendus Mecanique,2002,330(5):377-382.
    [66]邬剑明,高尚青.煤层自燃火区温度检测技术的研究与应用[J].中国安全科学学报,2004,14(10):109-112.
    [67] G.Ciotoli, G.Etiope, M.Guerra, et al. Migration of gas injected into a fault in low-permeabilityground[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2005,38(3):305-320.
    [68] M. Forte, A. Bertolo, F. D. Alberti, et al. Standardized methods for measuring radionuclidesin drinking water[J]. Journal of Radioanalytical and Nuclear Chemistry,2006,269(2):397-401
    [69] HITOSHI KAWABATA, HISASHI NARITA, KOH HARADA, et al. Air-Sea Gas TransferVelocity in Stormy Winter Estimated from Radon Deficiency[J]. Journal of Oceanography,2003(59):651-661.
    [70] Shafi-ur-Rehman, Matiullah, Shakeel-ur-Rehman, et al. Studying222Rn exhalation rate fromsoil and sand samples using CR-39detector[J]. Radiation Measurements,2006,41(6):708-713.
    [71] B.E. Lehmann, B. Ihly, S. Salzmann, et al. An automatic static chamber for continuous220Rnand222Rn flux measurements from soil[J]. Radiation Measurements,2004,38(1):43-50.
    [72]蔡思静.氡及其子体运移模拟及可视化系统开发[D].福州:福建师范大学,2008.
    [73] Thomas M.Semkow, Pravin P.Parekh. The role of Radium distribution and porosity in radonemanation from solids[J]. Geophysical Research Letters,1990,17(6):456-465.
    [74] J.E.Gingrich. Radon as a geochemical exploration tool[J]. Journal of GeochemicalExploration,1984,21(2):13-19.
    [75] Nazarpff W.W. Radon Transport from soil to air[J]. Re Geophys,1992,30(2):137-160.
    [76] G.M Reimer. Reconnaissance Techniques for Determining Soil-gas Radon Concentrations: anExample from Prince Georges County,Maryland[J]. Geophysical Research Letters,1990,17(6):809-812.
    [77] Lennart Malmqvist, Mats Isaksson, Krister Kristiansson. Radon Migration through Soil andBedrock[J]. Geoexploration,1989,26(4):135-144.
    [78] Соколов М.М, идр. Омеханизме лереноса радона в горных лородах и глубинностиэманационных ме-тодов поисков радиоактивных руд[J]. Атомная энер-гия,1980,49(3):176-179.
    [79]刘庆成,陈业勋,张晔,等.介质中氡运移的模拟[J].华东地质学院学报,1995,18(4):366-370.
    [80]李韧杰.氡析出率的测定及其影响因素的探讨[J].铀矿冶,2000,19(1):56-61.
    [81]李良,李忠伟.应用气体扩散和氡蜕变理论讨论水氡异常的形成[J].东北地震研究,1999,15(2):22-28.
    [82]程业勋,王南萍,侯胜利,等.空气氡的大地来源理论研究[J].辐射防护通讯,2001,21(2):15-18.
    [83] WilkeningM.H, Watkins D.E. Air exchange and Radon-222concentration in the Carlsbadcavens[J]. Health Phys,1976,31(2):139-143.
    [84] S.lombardi, G.M.Reimer. Radon and Helium in Soil Gases in The Phlegraean Fields, CentralItaly[J].Geophysical Research Letters,1990,17(6):848-652.
    [85]李亚平,许正繁.氡的迁移富集及对环境的影响[J].广东地质,1999,14(2):75-78.
    [86]戴华林,胡建平,包乾宗,等.关于浅层地震勘探和测氡定位隐伏断裂的初步探讨[J].西安工程学院学报,2001,23(4):65-68.
    [87] A. Varhegyi, J. Hakl, M. Monnin, et al. Experimental study of radon transport in water as testfor a transportation microbubble model[J]. Journal of Applied Geophysics,1992,29(1):37-46.
    [88] Kristiansson K, Malmqvist L. Evidence for Nondiffusive Transport of222Rn in the Groundand a New Physical Model for the Transport[J]. Geophysics,1982,47(8):1444-1452.
    [89] Peter. F. folger, Eileen Poeter.222Rn transport in fractured crystalline rock aquifer: result fromnumerical simulation[J]. Journal of Hydrology,1997,19(5):45-57.
    [90]白云生,林玉飞,常桂兰.铀矿找矿中氡的迁移机制探讨[J].铀矿地质,1995,11(4):224-231.
    [91]刘泰峰,安海忠,亢俊健,等.陷落柱地表氡气场成因的探讨[J].煤炭工程,2002(12):41-44.
    [92]吴慧山,林玉飞,白云生,等.氡迁移的接力传递作用[J].地球物理学报,1997,40(1):136-142.
    [93]贾文懿,方方,周蓉生,等.氡及其子体向上运移的内因与团簇现象[J].成都理工学院学报,1999(4):171-175.
    [94]乐仁昌,贾文懿,吴允平.氡运移实验研究与氡团簇运移机理[J].辐射防护,2002(5):175-181.
    [95]贾文懿,方方,周蓉生,等.不同介质中氡运移的异常现象与衰变[J].成都理工学院学报,2002(10):561-566.
    [96]方方,贾文懿.杯法测氡原理及应用[J].物探与化探,1998,22(3):191-198.
    [97]刘鸿福.氡及其子体运移的实验研究与机理探讨[D].成都:成都理工学院,1997.
    [98]曹玲玲,王宗礼,刘耀炜.氡迁移机理研究进展概述[J].地震研究,2005(7):302-306.
    [99]张智佳,廖忠友,余化平,等.峨眉山氡温泉疗养因子医疗康复作用的初探[J].西南国防医药,2009,19(2):216-217.
    [100]朱长生.矿泉水、温泉水的勘察评价与开发利用[M].北京:地质出版社,2004.
    [101] Russell S.Harmon. Radioactivity in geology[J]. Geochimicaet Cosmochimica Acta,1987,15(9):2595-2600.
    [102] Duddridge, G.A, Gringer, P, Durrance, E.M. Fault detection using soil gas geochemistry[J].Quarterly Journal of Engineering Geology,1991(24):427-435.
    [103]贾文懿.放射性物探的科技进展[J].物探与化探,1989(5):38-42.
    [104]汪成民,李宣瑚,魏柏林.断层气测量在地震学中的应用[M].北京:地震出版社,1991.
    [105] Clements W.E, Wilkening M.H. Atmospheric pressure effects on radon-222transport acrossthe Earth-air interface[J]. Journal of Geophysical Research,1974(79):5025-5029.
    [106]石辉,李占斌,赵晓光.铀钍衰变系核素在土壤侵蚀应用研究的进展[J].核农学报,2003,17(5):396-399.
    [107]魏彪,王开成,冯鹏,等.测氡技术的工程地质应用及其在三峡库区滑坡监测中的应用展望[J].重庆交通学院学报,2003,12(S1):117-120.
    [108]葛君伟.放射性方法找寻油气藏的理论、方法及应用[D].成都:成都理工学院,1991.
    [109]高立新,车用太,纪建国,等.抽水对地下水位、汞、氡的影响——以古城试验为例[J].西北地震学报,2006,28(2):144-148.
    [110]龙霞,王道永,王运生,等.卡拉水电站工程区前波断层特征及活动性研究[J].水文地质工程地质,2009(3):82-85.
    [111]刘汉彬,尹金双,崔勇辉.土壤氡气测量在鄂尔多斯盆地西缘砂岩型铀矿勘查中的应用[J].铀矿地质,2006,22(2):115-120.
    [112]鲁祖惠,陈冬荣,赵维娟.利用氨异常探测油气沉积的研究[J].核技术,1996,19(12):743-745.
    [113]刘菁华,王祝文,王晓丽,等.氡气测量在佳木斯城市地下热水普查的应用[J].地球科学与环境学报,2009,31(1):75-79.
    [114]滕彦国,郑洁琼,庹先国,等.测氡技术在泉州清源山地下水源勘查中地应用[J].物探化探计算技术,2011,33(1):75-80.
    [115]张平安.东莞某工程场地隐伏断裂α卡氡气勘测技术应用[J].西部探矿工程,2006(4):118-120.
    [116]刘江平,周斌,李庆红.氡(Rn)射气测量在胜利油田隐伏断裂研究中的应用[J].华北地震科学,2004,22(1):42-45.
    [117]唐岱茂,刘鸿福,段鸿杰,等.氡气测量用于地表探测岩溶陷落柱的位置与范围[J].核技术,1999,22(4):223-227.
    [118]靳泽先,王念秦.测氡(Rn)在滑坡预报方面的应用研究[J].中国地质灾害与防治学报,1996,7(4):8-15.
    [119]廖丽霞,郑永通,袁丽雯.华安汰内井水氡对闽台地震的映震特征差异性分析[J].地震,2010,30(4):133-139.
    [120] Xue S, Wu J, Balusus R, et al. Demonstration of innovative radon detecting technique forlocating underground heating area from surface[J]. CSIRO Exploration and Mining Report1080F, ACARP Project Report C12005, Australia.
    [121] Xue S, B.Dickson, Wu J. Application of222Rn technique to locate subsurface coal heatingsin Australian coal mines[J]. International Journal of Coal Geology,2008,74(2):139-144.
    [122]杨华.测氡技术和激发极化法在地下多层煤层火区探测中的尝试[J].山西煤炭,2005,25(3):14-17.
    [123]刘洪福,程小平,白春明.测氡技术在探测地下火区范围中的应用[J].物探与化探,1997,21(1):77-80.
    [124]金智新,白希军,王爱国.煤矿地下多层火区探测技术研究与应用[J].华北科技学院学报,2006,3(1):9-13.
    [125]杨华,刘鸿福.测氡在煤矿采空区的应用[J].山西煤炭,2002,23(2):38-40.
    [126]唐岱茂,白春明,贾恩立.用测氡技术探测采空区位置与范围的探讨[J].山西矿业学院学报,1995,13(1):18-22.
    [127]孙树庭.煤与瓦斯突出机理及无接触预测[J].淮南职业技术学院学报,2006,6(1):8-10.
    [128]吴慧山,林玉飞,白云生等.氡测量方法与应用[M].北京:原子能出版社,1995.
    [129]田丽霞.地-空界面壤中氡浓度变化研究[J].成都:成都理工大学,2007.
    [130]唐莉,朱立,胡省英等.氡地质潜势规律研究方法探讨[J].岩矿测试,1999,18(1):1-6.
    [131]刘汉彬,谈成龙.区域上氡的变化:基底岩石中微量元素地球化学对氡释放率的影响[J].世界核地质科学,200,20(4):232-236.
    [132]赵梓成,张哲,周洵远,等.非铀矿山排氡通风[M].北京:冶金工业出版社,1984.
    [133]申凤君.室内氡气的危害和防护[J].中国辐射卫生,2008,17(2):206-207.
    [134]徐巍.氡:人类健康的杀手[J].国外医学护理学分册,2003,22(3):143-144.
    [135]张新军,刘鸿福.野外活性炭测氡法实验研究[J].太原理工大学学报,2004,35(3):304-307.
    [136]乐仁昌,吴允平,贾文懿.活性炭法测定室内外环境中氡的吸附饱和性实验[J].物探与化探,2004,28(1):39-41.
    [137] Rohnsch W, Przyborowski S, Ettenhuber E. Investigation and evaluation of the radiationexposure situation in uranium mining areas of Eastern Germany[J]. Radiation ProtectionDosimetry,1992,45(S):127-132.
    [138]孙凯男.土壤氡析出率的研究[D].北京:清华大学,2004.
    [139]姜海静.壤氡辐射场理论研究与测氡仪器研制[D].成都:成都理工大学,2008.
    [140] M.Krause, J.Hausherr, W.Krenkel.(Micro)-Crack detection using local Radon transform [J].Materials Science and Engineering A,2010,527(26):7126-7131.
    [141] C.Ferry, P.Richon, A.Beneito, et al. An experimental method for measuring the radon-222emanation factor in rocks[J]. Radiation Measurements,2002,35(6):579-583.
    [142] Salvatore de Martino, Carlo Sabbarese, Giulia Monetti. Radon emanation and exhalationrates from soils measured with an electrostatic collector[J]. Applied Radiation and Isotopes,1998,49(4):407-413.
    [143]白云生,林玉飞,常桂兰.铀矿找矿中氡的迁移机制探讨[J].铀矿地质,1995,11(4):224-231.
    [144]谷懿.航空伽玛能谱测量大气氡校正方法研究[D].成都:成都理工大学,2010.
    [145]李利红.地-空界面放射性氡析出率研究[D].成都:成都理工大学,2007.
    [146] J. Hakl, I. Csige, I. Hunyadi, et al. Radon transport in fractured porous media-experimentalstudy in caves[J]. Environment International,1996,22(S1):433-437.
    [147]蔡祖煌,石慧馨.放射性气体在研究地质过程中的应用[M].北京:地震出版社,1983.
    [148]李床阳,蔡惠蓉.再论地面氡及子体探测深部铀矿的机理[J].成都理工大学学报(自然科学版),2010,37(3):279-282.
    [149] Akihiro Sakoda, Yuu Ishimori, Katsumi Hanamoto, et al. Experimental and modeling studiesof grain size and moisture content effects on radon emanation[J]. Radiation Measurements,2010,45(2):204-210.
    [150]彭玛丽.北京广东土壤氡析出率初步调查与研究[D].北京:中国地质大学,2011.
    [151]权红梅.居室氡的迁移特征和数值模拟[D].吉林:吉林大学,2008.
    [152] I Csige, J Hakl, I Lakatos. Measurement of effective diffusion coefficient of radon in porousmedia with etched track radon monitors[J]. Radiation Measurements,1995,25(1-4):659-660.
    [153] G. Etiope, S. Lombardi. Evidence for radon transport by carrier gas through faulted clays inItaly[J]. Journal of Radio Analytical and Nuclear Chemistry,1995,139(2):291-300.
    [154]张智慧.空气中氡及其子体的测量方法[M].北京:原子能出版社,1994.
    [155]方方,贾文懿,周蓉生.氡气测量研究[J].核技术,1999,22(4):218-222.
    [156]王旭锋.冲沟发育矿区浅埋煤层采动坡体活动机理及其控制研究[D].徐州:中国矿业大学,2009.
    [157]周蓉生,Π.A.瓦冈诺夫.核方法原理及应用[M].北京:地质出版社,1994.
    [158]刘泰峰.煤田陷落柱的地质特征及其地表氡气场研究[D].北京:中国矿业大学(北京),2003.
    [159]章晔,华荣洲,石柏慎.放射性方法勘查[M].北京:原子能出版社,1990.
    [160]王俊峰.煤地下自燃时覆岩中氡气运移规律及应用研究[D].太原:太原理工大学,2010.
    [161]秦馨菱.放射性勘探[M].北京:地质出版社,1958.
    [162]曾兵.成都平原地-空界面天然伽玛场及其辐射环境研究[D].成都:成都理工大学,2010.
    [163]程业勋,王南萍,侯胜利.核辐射场与放射性勘查[M].北京:地质出版社,2005.
    [164]张锦由.放射性方法勘查实验[M].北京:原子能出版社,1992.
    [165]李惠信,刘玉彬,孙庆元.原子物理学与原子核物理学[M].济南:山东教育出版社,1987.
    [166]鲁挑建,姜启明.放射性地球物理勘查[M].哈尔滨:哈尔滨工程大学出版社,2009.
    [167]石玉春,吴燕玉.放射性物探[M].北京:原子能出版社,1986.
    [168]广东省地质局七○五地质队.放射性物探[M].北京:地质出版社,1980.
    [169]张哲.氡的析出与排氡通风[M].北京:原子能出版社,1982.
    [170]刘庆成.大地-大气氡交换模型及环境氡浓度变化规律与影响因素的研究[D].北京:中国地质大学(北京),1996.
    [171]王喜元,朱立,吕磊,等.中国土壤氡概况[M].北京:科学出版社,2006.
    [172]同济大学应用数学系.高等数学(下册)[M].北京:高等教育出版社,2002.
    [173]杨永发,徐勇.向量分析与场论[M].天津:南开大学出版社,2006.
    [174] Harold Levine. Partial differential equations[M]. America:American Mathematical Society,1997.
    [175]化存才.微分方程的算子方法[M].昆明:云南科技出版社,2007.
    [176]张哲.铀尾矿堆防氡覆盖分析[J].铀矿冶,1993,12(2):99-102.
    [177] Ding Weicheng, Wang Yi, Li Yuanjing, et al. A practical soil radon(222Rn) measurementmethod[J]. Nuclear Science and Techniques,2010,21(03):182-186.
    [178]同济大学数学系.线性代数(第五版)[M].北京:高等教育出版社,2007.
    [179]郑宏兴,王培麟,张全举. MathCAD简明教程[M].北京:电子工业出版社,2005.
    [180] Zhang Wei, Zhang Dongsheng, Fan Gangwei. Design of comprehensive test system fordetecting overlying strata mining-induced fractures on surface with radon gas[J]. MiningScience and Technology(China),2011,21(6):823-827.
    [181]刘海芳. Pro/ENGINEER环境下的实体造型与装配设计[J].机械设计与制造,2004(2):27-28.
    [182]胡仁喜,张乐乐,路纯红. Pro/ENGINEER应用教程[M].北京:清华大学出版社,2007.
    [183]刘鸿文.材料力学(I)[M].北京:高等教育出版社,2004.
    [184]张东升,张炜,范钢伟,等.氡气地表探测覆岩采动裂隙固气耦合综合试验系统[P].中国专利:201020649193.0,2011-06-29.
    [185]范钢伟.浅埋煤层开采与脆弱生态保护相互响应机理与工程实践[D].徐州:中国矿业大学,2011.
    [186]刘玉德.沙基型浅埋煤层保水开采技术及适用条件分类[D].徐州:中国矿业大学,2009.
    [187]范钢伟,张东升,马立强.神东矿区浅埋煤层开采覆岩移动与裂隙分布特征[J].中国矿业大学学报,2011,40(2):196-201.
    [188]谢明忠.邯郸-峰峰矿区构造应力场分析及其影响[J].中国煤田地质,2006,18(4):13-15.
    [189]崔怀纲.国家将加强邯郸、邢台煤炭勘探开采规划管理——邯邢矿区成为河北省第一个煤炭国家规划矿区[N].石家庄:现代物流报,2006-2-10(005).
    [190]景成虎.邯郸东部平原地区地热地质特征及开发利用研究[D].北京:中国地质大学(北京),2007.
    [191]赵存良.邯邢矿区煤中伴生矿产及微量元素研究[D].邯郸:河北工程大学,2008.
    [192]朱加锋.邯郸矿区2#煤层瓦斯地质研究[D].焦作:河南理工大学,2011.
    [193]郭柯.陶二井田瓦斯地质规律研究与瓦斯预测[D].焦作:河南理工大学,2010.
    [194]曹代勇,占文峰,张军等.邯郸-峰峰矿区新构造特征及其煤炭资源开发意义[J].煤炭学报,2007,32(2):141-145.
    [195]常明华.邯峰矿区地质构造样式及找煤方向预测[J].中国煤田地质,2006,18(S):3-6.
    [196]王红胜.沿空巷道窄帮蠕变特性及其稳定性控制技术研究[D].徐州:中国矿业大学,2011.
    [197]李鸿昌.矿压的相似材料模拟实验[M].徐州:中国矿业大学出版社,1988.
    [198]左保成,陈从新,刘才华,等.相似材料试验研究[J].岩土力学,2004,25(11):1805-1808.
    [199]张炜,张东升,马立强,等.一种氡气地表探测覆岩采动裂隙综合试验系统研制与应用[J].岩石力学与工程学报,2011,30(12):2531-2539.
    [200] GB50325-2001.民用建筑工程室内环境污染控制规范[S].
    [201]杨镜明,张霖,王成.小波变换在砂岩型铀矿地面氡气测量中的应用[J].铀矿地质,2008,24(3):164-169.
    [202]耿杰,陈安方,潘双进.用小波变换方法提取地下流体观测异常信息[J].地震研究,2009,32(1):12-17.
    [203]顾申宜,张慧.水位、水氡小波分析中期异常提取方法[J].地震学报,2011,33(4):471-482.
    [204]任佳,张纳莉,王长江.怀4井数字气氡固体潮潮汐效应初步研究[J].华北地震科学,2006,24(1):56-59.
    [205]史东升,弟宇鸣,周春林.小波变换与傅里叶变换在能谱降噪处理中的比较研究[J].核电子学与探测技术,2006,26(6):134-137.
    [206]张国华,张文娟,薛鹏翔.小波分析与应用基础[M].西安:西北工业大学出版社,2006.
    [207]李世雄.小波变换及其应用[J].高等数学研究,2002,5(1):43-45.
    [208]李建平.小波分析与信号处理——理论、应用及软件实现[M].重庆:重庆出版社,1997.
    [209]郑治真,沈萍,杨选辉,等.小波变换及其MATLAB工具的应用[M].北京:地震出版社,2001.
    [210]徐长发,李国宽.实用小波方法[M].武汉:华中科技大学出版社,2009.
    [211]李媛.小波变换及其工程应用[M].北京:北京邮电大学出版社,2010.
    [212]成都科振新技术开发有限责任公司. CD-1/KZ-D02低本底杯测氡仪使用说明书[Z].2009.
    [213]四川新先达测控技术有限公司. KJD-2000R测氡仪(谱仪)使用说明书[Z].2009.
    [214]周晓阳.数学实验与Matlab[M].武汉:华中科技大学出版社,2002.
    [215]张德丰. MATLAB数字图像处理[M].北京:机械工业出版社,2009.
    [216]董霖. MATLAB使用详解[M].北京:科学出版社,2008.
    [217]周品,赵新芬. MATLAB数学建模与仿真[M].北京:国防工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700