用户名: 密码: 验证码:
基于多点成形与渐进成形的板料复合成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多点与渐进复合成形是将多点成形与渐进成形有机结合的板料柔性成形新技术,它充分发挥多点成形技术高效的优点以及渐进成形技术高精度的优点,克服各自的不足,提高板料的成形能力、成形精度及成形效率,是板料数字化成形方法的发展与补充,为薄板类复杂零件的高效率、高精度、数字化制造提供了有效手段,适合于生产批量较小的汽车、飞机等制造业使用,可以实现板类零件的柔性化、数字化制造。
     本文提出了基于多点成形与渐进成形的金属板料复合成形新技术,介绍了两种复合成形技术,并分别阐述了两种复合成形方式的特点及适用范围,给出了板料复合成形时的基本力学计算方法;介绍了复合成形系统的构成,研究了成形工具头及其驱动机构、压边夹紧装置、多点模具基本体结构、基本体的调形方式等关键技术;探讨了自由曲面的数字化测量方法、曲面重构等问题;建立了复合成形有限元模型,运用动态显式有限元方法对板料过程进行数值模拟,分析了成形过程中板料的成形性能。将数值模拟结果与实验数据进行比较,验证了数值模拟的准确性。
With the fast development of modern industry, the variety of the sheet metal forming part is manufacturing at an incredible speed, and its requirement is increasing urgently. Therefore, the research and development of the sheet metal plasticity forming process technology is an important component of the national economy sustainable development. The sheet metal plasticity forming technology with the advantages of its high production efficiency, the finer product quality and the raw materials low consumption is widely used in the industrial field such as automobile, ship, aerospace and electron.
     In order to meet the requirement of the sheet metal plasticity forming of the modern industry, such as multi-variety, small batch, flexible and digital processing, the multi-point forming technology is combined with the incremental forming technology each other, which will give the reins to the high efficiency advantage of the multi-point forming technology and the high-precision advantage of the incremental forming technology, so the combined forming technology will overcome their lack of ability to improve the forming capability, the forming precision and the forming efficiency for the sheet metal. The combined forming new technology is the development and supplement of the digital shaping method and will provides an effective means for the high efficiency, high accuracy and digital manufacturing of the complicated sheet metal part. The multi-point and incremental complex digital forming equipment for the sheet metal can achieve the product-line testing and carry out the product closed-loop forming. Its processing capacity and its product quality have a qualitative leap and the manufacturing cost is far lower than the manufacturing cost of the multi-point forming press with the same forming accuracy. This equipment is applicable to the production of the complicated three-dimensional curved surface part of the sheet metal and the use of the manufacturing industry that can produce a batch of smaller car and aircraft, at the same time it can implement the flexible and digital manufacturing for the sheet-type parts.
     The main contents and conclusions are as follows:
     1. Study on the combined forming technology and the mechanical calculation method.
     In this paper, the combined forming method based on multi-point forming and incremental forming of sheet metal is putted forward. The technology makes use of the high efficiency features of the multi-point forming technology and the high-precision features of the incremental forming technology, which can achieve the high efficiency and high-accuracy digital forming for a complicated three-dimensional curved surface shape part. According to the characteristics of multi-point forming and incremental forming, two kinds of combined forming way are given: the multi point performing-incremental postforming way and the incremental forming way based on multi point die. By comparing the combined forming technology of sheet metal with the multi-point forming and incremental forming method, the advantages of the forming efficiency and the forming accuracy are pointed out. Combining with their own characteristics of two kinds of forming method, their respective scope of application is pointed out. Through the theoretical analysis of the stress and strain of sheet metal in the combined forming process, the basic mechanical calculation method of the combined forming of sheet metal is given. By studying the parameter such as the stress, strain, thickness thinning and the forming force in the combined forming process of sheet metal, the theoretical calculation formula of the parameter is given, which will provide an important basis for the power choice and the parameter settings of the experimental equipment and the equipment, at the same time, a theoretical basis is provided for the parameter choice of the numerical simulation and the result demonstration in the combined forming process.
     2. Study on the combined forming experimental installation
     This paper introduces the structure of the combined forming system. This system is mainly composed of several sub-systems such as mechanical hydraulic pressure system, electrical control system, computer software system and so on. In order to realize the online checking of the product and the closed-loop forming, the combined forming system should also include the online checking and information feedback of product. Several key institutions composing the combined forming system is studied such as the forming tool head, its driving mechanism, the blank clamping device, the structure the fundamental element with multi-point die, the shape adjusting way of the fundamental element and so on, also the structure chart the element-group model and the calculation method of element height are given. The control system structure of combined forming system is illuminated. These studies provide a good protection for carrying out the forming experiment of the system and a useful exploration for developing the practical forming equipment.
     3. Study on the surface measurement method and the combined forming experiment
     This paper introduces the part information acquiring technology such as the self-adaptation digital measuring method of the free crooked surface laser scanning, CT image edge information extraction method. The author discusses the de-noising method of the measurement data based on wavelet transform and the testing data treatment method of the located measurement data justification by three fiducial points. On this basis, the key question of the reconstruction of crooked surface based on NURBS is studied, which will establish the foundation for realizing the digital testing and the closed-loop forming. Through the Tensile test, the testing data for the physical performance of experiment material such as 08Al steel plate and L2Y2 aluminum is given, which will provide a strong basis for the combined forming experiment and the numerical simulation of material performance. Based on the research on the combined forming experiment of the typical shape part such as the face profile forming part and the spherical-shaped part, the author directly illustrates the combined forming process of two kinds of forming way and their own forming characteristics, at the same time, the author analyses the defect appearance and its suppression method in the combined forming process of the sheet metal, which will carry out a preliminary exploration for improving the forming performance of sheet metal. The author studies the combined forming experiment of the sphere-shaped sheet metal holding, which will establish a good foundation for the practical application of the combined forming technology in the cranial prosthesis forming. These studies will establish some practical foundations for the theoretical analysis and numerical simulation of the combined forming of sheet metal. The successful application of the combined forming technology in the cranial prosthesis forming is a useful attempt of the practical application the combined forming technology of sheet metal.
     4. Study on the numerical simulation of the combined forming process
     This paper describes the relevant theory of the numerical simulation of sheet metal plasticity forming and gives the basic equation of continuum mechanics and illustrates the material constitutive relation. In order to make the numerical simulation results closer to the real situation, the elastic-plastic material model submitting Hill normal anisotropy yield criteria should be adopted well and truly in the process of the numerical simulation. This paper introduces the finite element equation of the dynamic explicit analysis and the related issues. Therefore, using the dynamic explicit finite element method has some advantages such as a short calculation time, the process stabilization, a high vectorization, a high parallelization and so on in the numerical simulation of the plasticity forming of sheet metal. In the combined forming process of sheet metal, the study of some issues such as the element selection, contact, and friction will establish a theoretical foundation for the numerical simulation analysis of the combined forming process. This paper introduces the flow of the numerical simulation of the combined forming process and gives the establishment method and the application example such as the material model, solid model element selection, meshing and the boundary conditions in the numerical simulation of the combined forming process. The finite element model of the combined forming process is established.
     5. Analysis of the numerical simulation result
     This paper performs the numerical simulation of the combined forming process of sheet metal by applying dynamic explicit finite element method, such typical shapes part as the spherical-shaped, box-shaped, round shape parts. And so this paper also analyzes the sheet metal formability such as distortion rule, the equivalent stress distribution and the thickness change in the combined forming process. The numerical simulation result of spherical-shaped part forming process shows that a reasonable choice of elastic cushion can’t only effectively inhibit the indentation flaw which the combined forming process will bring, but also guarantee the forming quality of the part. The numerical simulation result of forming sheet metal holding spherical-shaped part shows that if the multipoint die applies the punch as far as possible in the combined forming process of the holding sheet metal, the shaped parts will be more precise. Their simulation results of the box-shaped part and round box-shaped part show the tool head should be used to go the helix way in the combined forming process. a reasonable choice of the tool head feed rate can improve the forming capability the and forming quality of shaped part. By comparing the numerical simulation result and the experiment data, the author proves the accuracy and validity of numerical simulation.
引文
[1]李春峰.板材成形新技术及发展趋势[J].机械工人,2005(7):4~9
    [2] M.Z.Li,Z.Y.Cai,et al.multi-point forming technology for sheet metal[J].International Journal of processing technology,2002,129:333~338
    [3] G.Ambrogio,L.De Napoli,L.Filice,et al. Application of Incremental Forming process for high customised medical product manufacturing[J].Journal of Materials Processing Technology,2005,162-163:156~162
    [4]洪慎章,模具工业的发展趋势及塑性成形技术的研究方向[J].模具制造,2003(12):3~5
    [5]洪丽华,陈永禄.中国模具工业现状和模具技术发展趋势[J].机电技术,2007(2):96~99
    [6]黄小英.现代模具制造业的发展趋势[J].南方农机,2004(2):13~14
    [7] B.T.Tang,Z.Zhao,X.Y.Lu,Z.Q.Wanga,et al.Fast thickness prediction and blank design in sheet metal forming based on an enhanced inverse analysis method[J].International Journal of Mechanical Sciences ,2007,49:1018~1028
    [8] R.Padmanabhana,M.C.Oliveiraa,J.L.Alvesb,et al.Influence of process parameters on the deep drawing of stainless steel[J].Finite Elements in Analysis and Design ,2007,43:1062 ~1067
    [9] Y.Ashida,H.Aoyamab.Press forming using ultrasonic vibration[J].Journal of Materials Processing Technology,2007,187–188:118~122
    [10] G.H.Bae,J.H.Song,H.Huha,et al.Simulation-based prediction model of the draw-bead restraining force and its application to sheet metal forming process[J].Journal of Materials Processing Technology,2007,187–188:123~127
    [11]李坚石,陈天健,梅光前.二维模具成形过程计算机仿真[J].计算物理,1997,14(6):605~607
    [12]龚志辉,钟志华,杨旭静.汽车外覆盖件回弹评价方法及应用[J].汽车工程,2007,29(4):351~354
    [13]李国祥.喷丸成形[J].航空制造技术,1983(4):8~11
    [14]程秀全,张建荣.喷丸成形技术在民航领域的应用[J].锻压装备与制造技术,2007(4):77~80
    [15]曾元松.喷丸成形技术在民用飞机整体壁板研制中的应用[J].航空制造技术,2008(1):54~55
    [16]刘建华,杨合,李玉强等.旋压技术基本原理的研究现状与发展趋势[J].重型机械学报,2002(3):1~5
    [17]王成和,刘克璋.旋压技术[M].机械工业出版社,1986
    [18]马振平,李宇.普旋道次曲线轨迹对成形影响分析[J].锻压技术,1999(7):15~17
    [19]康达昌,高西成,孟晓峰等.平板毛坯普旋变形方式的研究[J].塑性工程学报,1998(4):102~106
    [20]徐恒秋,樊桂森,张锐等.旋压设备及工艺技术的应用与发展[J].新技术新工艺,2007(2):6~9
    [21]蔺宇龙,佟铮,马万珍等.环形槽散热板爆炸成形的实验研究[J].锻压技术,2006(6):60~63
    [22]张俊秀,刘光烈.爆炸及其应用技术[M].兵器工业出版社,1998
    [23]李春峰.高能率成形技术.国防工业出版社[M],2001
    [24]胡正寰.中国材料工程大典,21卷[M].化工工业出版社,2006
    [25]李洪涛,王绍安,邱春城等.电磁成形工艺及其应用[J].电加工,1999(3):36~39
    [26]孙慧平,郭伟刚,吴晓峰等.电磁成形技术在薄板成形中应用的研究进展[J].机床与液压,2007(6):44~48
    [27]常宏,孟正华,胡双峰.平板毛坯电磁成形线圈的研究及应用[J].锻压技术,2007(3):7~11
    [28]王立峰,黄尚宇.平板电磁成形过程仿真研究[J].系统仿真学报,2006(3):757~759
    [29]陈敦军,向毅斌,吴诗等.激光成形工艺方法及其发展前景[J].热加工工艺,2000(3):50~51
    [30]方刚.激光成形技术的特点及其应用[J].应用激光,2001(2):107~110
    [31]周建忠,张永康,杨继昌等.基于激光冲击波的板料塑性成形新技术[J].中国机械工程,2002(22):1938~1941
    [32]杨继昌,周建忠,张永康等.激光冲压金属板料成形的研究[J].江苏大学学报(自然科学版),2002(1):1~4
    [33] Y.Nameba.Laser forming in space[J].Wang C P.Proc.of Int.Conf.On Lasers 85ed,1986,403~407
    [34] Geiger M,Vollertsen F.The mechanism of laser forming[J].CIRP Annuals,1993,42(1):301~304
    [35] An.K.Kyrsanidi,Th.B.Kermanidis,Sp.G.Pantelakis.An analytical model for the prediction of distortions caused by the laser forming process[J].Journal of Materials Processing Technology,2000,104:94~102
    [36] Z.Hu,M.Labudovic,H.Wang,R.Kovacevic.Computer simulation and experimental investigation of sheet metal bending using laser beam scanning[J].International Journal of Machine Tools & Manufacture,2001,41:589~607
    [37] H.L.Chan,A.D.Spence,M.P.Sklad.Laser digitizer-based sheet metal strain and surface analysis[J].International Journal of Machine Tools & Manufacture,2007,47:191~203
    [38]李纬民,李春科.板料成形新工艺—激光弯曲[J].锻压技术,1993(6):29~31
    [39]季忠,刘庆斌,吴诗惇.金属薄板的激光成形技术[J].激光与光电子学进展,1995(11):24~25
    [40]王秀凤,Janos,Gyorgy Krallics.薄板激光弯曲机理的研究[J].锻压技术,2001(4):29-30
    [41] Hong Shen,Yongjun Shi,Zhenqiang Yao,et al.An analytical model for estimating deformation in laser forming[J].Computational Materials Science,2006,37:593~598
    [42] Guan Yanjin,Sun Sheng,Zhao Guoqun,et al.Finite element modeling of laser bending of pre-loaded sheet metals[J].Journal of Materials Processing Technology,2003,142:400~407
    [43]李明哲,中村敬一等.基本的な成形原理の检讨(板材多点成形法の研究第1报)[J].平成4年度日本塑性加工春季讲演会论文集,横浜,1992:519~522
    [44]付文智.多点成形设备及其调形用关键零部件研究[D].吉林大学博士学位论文,2004
    [45]李淑慧,李明哲,蔡中义等.板材多点弯曲过程及回弹现象的数值模拟[J].农业机械学报,2000(1):112~115
    [46]陈建军.多点成形CAD与分段多点成形工艺的研究[D].吉林大学博士学位论文,2001
    [47]中岛尚正.针金束を用いた金型·电极の研究[J].日本机械学会志第72卷第603号,1959:32~40
    [48]北野広雄.钢板曲げ加工用万能调整式プレス机械の研究[D].博士学位论文,日本京都大学,1961
    [49]西冈富仁雄,西牧舆,松石正克等.ュニバーサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第1报:基础的研究)[J].昭和47年10月日本造船学会秋季讲演会论文集,132(1972):481~501
    [50]西冈富仁雄,田中武,安川度等.ュニバーサル多点プレス法による船体外板曲げ作业の自动化に关する研究(第2报:实用化研究)[J].日本造船学会春季讲演会论文集,133(1973):291~305
    [51]世古成道,熊本盛秀等.三条プレスの开发[J].三菱重工技报,1976(6):64~72
    [52]岩崎安宏,槛田浩,田浦良治.ュニバーサル多点プレス法による船体外板曲げ作业の自动化に关する研究[J].三菱重工技报.1976(136):64~72
    [53]井关日出男,加藤和典,高场浩二.由柔性工具进行局部成形的方法[J].42回日本塑性加工连合讲演会论文集,1991:265~266
    [54]井关日出男,加腾和典等.通过柔性工具进行逐次成形的方法[J].平成4年度日本塑性加工春季讲演会论文集,1992:527~530
    [55]野本敏治等.多点プしス法による船体外板の曲げ加工に关する基础的研究[J].日本造船学会论文集第170号,1991:587~598
    [56]大冢守三等.多点成形法にょる船体外板の曲げ加工[J].平成8年度日本塑性加工春季讲演会论文集,1996:512~513
    [57] David E. Hardt,David C. Gossard.A Variable Geometry Die for Sheet Metal Forming :Machine Design and Control[J]. Proc. Jt. Autom. Control Conf.,1980:366~367
    [58] D.E. Hardt,B. A. Olsen,B. T. Allison,K. Pasch.Sheet Metal Forming with Discrete Die Surface[J].Proc:9th NAMRC,1981:275~280
    [59] David E. hardt, R. Davis Webb.Sheet Metal Die Forming Using Closed-Loop Shape[J] Control.Annals of the CIRP,1982,31:165~169
    [60] David. E. Hardt,B. chen.Control of A Sequential Brakeforming Process[J].Control Manuf..Process Rob. Syst,1983:246~253
    [61] David. E. Hardt, R. Davis Webb.Closed-Loop Control of Three-Dimensional Sheet Forming[J].Comput.-Based Fact. Autom,1984:381~387
    [62] R. D. Webb,D. E. Hardt.A Transfer Function Description of Sheet Metal Forming for Process Control[J].Journal of Engineering for Industry,1991,113:44~52
    [63] David E. Hardt,Mary C. Boyce,Karl B. Ouster hout.A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts[J].Comput.-Based Fact. Autom,1993,69~76
    [64] D. F. Walczyk,D. E. Hardt.Design and analysis of reconfigurable discrete dies for sheet metal forming[J].Journal of Manufacturing System,1998,17(6):436~454
    [65]中村敬一,李明哲.油压式多点プレス实验装置の试作(板材多点成形法の研究第2报)[J].平成4年度日本塑性加工春季讲演会论文集,1992:523~526
    [66]李明哲,中村敬一.多点成形における不良现象の发生及ぴその抑制(板材多点成形法の研究第3报)[J].第43回日本塑性加工联合讲演会论文集,1992:425~428
    [67]中村敬一,李明哲.ねじれ形状の多点成形に关する实验的检讨(板材多点成形法の研究第4报)[J].第43回日本塑性加工联合讲演会论文集,1992:429~432
    [68]岛昭夫,中村敬一,李明哲.ねじれ形状に对应した多点プレス成形CAD/CAMシステムの开发(板材多点成形法の研究第5报)[J].第45回日本塑性加工联合讲演会论文集,1994:335~338
    [69]中村敬一,岛昭夫,李明哲.多点プレス成形装置の开发(板材多点成形法の研究第6报)[J].第45回日本塑性加工联合讲演会论文集,1994:339~342
    [70]李明哲,苏世忠,李广权,金属板材无模多点成形专用CAD/CAM/CAT软件的开发[J],中国机械工程,1997,8(3):298~342
    [71] Li Mingzhe, Liu Yuhong etc, Multi-Point Forming: A Flexible Manufacturing Method for a 3-D Surface Sheet[J], Journal of Materials Processing Technology ,1999,87:277~280
    [72] Li Mingzhe, Liu Chunguo, Chen Qingmin,Research on Multi-Point Forming of Three-Dimensional Sheet Metal Parts,6th International Conference on Technology of Plasticity[J], Nuremberg,Germany,1999,1:189~194
    [73] Li Mingzhe,Liu Chunguo,Cai Zhongyi,A Dieless Forming Technique for Sheet Metal[J].'99 international Conference on Science and Technology, Seoul, Korea,1999,7
    [74] Li Mingzhe,Su Shizhong,The Flexible System for Manufacturing Three Dimensional Curved Sheet with Technology of Multi-point forming,ICAMT’99 Proceedings of 1999 International Conference on Advanced Manufacturing Technology[J],Science Press New York,ltd,1999:294~297
    [75] Li Mingzhe,Liu Chunguo,Su Shizhong.Research on a flexible forming system of sheet metal[J].IFAC 5th Symposium on Low Cost Automation,1998,9
    [76] Cai Zhongyi,Li Mingzhe,Optimum path forming technique for sheet metal and its realization in multi-point forming[J],Journal of Materials Processing Technology,2001,110:136~141
    [77] Mingzhe Li,Wenzhi Fu,Yongsheng Pei et al.2000KN Multi-point forming press and its application to the manufacture of high-speed trains[J].Advanced Technology of Plasticity 2002 vol.2 Proceedings of the 7th ICTP,Oct.28-31,2002,Yokohama,JAPAN:979~984
    [78]王仲仁,方漪等.数控增量点成形的机理分析[J].第六届全国锻压年会论文,北京,1995:227~230
    [79] S.Matsubara.Incremental backward bulge forming of a sheet metal with a hemispherical head tool[J].Journal of the Japan Society for Technology of Plasticity,1994,406(35):1311~1316
    [80] S.Matsubara.Incremental forming of metal sheet with a dedicated tool by a series of movements of forming tool on NC machine tool[J].Proceedings of 1998 Japan Spring Conference on Technology of Plasticity,1998:281~282
    [81]赵彬.单点渐进成形的机理分析及数值模拟研究[D].吉林大学硕士学位论文,2007
    [82] T.Sawada,S.Matsubara,M.Sakamoto,etc.Deformation analysis for stretch forming of sheet metal with CNC machine tool[J]. Advanced technology of plasticity-Proceeding of 6th international conference on technology of plasticity,Nuremberg,Germany,1999:1501~1504
    [83] K.Kitazawa,M.Kobayashi,H.Maruno.Fitness of circular tube end to tool-envelope surfacein flaring and nosing by orbital rotary forming[J].Journal of the Japan Society for Technology of Plasticity,1988,330(29):767~774
    [84] K.Kitazawa,M.Kobayashi,M.Iida.Development of computer controlled orbital rotary forming machine and its application to tube end flanging[J].Journal of the Japan Society for Technology of Plasticity,1992,380(33):1080~1083
    [85] K.Kitazawa . Incremental sheet metal stretch expanding with CNC machine tools[J].Advancedtechnology of plasticity-Proceeding of 4th international conference on technology of plasticity, Beijing,China,Sept.1993:1899~1904
    [86] K.Kitazawa,A.Wakabayashi,K.Murata,et al.A CNC incremental sheet metal forming method for producing the shell components having sharp corners[J].Journal of the Japan Society for Technology of Plasticity,1994,406(35):1348~1353
    [87] H.Iseki,K.Kato,S.Sakamoto.Flexible and incremental sheet metal bulging using a path controlled spherical roller[J]. Transactions of the Japan Society of Mechanical Engineering,1992,58(554):3147~3155
    [88] H.Iseki,K.Kato,S.Sakamoto. Forming Limit of flexible and incremental sheet metal bulging with a spherical roller[J]. Advanced technology of plasticity-Proceeding of 4th international conference on technology of plasticity,Beijing,China,Sept.1993:1635~1640
    [89] H.Iseki,O.Kumon.Forming limit of incremental sheet metal stretch forming using spherical roller[J]. Journal of the Japan Society for Technology of Plasticity, 1994, 406(35):1336~1341
    [90] H.Iseki,T.Shinioura,K.Sato.Practical development of press-molding machine with small punching tool[J]. Advanced technology of plasticity-Proceeding of 5th international conference on technology of plasticity,1996,2:935~938
    [91] H.Iseki,T.Naganawa.Vertical wall surface forming of rectangular shell using multisage incremental forming with spherical and cylindrical rollers[J]. Journal of Materials Technology,2002,130/131:675~679
    [92] M.S.Shim,J.J.Park.The formability of aluminum sheet in incremental forming[J]. Journal of Materials Processing Technology,2001,113:654~658
    [93] Y.H.Kim, J.J. Park,.Effect of process parameters on formability in incremental forming of sheet metal[J]. Journal of Materials Processing Technology,2002,130:42~46
    [94] J.J.Park,Y.H.Kim.Fundamental studies on the incremental sheet metal forming technique[J]. Journal of Materials Processing Technology,2003,140:447~453
    [95] J.Jeswiet,E.Hagan.Forming parameters for incremental forming of aluminium alloysheet metal[J]. Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture,2002,216:1367~1371
    [96] J.Jesweit,F.Micari,G.Hirt,etc.Asymmetric single point incremental forming of sheet metal[J].CIRP Annals-Manufacturing Technology,2005,54(2):623~649
    [97] G.Ambrogioa,L.Filice,F.Micari.A force measuring based strategy for failure prevention in incremental forming[J]. Journal of Materials Processing Technology, 2006, 177:413~416
    [98] G.Ambrogioa,L.De Napoli,L.Filice,et al.Application of Incremental Forming process for high customized medical product manufacturing[J]. Journal of Materials Processing Technology,2005,162/163:156~162
    [99] A.Attanasio,E.Ceretti,C.Giardini. Optimization of tool path in two points incremental forming[J]. Journal of Materials Processing Technology,2006,177:409~412
    [100] E.Ceretti,C.Giardini,A.Attanasio. Experimental and simulative results in sheet incrementalforming on CNC machines[J]. Journal of Materials Processing Technology, 2004, 152:176~184
    [101]松原茂夫.半球头工具による薄板の逐次逆张出し成形[J].塑性と加工,1994,406(35):1311~1316
    [102]松原茂夫.值制禦逐次成形法.塑性と加工[J],1994,406(35):1258~1263
    [103]松原茂夫.板材の逐次逆張出し成形(その3)——值制禦工作機械にょる成形システの研究Ⅺ[J].第45回塑性加工連合講演會論文集,1994:765~768
    [104]松原茂夫.板材の逐次逆張出し成形(その4)——值制禦工作機械にょる成形システの研究第14報[J].第46回塑性加工連合講演會論文集,1995:31~32
    [105]松原茂夫.板材の逐次逆張出し成形(その5)——值制禦工作機械にょる成形システの研究第15報[J].第46回塑性加工連合講演會論文集,1995: 33~34
    [106]松原茂夫.板材の逐次成形用ソフトゥェァ(その2)——值制禦工作機械にょる成形システの研究第18報[J].第47回塑性加工連合講演會論文集,1995:137~138
    [107]松原茂夫.板材の逐次逆張出し絞り成形[J].平成7年度塑性加工春季講演會論文集,1995:209~210
    [108]松原茂夫.板材の重ねあわせ逐次成形[J].第47回塑性加工連合講演會論文集,1996:145~146
    [109]松原茂夫.孲眯停ē蕙螗丧欹耄─蛴盲い氚宀闹鸫纬尚畏╗J].平成10年度塑性加工春季講演會論文集,1998 (5):281~282
    [110]松原茂夫.タイレスフ才—ミングとしての数值制御逐次成形法[J].プレス技术,1998,36(10):109~115
    [111]松原茂夫.板材の数值制御逐次成形にぉけゐ工程开发用ソフトエア[J].第49回塑性加工连合讲演会论文集,1998:135~136
    [112] T.J.Kim,D.Y.Yang.Improvement of formability for the incremental sheet metal forming process[J]. International Journal of Mechanical Sciences,2000,42:1271~1286
    [113] S.J.Yoon,D.Y.Yang,Investigation into a new incremental forming process using an adjustable punch set for the manufacture of a doubly curved sheet metal[J]. Proceedings of the Institution of Mechanical Engineers B, Journal of Engineering Manufacture,2001,215: 991~1004
    [114] H.Amino,Y.Lu,T.Maki.et al. Dieless NC forming prototype of automotive service parts[J]. Proceeding of 2nd international conference on Rapid Prototyping and Manufacturing, 2002:179~185
    [115]戴昆,苑世剑,王仲仁等.轴对称件多道次数控点成形过程的理论分析[J].塑性工程学报,1998, 2:26~32
    [116]方漪,戴昆等.薄板零件的数控增量成形的轨迹设计[J].青岛大学学报,1998, 3:51~56
    [117] K.Dai,ZR.Wang,Y.Fang.CNC incremental sheet forming of an axially symmetric specimen and the locus of optimization[J]. Journal of Materials Processing Technology,2000, 102:164~167
    [118]黄珍媛,阮锋,李振南.金属板材的数控逐次塑性成形系统的开发[J].锻压机械,2002,6:62~163
    [119]黄珍媛,罗昊,阮锋,李振南.数控逐次塑性成形系统的开发及成形试验[J].机电工程技术,2001,30(5):30~31
    [120]黄珍媛,阮锋,李振南等.异型管件的逐次塑性成形研究[J].机电工程技术,2001,1:23~25
    [121]莫健华,叶春生,黄树槐等.金属板料数控无模成形及快速制模[J].电加工与模具,2002,1: 15~18
    [122]莫健华,叶春生,黄树槐等.金属板料数控渐进成形技术[J].航空制造技术,2002,12:25~27
    [123]莫健华,刘杰,黄树槐等.汽车大型覆盖件的数字化成形技术[J].塑性工程学报,2001,2: 14~16
    [124]莫健华,丁勇,黄树槐.金属板材数控单点渐进成形加工轨迹优化研究[J].中国机械工程,2003,14(24):2138~2139
    [125]余同希,章亮炽.塑性弯曲理论及其应用[M],科学出版社,1992.
    [126]陈毓勋.板材与型材弯曲回弹控制原理与方法[M],国防工业出版社,1990.
    [127]李湘吉,闫雪萍,李明哲.板料多点与渐进复合成形技术研究[J].锻压装备与制造技术,2008,4: 56~58
    [128]李湘吉,李明哲,蔡中义等.板料多点与渐进复合成形方法及数值模拟[J].吉林大学学报(工学版),2009,Sup1(39):178~182
    [129]周六如.金属板料数控渐进成形机理及工艺的研究[D].华中科技大学博士学位论文,2004
    [130]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2003
    [131]毛峰.金属板材数控渐进成形关键技术研究[D].华中科技大学博士学位论文,2005
    [132]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社
    [133]洪慎章.使用冲压工艺及模具设计[M].北京:机械工业出版社,2008
    [134]隋振,刘纯国等.快速调形多点成形设备控制系统的研制[J].塑性工程学报,2003.10(5):53~56
    [135]施法中.计算机辅助几何设计与非均匀有理B样条[M].北京:北京航空航天大学出版社,1993
    [136] Delta Tau Data Systems Inc. Hardware Reference Manual PMAC2-PC AND PMAC-LITE[M],10 June 1997
    [137]毛锋.金属板料数字化无模快速成形系统研究[D].华中科技大学硕士学位论文,2002
    [138] Advantech. PCL-733 32-channel isolated digital input card user’smanual[M]. Part No.20037330000 ist Edition Printed in Taiwan 1996,4
    [139] Advantech. PCL-734 32-channel isolated digital output card user’smanual[M]. Part No.20037340000 ist Edition Printed in Taiwan 1996,4
    [140]许智钦,孙长库. 3D逆向工程技术[M].北京:中国计量出版社,2002
    [141]李剑.基于激光测量的自由曲面数字制造基础技术研究[D].浙江大学博士学位论文, 2001
    [142]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000
    [143]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2001
    [144]彭玉华.小波变换与工程应用[M].北京:科学出版社, 1999
    [145]韩震宇,申旭娟,石章林.信号的多分辨分析及其在消噪中的应用[J].四川联合大学学学报, 1999, 3 (1):52~58
    [146]郑海波,陈心昭,李志远.基于小波包变换的一种降噪算法[J].合肥工业大学学报(自然科学版),2001,24(4):459~462
    [147] Goodman T N T,Lee S L. Wavelets of multiplicity[J]. Trans of Amer Math Soc, 1994, 342 (1) : 307~324
    [148] Dowine T R, Silverman BW. The discrete multiple wavelet transform and thresholding methods[J]. IEEE Trans SPIE, 1998, 46 (9) :2558~2561
    [149] Coifman R R,Donoho D L. Translation-invariant denoising,wavelets and statistics[J]. New York: Springer-Verlag, 1995. 125~150
    [150]聂毓琴.材料力学[M].北京:机械工业出版社,2004
    [151]黄克智.非线性连续介质力学[M].北京:清华大学出版社,1985.
    [152] R. Hill, A Theory of the Yielding and Plastic Flow of Anisotropic Metals [J], Roy. Soc. London Proc., 1948(193A): 281
    [153] E. Chou, Generalization of Hill’s 1979 Anisotropic Yield Criteria [J], Journal of Materials Processing Technology, 1995(50): 207~215
    [154]富田佳宏著,胡平,李运兴,柳玉起译.数值弹塑性力学[M].吉林科学技术出版社,1995
    [155]骆少明,汪凌云.论塑性成形各向异性屈服准则[J].金属成形工艺,1994,12(2):75-77.
    [156] Chen Kuokuang,Peter C.Sun.Evaluation of a Dynamic Explicit Finite Element Code for Binder Forming Calculations[J].SAE International Congress and Exposition,Detroit,Michigan,February 27-March 2,1995:19~26
    [157] Nakamachi E,Huo T.Dynamic-Explicit Type Elastic Plastic Finite Element Simulation of Sheet Metal Forming-Hemispherical Punch Drawing[J].International Journal of Computer Aided Engineering and Software,1996,13:327~338
    [158]邱智学,黄菊花,谢世坤等. ABAQUS壳单元在有限元分析中的应用[J].模具技术,2003,5:9~15
    [159] S . S . Han . The influence of tool geometry on friction behavior in sheet metal forming[J].Journal of materials Processing Technology,1997,63:129~133
    [160] A.Behrens,H.Schafstall.2D and 3D simulation of complex multistage forging processes by use of adaptive friction coefficient[J].Journal of materials Processing Technology,1998,80-81:298~303
    [161] S.B.Petersen,P.A.F.Martins,N.Bay.Friction in bulk metal forming:a general friction model vs.the law of constant friction[J].Journal of materials Processing Technology,1997,66:186~194
    [162] Tan Fuxing, Li Mingzhe, Cai Zhongyi, Li Xiangji. Formability analysis on the process of multi-point forming [J]. Adv Manuf Technol 2009, 41:1059~1065
    [163] X.J.Li, M.Z.Li, C.G.Liu. Principle and Simulation Study on Multi Point-Single Point Incremental Combined Forming for Sheet Metal [J]. Materials Science Forum, 2009, Vol:626-627,273~278
    [164]李湘吉,李明哲,蔡中义等.板料渐进成形数值模拟与实验研究[J].材料科学与工艺,2009,1(17):66~69
    [165]李湘吉,李明哲,蔡中义.板料单点渐进成形数值模拟研究[J].锻压技术,2009.4(34):79~82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700