用户名: 密码: 验证码:
液压减振器建模及在整车性能调校中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车最高车速的提高,对汽车的操纵稳定性与平顺性提出了更高的要求。悬架系统中的液压减振器对包括操纵稳定性及平顺性在内的多项整车性能有影响,例如:车辆在通过不同波长路面时车身振动幅度对路面输入的放大;在通过脉冲路面时车身垂向加速度的突然变化;在通过粗糙路面时对轮胎接地载荷的控制;在转弯过程中对车身侧倾的控制;在制动以及加速过程中对车身俯仰的控制等等。同时,不同的整车性能对减振器特性的要求经常发生冲突,在这种情况下工程师必须要对整车性能有所取舍,牺牲某项车辆性能来保证更重要的性能。正因为如此,减振器设计人员也致力于对减振器的结构进行改进,以使得减振器特性能同时满足更多相互冲突的整车性能。
     本文所研究的某乘用车减振器即为能够提高设计与调校的灵活性,结构上具有两级复原阀的减振器。基于液压原理建立了两级复原阀减振器的物理模型,研究了其参数对减振器特性的影响。物理模型的建模过程以及对减振器特性所做的研究如下:1)基于液压原理建立了结构上具有两级复原阀的减振器的物理模型,模型中包含11个可调参数。依次对减振器内部各阀的建模原理、参数测量、参数辨识过程进行了研究。为提高参数辨识的效率,采用了分步辨识的方法;2)减振器物理模型建立完成后,对模型进行了验证;3)以后减振器为例,对模型中阀系参数变化后减振器外特性的变化规律进行了研究。结果表明两级复原阀减振器增加了减振器特性调校的灵活性。减振器总体的复原阻尼特性利用第二级复原阀调定后,通过第一级复原阀可以实现对0.1m/s以下速度段减振器特性单独调整,增大了减振器低速阻尼调试的灵活性,降低了设计与调校的难度。
     减振器在定型之前要经过有经验的设计师对车辆性能主观评价,根据评价结果对减振器的结构参数反复调试。在两级复原阀减振器的调试过程中,由于参数众多,需要明确减振器各参数对整车性能的影响规律。否则,调校过程中容易出现混淆,导致调试反复迭代,降低减振器开发效率。因此,研究清楚具体到某项车辆性能需要调整时应该调节减振器的哪些参数,是当前车辆开发过程中一项必要而紧迫的任务。所以,本文通过将所建立的减振器模型接入整车模型,研究了减振器两级复原阀以及压缩阀节流孔面积、开阀压力、阀片组合的刚度对整车性能的影响,其研究思路为:1)根据整车动力学仿真软件所分别具有的优势,建立了适用于操纵稳定性、加速、制动等相对低频工况仿真的Carsim整车模型,以及适合平顺性仿真的Adams/ride模型;2)将前面所建立的两级复原阀减振器物理模型接入整车仿真平台,利用相对应工况的试验数据对整车模型进行了验证;3)对各工况下减振器的工作速度进行统计,根据减振器速度初步选取可以调节的参数,再比较这些参数对车辆性能的影响大小,选择对整车性能影响效果显著的参数,对整车性能进行调校。基于整车性能对减振器参数进行调校,搭建了减振器供应商与整车厂之间的桥梁,提高了汽车正向开发过程中减振器的设计与调校的效率,具有实际工程意义。
     当工程师将不同的减振器分别建立模型,接入整车模型对整车性能进行评价,实现减振器选型,或利用CAE方法对底盘零部件进行疲劳寿命分析时,减振器模型不需要具备可调整性,只需要能够准确描述减振器特性,此时非参数模型具有明显优势。本文对基于支持向量机回归算法建立减振器非参数模型的方法进行了探索,分别建立了前后减振器的支持向量机回归模型,并与反向传播神经网络(BPNN)以及泛化回归神经网络(GRNN)方法进行了对比。
     综上所述,本文建立了两级复原阀减振器的物理模型,研究了基于整车性能对此减振器的结构参数进行调整的方法,并对利用支持向量机建立减振器非参数模型的方法进行了探索,主要创新点如下:
     1.建立了具有两级复原阀结构的减振器的物理模型。模型中包含11个可调参数,为提高参数辨识的效率,提出了对模型中未知参数分步辨识的方法。
     2.研究了两级复原阀减振器各参数变化对减振器特性的影响,及减振器各参数变化对整车性能的影响,探索了基于整车性能的减振器调校方法。
     3.提出了利用支持向量机回归算法建立减振器非参数模型的方法。
With the raise of the maximum speed of the car, the handling and ride comfort are moreimportant than before. Hydraulic shock absorber can affect a number of vehicleperformances, including handling and ride comfort. For example, it can influence the bodyvibration induced by different wavelength pavement road. It can also influence the suddenchanges in body vertical acceleration by impulse road. The tire dynamic load in rough roadcan be controlled by the shock absorber. The shock absorber can also control the roll andpitch angle velocity of the body when cornering, braking and accelerating. At the same time,there are conflicts because different vehicle performances need different shock absorbercharacteristics. In this case, the engineer must have a compromise between different vehicleperformances. This is why the shock absorber engineer is committed to improve the structureof the shock absorber to adapt the conflicting vehicle performance.
     The shock absorber that this thesis studied has two stages rebound valve, can improve theflexibility of the shock absorber design and tuning. The physical model of this kind shockabsorber is developed. The correspondence between shock absorber parameters andcharacteristics are studied based on the physical model. The modeling process as well as theresearch on the shock absorber characteristics are as follows:1) The physical model of twostages rebound valve shock absorber is developed, there are11tunable parameters in thismodel. The modeling principle, parameter measurement, parameter identification are studiedsuccessively.2) The model is validated using test data.3) Take the rear shock absorber asexample, the correspondence between shock absorber parameters and characteristics arestudied. The results show that the two stages rebound valve shock absorber increase theflexibility of tuning. The second stage rebound valve control the overall characteristics of theshock absorber. The first stages rebound valve control the characteristics below0.1m/s. Thetwo stages rebound valve shock absorber reduced the difficulty of shock absorber tuning.
     The vehicle performance must be subjective evaluated by experience engineer before theshock absorber in stereotypes. The consturcture parameters can be modified according to theresults of evaluation. In the process of tuning, engineer must understand the correspondencebetween the shock absorber parameters and full vehicle performance. Otherwise, time willbe wasted. Accordingly, the urgent mask is to straighten out the relationship between the valve parameters and the shock absorber characteristics, and study the correspondencebetween the valve parameters and the full vehicle performance clearly. So, the shockabsorber model is linked to the full vehicle model. Then the car performance changesinfluenced by the parameters of shock absorber are studied. The process is as follows:1)Two full vehicle models are developed according to the advantages of the software. TheCARSIM model is suitable for handling, braking and acceleration simulation. The ADAMSmodel is suitable for ride comfort.2) The shock absorber physical model is linked to fullvehicle model, and then the full vehicle model is validated using test data.3) The shockabsorber velocity is counted in all conditions. The parameters which can cause obviouschange in full vehicle are studied. The full vehicle performances are tuned by theseparameters. This method builds a bridge between the damper suppliers and OEMs toimprove the efficiency of the vehicle development. It has practical engineering significance.The nonparametric model of the shock absorber has obvious advantages in shock absorberselection or fatigue analysis of chassis components. The SVR algorithm used for modelingshock absorber is explored. And the nonparametric models of two shock absorbers aredeveloped. The effects of SVR are compared with BPNN and GRNN.
     In summary, the physical model of two stages rebound valve shock absorber is developed.The correspondences between shock absorber parameters and full vehicle performance arestudied. Innovations in this thesis are as follows:
     1. The model of the shock absorber which has two class rebound valve is developed, thismodel has11tunable parameters. Step-by-step method is put forward to identify theunknown parameters in the model.
     2. The influences on shock absorber characteristics caused by the valve parameters areanalysised. The full vehicle performance is tuned by change valve parameters.
     3. The nonparametric shock absorber model is created using support vector machineregression.
引文
[1]郭孔辉.汽车操纵动力学原理[M].南京:江苏科学技术出版社,2011.
    [2] DIXON J C. The shock Absorber Handbook[M]. Great Britain: John Wiley&Sons, Ltd,2007.
    [3] LANG H. A study of the characteristics of automotive hydraulic dampers at high stroking frequency[D]. Michigan: University of Michigan,1977.
    [4] REYBROUCK K. A non linear parametric model of an automotive shock absorber[J]. SAE TechnicalPapers:940869.
    [5] LEE K. Numerical modelling for the hydraulic performance prediction of automotive monotubedampers[J]. Vehicle System Dynamics,1997,28(1):25-39.
    [6] DUYM S, RANDY S, GINO V, et al. Physical modeling of the hysteretic behavior of automotiveshock absorbers[J]. SAE Technical Papers:970101.
    [7] DUYM S, REYBROUCK K. Physical characterization of nonlinear shock absorber dynamics[J].European Journal of Mechanic Engineering,1998,43(4):181-188.
    [8] DUYM S. Simulation tools, modelling and identification, for an automotive shock absorber in thecontext of vehicle dynamics[J]. Vehicle System Dynamics,2000,33(4):261-285.
    [9] MICHAEL S T, John S. An experimentally validated physical model of a high-performancemono-tube damper[J]. SAE Technical Papers:2002-01-3337.
    [10] LEE C T, Moon B Y. Simulation and experimental validation of vehicle dynamic characteristics fordisplacement-sensitive shock absorber using fluid-flow modeling[J]. Mechanical Systems and SignalProcessing,2006,20:373-388.
    [11] YUNG V Y, COLE D J. Analysis of high frequency forces generated by hydraulic automotivedampers [J]. Vehicle System Dynamics,2002,37(6):441-452.
    [12] YUNG V Y, COLE D J. Modelling high frequency force behavior of hydraulic automotivedampers[J]. Vehicle System Dynamics,2006,44(1):1-31.
    [13] KASTEEL R V, WANG C G, QIAN L X, et al. A new shock absorber model for use in vehicledynamics studies[J]. Vehicle System Dynamics.2005,43(9):613-631.
    [14] ALONSO M, COMAS A. Modelling a twin tube cavitating shock absorber[J]. Proc. IMechE Part D:Journal of Automobile Engineering,2006,220:1031-1040.
    [15] SORNIOTTI A, ALFIL N D, Morgando A. Shock absorber modeling and experimental testing[J].SAE Technical Papers:2007-01-0855.
    [16] SORNIOTTI A. Shock absorber thermal model: basic principles and experimental validation[J]. SAETechnical Papers:2008-01-0344.
    [17]李双义,毕凤荣,邹立明.双筒减振器阀片的大挠曲变形及特性分析[J].汽车技术,1997,(11):22-25.
    [18]刘延庆,张建武,张利,等.车用双筒液压减振器动态响应的试验与仿真[J].上海交通大学学报,2002,36(8):1095-1099.
    [19]吕振华,李世民.筒式液阻减振器动态特性模拟分析技术的发展[J].清华大学学报(自然科学版),2002,42(11):1532-1536.
    [20]吕振华,伍卓安,李世民.减振器节流阀非线性特性的有限元模拟分析[J].机械强度,2003,25(6):614-620.
    [21]李幼德,李静,宋大凤,等.汽车减振器弹簧阀片变形模型的研究[J].汽车工程,2003,25(3):287-290.
    [22]庄德军,柳江,喻凡,等.汽车油气弹簧非线性数学模型及特性[J].上海交通大学学报,2005,39(9):1441-1444.
    [23]刘建勇,李庆伟等.双筒式液力减振器低速阻尼特性研究[J].工程设计学报,2009,16(3):233-236.
    [24]陈轶杰,顾亮,杨占华,等.减振器节流阀片大挠曲变形研究[J].机械设计与制造,2008,(10):90-92.
    [25]贺李平,顾亮等.减振器环形阀片大挠曲变形的高精度解析式[J].北京理工大学学报,2009,29(6):510-514.
    [26]周长城,孟婕等.汽车筒式减振器分段线性特性的建模与仿真[J].汽车工程,2010,32(4):333-338.
    [27]江浩斌,杨如泉,陈龙,等.麦弗逊式前悬架液力减振器阻尼特性仿真与试验[J].汽车工程,2007,29(11):970-974.
    [28]江浩斌,胡隽秀等.两级阻尼可调式液压减振器的性能仿真与试验[J].机械工程学报,2010,46(22):117-122.
    [29]郭孔辉,陈禹行,庄晔,等.油气耦联悬架系统的建模与仿真研究.湖南大学学报(自然科学版),2011,38(3):29-33.
    [30] BESINGER F H, CEBON D, COLE D J. Damper models for heavy vehicle ride dynamics[J].Vehicle System Dynamics,1995,24(1):35-64.
    [31] SIMS N D, PEEL D J, STANWAY R, et al. The electrorheological long-stroke damper: A newmodeling technique with experimental validation[J]. Journal of Sound and Vibration,2000,229(2):207-227.
    [32] LION A, LOOSE S. A thermomechanically coupled model for automotive shock absorbers: theory,experiments and vehicle simulations on test tracks[J]. Vehicle System Dynamics,2002,37(4):241-261.
    [33] SUBRAMANIAN S, SURAMPUDI R, THOMSON K R. Development of a nonlinear shockabsorber model for low-frequency NVH Applications[J]. SAE Technical Papers:2003-01-0860.
    [34] ZACH C, MACK W, FRUHMANN G, et al. On the performance of rheological shock absorbermodels in full vehicle simulation[J]. Vehicle System Dynamics,2007,45(11):981-999.
    [35] YOUNGWOOK K, GRAY H, GUENTHER D. Evaluation of a shock model for vehiclesimulation[J]. SAE Technical Papers:2007-01-0845.
    [36] NURHADI I, HAMDZAN. Bond graph modeling of hydraulic shock absorber for estimatingdamping value[J]. SAE Technical Papers:2007-01-3697.
    [37] BOGGS C, AHMADIAN M, SOUTHWARD S. Efficient empirical modelling of a high-performanceshock absorber for vehicle dynamics studies[J]. Vehicle System Dynamics.2010,48(4):481-505.
    [38] WANG E R, MA X Q AND RAKHELA S. Modelling the hysteretic characteristics of a magneto-rheological fluid damper[J]. Journal of Automobile Engineering,2003,217:537-550.
    [39]邓志党,高峰,刘献栋,等.磁流变阻尼器力学模型的研究现状[J].振动与冲击,2006,25(3):121-127.
    [40]刘成.减振器外特性的理论与半经验建模及软件开发[D].长春:吉林大学汽车工程学院,2011.
    [41] DUYM S, STIENS R, REYBROUCK K. Evaluation of shock absorber models[J]. Vehicle SystemDynamics,1997,27(2):109-127.
    [42] SURACE C, WORDEN K, TOMLINSON G R. An Improved nonlinear model for an automotiveshock absorber [J]. Nonlinear Dynamics,1992,3:413-429.
    [43] BASSO R. Experimental characterization of damping force in shock absorbers with constant velocityexcitation[J]. Vehicle System Dynamics,1998,30(6):431-442.
    [44] PATEL A, AND DUNNE J F. NARX neural network modelling of hydraulic suspension dampers forsteady-state and variable temperature operation[J]. Vehicle System Dynamics,2003,40(5):285-328.
    [45] PRACNY V, MEYWERK M, LION A. Hybrid neural network model for history-dependentautomotive shock absorbers[J]. Vehicle System Dynamics,2007,45(1):1-14.
    [46] PRACNY V, MEYWERK M, LION A. Full vehicle simulation using thermomechanically coupledhybrid neural network shock absorber model[J]. Vehicle System Dynamics,2008,46(3):229-238.
    [47] ANDREW J B. Accurate models for complex vehicle components using empirical methods[J]. SAETechnical Papers:2000-01-1625.
    [48] CHOI S B, LEE S K. A hysteresis model for the field-dependent damping force of a magneto-rheological damper[J]. Journal of sound and vibration,2001,245(2):375-383.
    [49] WEIGEL M, MACK W, RIEPL A. Nonparametric shock absorber modelling based on standard testdata[J]. Vehicle System Dynamics,2002,38(6):415-432.
    [50] HUDHA K, JAMALUDDIN H, SAMIN P M, et al. Non-papametric linearised data driven modelingand force tracking control of a magnetorheological damper[J]. International Journal of VehicleDesign,2008,46(2):250-269.
    [51]XIA P Q. An inverse model of MR damper using optimal neural network and system identification[J].Journal of Sound and Vibration,2003,266:1009-1023.
    [52]周德成,赵登峰等.油气减振器非线性特性的神经网络识别研究[J].农业机械学报,2004,35(4):9-11.
    [53]潘栋,潘双夏,冯培恩,等.基于神经网络的减振器性能仿真[J].浙江大学学报(工学版),2007,41(11):1898-1902.
    [54]刘树伟,张立军.减振器的神经网络建模[J].辽宁工学院学报,2005,25(4):240-242.
    [55]刘树伟,郑利民,田国红.基于减振器神经网络建模的汽车悬架参数优化分析[J].机械设计与制造,2009,(3):92-94.
    [56]李伟,王轲,朱德懋,等.基于遗传算法的非线性迟滞系统参数识别[J].振动与冲击,2000,19(1):8-11.
    [57]郭孔辉,王先云.基于支持向量机回归的减振器非参数模型[J].吉林大学学报(工学版),2011,41(增刊1):1-4.
    [58]王先云,郭孔辉.支持向量机与神经网络在减振器建模中的应用[J].科学技术与工程,2011,11(3):8219-8224.
    [59] JACKSON G W. Fundamentals of direct acting shock absorbers[J]. SAE Technical Papers:590089.
    [60] PUHM F. How to make your car handle[M]. H. P. BOOKS,1976.
    [61] SMITH C. Engineer to win[M]. Osceola: Motorbooks International,1984.
    [62] SMITH C. Tune to win[M]. Fallbrook: Aero Publishers,1978.
    [63] SMITH C. Prepare to win[M]. Fallbrook:Aero Publishers,1975.
    [64] FUKUSHIMA N, HIDAKA K, IWATA K. Optimum characteristics of automotive shock absorbersunder various driving conditions and road surfaces[J]. International Journal of Vehicle Design,1983,4(5):463-472.
    [65] FUKUSHIMA N, LIDA M, HIDAKA K. Development of an automotive shock absorber thatimproves riding comfort without impairing steering stability[J]. SAE Technical Papers:845052.
    [66] RAO M D, GRUENBERG S, TORAB H. Measurement of dynamic properties of automotive shockabsorbers for NVH[J]. SAE Technical Papers:1999-01-1840.
    [67] ETMAN L F, VERMEULEN RC, HECK J V. Design of a stroke dependent damper for the front axlesuspension of a truck using multibody system dynamics and numerical optimization[J]. VehicleSystem Dynamics,2002,38(2):85-101.
    [68] SIMMS A, CROLLA D. The influence of damper properties on vehicle dynamic behavior[J]. SAETechnical Papers:2002-01-0319.
    [69] SAMMIER D, SENAME O, DUGARD L. Skyhook and H∞control of semi-active suspensions:some practical aspects[J]. Vehicle System Dynamics,2003,39(4):279-308.
    [70] CHOI S B, LEE H S, PARK Y P. H∞control performance of a full-vehicle suspension featuringmagnetorheological dampers[J]. Vehicle System Dynamics,2002,38(5):341-360.
    [71] BASTOW D, HOWARD G, WHITEHEAD J P. Car suspension and handling(Fourth Edition)[M].Warrendale: SAE International,2004:165-185.
    [72] BOLANDHEMMAT H, CHRISTOPHER M C, GOLNARAGHI F. Development of a systematic andpractical methodology for the design of vehicles semi-active suspension control system[J]. VehicleSystem Dynamics,2010,48(5):567-585.
    [73] STANIFORTH A. Competition car suspension: design, construction, tuning[M]. Sparkford: HaynesPublishing,2000.
    [74] DIXON J, KEYNES M. Tire suspension and handling[M]. SAE International,1996:211-215.
    [75]NORBYE J P. The car and its wheels-a guide to modern suspension systems[M]. USA: TAB BOOKS,1980.
    [76]俞德孚,刘晓璞,李晓雷.车辆悬架减振器外特性的高频畸变与高频设计[J].北京工业学院学报,1988,8(3):82-89.
    [77]俞德孚,李晓雷,马彪.车辆悬架减振器的理论和实践[M].北京:中国兵工学会学术交流部,1988.
    [78]俞德孚,陈庆东,方大雨.悬架减振器外特性平安比的设计研究[J].车辆与动力技术,2002,(3):11-17.
    [79]方敏,王峻,陈无畏.汽车半主动悬架的自适应LQG控制[J].汽车工程,1997,19(4):200-205.
    [80]陈无畏,王志君,范迪彬.汽车半主动悬架的神经网络自适应控制[J].汽车工程,1998,20(1):31-36.
    [81]喻凡,郭孔辉.车辆悬架的最优自适应与自校正控制.汽车工程,1998,20(4):193-205.
    [82]刘新亮,张建武,陈兆能.汽车主动悬架的自校正控制[J].汽车工程,1998,20(3):165-170.
    [83]孙涛,喻凡,邹游.油气弹簧非线性特性对车辆平顺性的影响分析[J].汽车技术,2004,(4):4-7.
    [84]廖昌荣,余淼,陈伟民等.汽车磁流变减振器设计原理与实验测试[J].中国机械工程,2002,12(16).
    [85]王天利,王凯,王福桂,等.汽车悬架减振器阀系开阀点的模糊识别[J].机械设计与制造,2007,(4):3-5.
    [86]郭孔辉,杨业海,王冕,等.面向多约束的可举升复合油气悬架偏频优化[J].湖南大学学报(自然科学版),2012,39(3):28-32.
    [87] CHEN D C, CROLLA D A. Subjective and objective measures of vehicle handling: Drivers&Experiments [J]. Vehicle System Dynamics Supplement1998,29(S1):576-597.
    [88] KING R, CROLLA D, ASH H, et al. Identification of subjective-objective vehicle handling linksusing neural networks for the foresight vehicle[J]. SAE Technical Papers:2002-01-1126.
    [89]宗长富,郭孔辉.汽车操纵稳定性的主观评价[J].汽车工程,2000,22(05):289-292.
    [90]贝尔恩德,汉斯[著].石晓明,陈祯福[译].管欣,宗长富[审].汽车行驶动力学性能的主观评价[M].北京:人民交通出版社,2010.
    [91]陈家瑞.汽车构造(下册)[M].北京:人们交通出版社,2006.
    [92]华自强,张忠进.工程热力学[M].北京:高等教育出版社,2006.
    [93]何存兴,张铁华.液压传动与气压传动[M].武汉:华中科技大学出版社,2000.
    [94]邢富冲.一元三次方程求解新探[J].中央民族大学学报(自然科学版),2003,12(3):207-218.
    [95]耶尔森赖姆帕尔[著].张洪欣,余卓平[译].汽车底盘基础[M].北京:科学普及出版社,1992.
    [96] SITMO. Thijs van den Berg[DB/OL]. http://www.sitmo.com/article/numerical-differentiation/.
    [97]上海海联润滑材料科技有限公司.减振器油产品介绍[DB/OL]. http://www.hirilube.com/.
    [98]TURRINI J R, DUCATTI C E. Shock absorbers with internal rebound spring for roll angle control[J].SAE Technical Papers:2007-01-2545.
    [99]宇野高明[著],郝长文等[译].汽车行驶性能和底盘机构[M].长春:第一汽车集团公司技术中心,1994.
    [100] PACEJKA H B. Tyre and vehicle dynamics[M]. United Kingdom: Elsevier,2006.
    [101]刘青.轮胎非稳态侧偏特性的分析、建模与仿真[D].长春:吉林工业大学汽车工程学院,1996.
    [102]郭孔辉.用于汽车制动、驱动与转向运动模拟的轮胎力学统一模型[J].汽车技术,1992,(1):11-18.
    [103]郭孔辉.各向摩擦系数不同条件下轮胎力学特性的统一理论模型[J].中国机械工程,1996,7(4):11-18.
    [104] GB/T6323.6-94,汽车操纵稳定性试验方法-稳态回转试验[S].
    [105]余志生.汽车理论(第四版)[M].北京:机械工业出版社,2007.
    [106] GB/T6323.2-94,汽车操纵稳定性试验方法-转向瞬态响应试验(方向盘转角阶跃输入)[S].
    [107] ISO3888-11999Road vehicles–Test procedure for a severe lane-change manoeuvre.
    [108] ISO3888-22002Road vehicles–Test procedure for a severe lane-change manoeuvre.
    [109] MILLIKEN W F, MILLIKEN D L. Race car vehicle dynamics[M]. Warrendale: SAE International,1995.
    [110]长春汽车研究所.悬架设计(上)[J].汽车技术,1973,(3):1-45.
    [111]张义民.机械振动力学[M].长春:吉林科学技术出版社,2000.
    [112] GB/T4970-2009,汽车平顺性试验方法[S].
    [113]檀润华,陈鹰,路甬祥.路面对汽车激励的时域模型建立及计算机仿真[J].中国公路学报,1998,11(3):96-102.
    [114]张永林.用谐波叠加法重构随机道路不平顺高程的时域模型[J].农业工程学报,2003,19(6):32-35.
    [115]姜丽丽.基于傅立叶反变换的路面随机激励时域建模与仿真[D].长春:吉林大学汽车工程学院,2007.
    [116] VAPNIK V N, Statistical Learning Theory[M]. Johnwiley&Sons. New York,1998.
    [117] SCH LKOPF B, SMOLA A J, WILLIAMSON R C, et al. New support vector algorithms[J].Neural Comput.,2000,12:1207-1245.
    [118] FLAKE G W, LAWRENCE S. Efficient SVM regression training with SMO[J]. Mach Learn.,2002,46:271-290.
    [119] SMOLA A J, SCH LKOPF B. A tutorial on support vector regression[J], Stat Comput.,2004,14:199-222.
    [120] MARTI A H. Support vector machines[J]. IEEE Intell Syst.,1998,13:18-28.
    [121] VAPNIK V N. The nature of Statistical Learning Theory[M]. Springer,2000.
    [122] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[DB/OL]. Softwareavailable at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [123] HAYKIN S. Neural Networks: A comprehensive foundation [M]. Prentice Hall,1999.
    [124] Matlab R2006b help manual [DB/OL]. Mathworks,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700