用户名: 密码: 验证码:
适合风电接入电力系统的中短期发电调度模型与方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发电调度是保证电网安全稳定运行,实现发电资源高效配置的重要环节。近年来,为了促进能源、环境可持续发展,风电作为一种成熟的可再生发电资源,得到了大力开发,风电场规模不断扩大,并网容量不断增加。然而风电具有随机性、间歇性和难以准确预测等特点,这些特点给电力系统发电调度和安全运行带来了一系列新的问题。同时,随着发电调度系统管理水平的提高,为了实现综合效益最大化,不仅应该考虑有功出力的分配,还应该考虑机组备用的选择、机组检修计划优化等问题,统筹协调发电资源。基于上述背景,本文围绕风电接入电力系统的中短期发电调度问题开展了以下研究:
     在间隔10-15min有功优化调度方面,为了应对风电功率波动对备用容量和线路潮流带来的不确定性问题,提出了考虑线路安全校核的含风电场电力系统有功和备用协调调度模型。首先,在建模过程中结合置信水平,分析了负荷和风电出力预测误差对备用的影响,建立了备用与风电出力之间的量化关系。然后针对风电功率不确定性引起线路潮流波动的特点,引入线路安全约束的多场景模型,同时为了处理该模型存在校核场景和校核线路数量大的问题,进一步结合调度时段机组的出力范围,基于线性规划定理,提出校核线路和校核场景的缩减方法,降低了求解难度。最后进行了算例验证,结果显示,根据所建模型给出的调度方案能同时满足经济性和安全性。
     在上述研究基础上,进一步考虑环境效益和备用不足引起的运行风险,目标函数中增加了污染物排放量,定义了备用风险指标,构建了多目标有功优化调度模型。为了更好的求解该模型,提出了一种改进多目标微分进化算法。该算法引入混沌搜索策略以提高初始种群利用率,采用控制参数调整策略以克服算法对控制参数依赖性强的缺点,利用动态拥挤距离排序策略使得帕累托最优解集分布更加均匀。以所提算法求得的帕累托最优解集为决策矩阵,使用基于熵的序数偏好方法对最优解集进行排序,得到最终决策方案。对比分析结果表明,所提算法能够为多目标有功优化调度问题提供更加优良的候选方案。
     在日前机组组合方面,为了更高效地求解含风电场电力系统安全约束机组组合的多场景随机模型,提出了一种区间优化结合点估计的方法。首先基于风电出力置信区间,利用最紧约束集及相应的极限场景描述风电出力波动,进而对随机安全约束机组组合进行区间优化,在保证调度方案满足安全约束的同时提高了计算速度。然后为了评价应对风电出力波动的调整能耗,进一步利用点估计法对区间优化方法进行改进,使得优化调度方案更为经济。最后采用混合整数线性规划法对模型进行求解。通过算例对比分析,结果表明,所提方法仅需要对少量场景进行计算就可以保证调度方案满足安全性和经济性的要求,能够有效地求解含风电场的随机安全约束机组组合问题。
     在月度机组组合方面,为了更好地接纳风电,同时兼顾检修计划优化,建立了含风电场电力系统月度机组组合和检修计划联合优化模型。首先基于历史数据,采用威布尔函数描述风电的概率分布,利用机会约束规划理论处理风电不确定性对约束条件的影响,构建了相关概率模型并给出了多个风电场情况下概率模型确定化方法。然后引入了检修费用和检修相关约束,并针对机组组合和检修计划时段间隔不同,分别设置了时段索引变量,建立了相互之间的关联矩阵,实现了发电和检修协调优化。最后利用混合整数线性规划法对模型进行优化。算例结果表明,所建模型可以有效地权衡成本费用和运行风险之间的关系,能够同时给出合理的机组组合方案和检修计划方案,为风电接入电力系统的中期调度运行提供了一种有效的手段。
     上述论文工作研究了风电出力随机性对不同时间尺度发电调度的影响,并给出了一套建模和求解方法,为规模化波动性电源并网后电力系统中短期安全经济运行提供了理论和方法支撑。
Generation scheduling is vital to ensure the security operation of power system and to rearlize the high efficient allocation of generation resources. In recent years, in order to promote energy and environmental sustainability, wind power, which is a mature renewable generation resource, has been vigorously developed. The wind farm scale has been expanded and the grid-connected wind power capacity has been increased. However, due to the randomness, intermittence and unpredictability of wind power, a series of problems are brought to security operation and generation dispatching in the power system. In addition, with the improvement of systematic management level for generation scheduling, all of the active output, reserve allocating and maintenance scheduling should be considered in the optimal scheduling model to coordination generation resources and maximize the overall benefit. Based on such backgrounds, this dissertation focuses on the medium-short term generation scheduling for power system with wind power integration. The main research work involves:
     In aspect of active optimal scheduling with10-15min interval, to deal with the uncertainties of reserve determination and line power flow calculation brought by wind power, the coordinated active power and reserve dispatching model for wind power integrated power systems considering line security verification is proposed. Firstly, in the modeling process, combining the confidence level, the influence of load and wind power forecast errors on the reserve is analyzed, the relationship of reserve and wind output power is established, and the demand of reserve is accurately quantified. Secondly, considering the fluctuant features of line power flow arouse by wind power uncertainty, the multi-scenario model of line power constraints is introduced. However, the multi-scenario model takes a large amount of computation. To improve the efficiency, the checked scenario reduction method and checked lines reduction strategy are developed, which are based on linear programming theorem, and consider the output range of units in scheduling period. Finally, numerical examples show that the dispatch schemes given by the proposed model are provided to be more feasible and safety with the satisfaction of economy.
     On the basis of the above research, a multi-objective optimization scheduling model is formulated. In the proposed model, the environmental benefits and the operational risk caused by lacking reserve are taken to account, pollutant emissions and reserve risk indicator are introduced to the objective function, and the reserve risk indicators are developed. To solve this model, an improved differential evolution algorithm for multiobjective optimization (IDEMO) is proposed. In the IDEMO, the chaotic searching strategy is introduced to improve the availability rate of initial population, the adjustment strategies for control parameters are used to strengthen global optimal searching capability, and dynamic crowding distance is employed to keep the diverity of population. After that, the decision matrix is given by pareto solution set of the IDEMO, and the optimal solution set is odered by similarity to ideal solution (TOPSIS) based on the entropy, so the optimal solution can be decided. Numerical examples show that the proposed algorithm is able to provide excellent candidate plans for multi-objective optimization scheduling problem.
     In aspect of day-ahead unit commitment, an interval optimization combined with point estimation method (IO-PEM) is proposed to solve stochastic security constrained unit commitment (SCUC) problem. Firstly, accordance with the confidence interval of the wind power, the fluctuation of wind power is described by the most compact constraints set and the corresponding extreme scenarios. And the stochastic security constrained unit commitment is solved by interval optimization method. Such method can accelerate the solution speed in the premise to ensure that the scheduling results meet security constraints. Secondly, in order to evaluate the adjusting energy consumption with the consideration of wind power output fluctuation, point estimation method is introduced to improve the interval optimization approach. As a result, the optimal scheduling plan can be more economical. Finally, the model is optimized by mix-integer linear programming. And simulation results show that, the proposed method only need to caculate a few scenarios for keeping security and economy of the dispatching scheme, so the proposed method can effectively solve the stochastic SCUC problem.
     In aspect of monthly unit commitment, the joint optimization model of monthly unit commitment and maintenance scheduling for wind power integrated power system is proposed to handle the randomness of wind power and optimize maintenance scheduling. Firstly, based on historical data, the stochastic behavior of wind power is represented by weibull distribution, and the impact of wind power uncertainty on constraints is coped with chance-constrained programming theory. The relating probability model is formulated, and the methods of probability model transferring to determined model with wind farms is proposed. Secondly, maintenance expenses and the constraints of maintenance are introduced. Since unit commitment and maintenance scheduling have different scheduling intervals, the index variables of them are setted respectively, incidence matrix is created, generation and maintenance scheduling are coordinative optimized as well. Finally, the proposed model is solved by mixed integer linear programming. Simulation results show that proposed model can effectively balance the relationship between the costs and risks, the results of unit commiment and maintenance scheduling are more reasonable, and the optimal scheduling can provide an effective mean of mid term generation scheduling for power systems with wind power.
     As previously mentioned, in this dissertation the influence of wind power randomness on generation scheduling under different time scales is studied, the relevant approaches are furnished, and this work can provide a theoretical basis and method support for medium-short term economic and security operation in the environment of large-scale wind power integration.
引文
[1]中国的能源状况与政策[R].北京:中华人民共和国国务院新闻办公室,2007,http://www.gov.cn/zwgk/2007-12/26/content_844159.htm.
    [2]2013水电新增装机增长57.5%新能源投资超40%[R].北京:中国电力企业联合会,2014, http://www.cec.org.cn/nengyuanyudianlitongji/hangyetongji/dianlixing yeshuju/2014-02-12/116681.html.
    [3]2013年全国发电装机平稳较快增长、结构持续优化[R].北京:国家能源局,2014, http://www.cec.org.cn/yaowenkuaidi/2014-02-11/116578.html.
    [4]2013年全国风电年上网电量1371亿千瓦时[R].北京:中国电力企业联合会,2014, http://www.cec.org.cn/yaowenkuaidi/2014-01-02/114839.html.
    [5]张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
    [6]李文沅.电力系统安全经济运行-模型与方法[M].重庆:重庆大学出版社,1989.
    [7]黎静华,韦化.求解机组组合问题的领域搜索法[J].中国电机工程学报,2008,28(13):33-40.
    [8]刘自发,张建华.一种求解电力经济负荷分配问题的改进微分进化算法[J].中国电机工程学报,2008,28(10):100-105.
    [9]杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5.
    [10]周玮,孙辉,顾宏,等.含风电场的电力系统经济调度研究综述[J].电力系统保护与控制,2011,39(24):148-154.
    [11]Ackermann T. Wind power in power system [M]. London:John Wiley & Sons, 2005:25-50.
    [12]肖创英,汪宁渤,丁坤,等.甘肃酒泉风电功率调节方式的研究[J].中国电机工程学报,2010,30(10):1-7.
    [13]周建华,袁越.含风电场电力系统的Cornish-Fisher级数概率潮流计算[J].电力自动化设备,2011,31(12):68-71.
    [14]朱星阳,刘文霞,张建华.考虑大规模风电并网的电力系统随机潮流[J].中国电机工程学报,2013,33(7):77-85.
    [15]国务院办公厅关于转发发展改革委等部门节能发电调度办法(试行)的通知[R].北京:中华人民共和国国务院新闻办公室,2007,http://www.gov.cn/zwgk/ 2007-08/07/content 708486.htm.
    [16]张伯明,吴文传,郑太一,等.消纳大规模风电的多时间尺度协调的有功调度系统设计[J].电力系统自动化,2011,35(1):1-6.
    [17]秦梁栋.基于Queen-bee进化的遗传算法在电力系统经济调度中应用[J].电力自动化设备,2005,25(5):64-66.
    [18]Kuo C C.A novel coding scheme for practical economic dispatch by modified particle swarm approach [J]. IEEE Transactions on Power systems,2008,23(4): 1825-1835.
    [19]Abou A A. Differential evolution algorithm for emission constrained economic power dispatch problem [J]. Electric Power Systems Research,2010,80(1): 1286-1292.
    [20]李智,韩学山,杨明,等.计及接纳风电能力的电网调度模型[J].电力系统自动化,2010,34(19):15-19.
    [21]Farhat I A, El-Hawary M E. Dynamic adaptive bacterial foraging algorithm for optimum economic dispatch with valve-point effects and wind power [J]. IET Generation, Transmission & Distribution,2010,4(9):989-999.
    [22]Chen C L, Lee T Y, Jan R M. Optimal wind-thermal coordination dispatch in isolated power systems with large integration of wind capacity [J]. Energy Conversion and Management,2006,47(18):3456-3472.
    [23]Vladimiro Mm, Pun S H. Economic dispatch model with fuzzy wind constraints and attitudes of dispatchers [J]. IEEE Transaction on Power Systems,2005,20(4): 2143-2145.
    [24]Hong Y Y, Li C T. Short-term real-power scheduling considering fuzzy factors in an autonomous system using genetic algorithms [J]. IET Generation, Transmission & Distribution,2006,153(6):684-691.
    [25]Heitor H D, Osvaldo R S, Jose E O. Impact of wind generation on the dispatch of the system:a fuzzy approach [J]. Electrical Power and Energy Systems,2008,30: 67-72.
    [26]Liang R H, Liao J H. A fuzzy-optimization approach for generation scheduling with wind and solar energy systems-[J]. IEEE Transactions on Power systems, 2007,22(4):1665-1674.
    [27]艾欣,刘晓.基于可信性理论的含风电场电力系统动态经济调度[J].中国电机工程学报,2011,31(S1):12-18.
    [28]Hetzer J, Yu D C, Bhattarai K. An economic dispatch model incorporating wind power [J]. IEEE Transactions on energy conversion,2008,23(2):603-611.
    [29]Liu X, Xu W. Economic load dispatch constrained by wind power availability:a here-and-now approach [J]. IEEE Transactions on Sustainable Energy,2010,1(1): 2-9.
    [30]Liu X. Emission minimization dispatch constrained by cost and wind power [J]. IET Generation, Transmission & Distribution,2011,5(7):735-742.
    [31]Gao S, Zhang N. A review of different methodologies for solving the problem of wind power's fluctuation [C]. Sustainable Power Generation and Supply, Nanjing, China,2009:1-5.
    [32]Ronan D, Mark O. A new approach to quantify reserve demand in systems with significant installed wind capacity [J]. IEEE Transaction on Power Systems,2005, 20(2):587-595.
    [33]Francois B, Francisco D. Stochastic security for operations planning with significant wind power generation [J]. IEEE Transaction on Power Systems,2008, 23(2):306-316.
    [34]张昭遂,孙元章,李国杰,等.计及风电功率不确定性的经济调度求解方法[J].电力系统自动化,2011,35(22):125-130.
    [35]Lange M. On the uncertainty of wind power predictions-analysis of the forecast accuracy and statistical distribution of errors [J]. American Society of Mechanical Engineers,2005,127:177-184.
    [36]Julija M, Lennart S. Minimization of imbalance cost trading wind power on the short-term power market [J]. IEEE Transactions on Power Systems,2006,21(3): 1396-1404.
    [37]Wei Zhou, Yu Peng and Hui Sun. Optimal wind-thermal coordination dispatch based on risk reserve constraints [J]. European Transactions on Electrical power, 2011,21(1):740-756.
    [38]Hans B, Jose A D, Andres L. Statistical analysis of wind power forecast error [J]. IEEE Transactions on Power Systems,2008,23(3):983-991.
    [39]Alberto F, Tomas G S R, Juan R A, etal. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market [J]. IEEE Transactions on Power Systems,2005,20(3):1440-1446.
    [40]张国强,吴文传,张伯明.考虑风电接入的有功运行备用协调优化[J].电力系统自动化,2011,35(12):15-19.
    [41]葛炬,王飞,张粒子.含风电场电力系统旋转备用获取模型[J].电力系统自 动化,2010,34(6):32-35.
    [42]江岳文,陈冲,温步瀛.基于随机模拟粒子群算法的含风电场电力系统经济调度[J].电工电能新技术,2007,26(3):37-41.
    [43]周任军,姚龙华,童小娇,等.采用条件风险方法的含风电系统安全经济调度[J].中国电机工程学报,2012,32(1):56-63.
    [44]Kuo C. Wind energy dispatch considering environmental and economic factors [J]. Renewable Energy,2010,35:2217-2227.
    [45]Soumitra M, Aniruddha B, Sunita H D. Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration[J]. International Journal of Electrical Power and Energy Systems, 2013,44(1):282-292.
    [46]孙惠娟,彭春华,易洪京.大规模风电接入电网多目标随机优化调度[J].电力自动化设备,2012,32(5):123-128.
    [47]张晓辉,闫柯柯,卢志刚,等.基于碳交易的含风电系统低碳经济调度[J].电网技术,2013,37(10):2697-2704.
    [48]陈功贵,陈金富.含风电场电力系统环境经济调度建模与算法[J].中国电机工程学报,2013,33(10):27-35.
    [49]马瑞,康仁,姜飞,等.考虑风电随机模糊不确定性的电力系统多目标优化调度计划研究[J].电力系统保护与控制,2013,41(1):150-156.
    [50]陈道君,龚庆武,乔卉,等.采用改进生物地理学算法的风电并网电力系统多目标发电调度[J].中国电机工程学报,2012,32(31):150-158.
    [51]Guo C X, BaiYH, Zheng X, et al. Optimal generation dispatch with renewable energy embedded using multiple objectives [J]. International Journal of Electrical Power and Energy Systems,2012,42(1):440-447.
    [52]杨媛媛,杨京燕,夏天.基于改进差分进化算法的风电并网系统多目标动态经济调度[J].电力系统保护与控制,2012,40(23):24-29.
    [53]姚瑶,于继来.计及风电备用风险的电力系统多目标混合优化调度[J].电力系统自动化,2011,35(22):118-124.
    [54]卢锦玲,苗雨阳,张成相,等.基于改进多目标粒子群算法的含风电场电力系统优化调度[J].电力系统保护与控制,2013,41(17):25-31.
    [55]郑漳华,艾芊,徐伟华,等.基于伪并行SPEA2算法的含风电场多目标负荷调度[J].上海交通大学学报,2009,43(8):1222-1227.
    [56]陈道君,龚庆武,张茂林,等.考虑能源环境效益的含风电场多目标优化调度[J].中国电机工程学报,2011,31(13):10-17.
    [57]王魁,张步涵,周杨,等.基于混沌量子粒子群算法的含风电场电力系统实时调度[J].电力系统自动化,2011,35(22):141-146.
    [58]张晓辉,董兴华.含风电场多目标低碳电力系统动态经济调度[J].电网技术,2013,37(1):24-31.
    [59]李茜,刘天琪,李兴源.大规模风电接入的电力系统优化调度新方法[J].电网技术,2013,37(2):1-8.
    [60]王开艳,罗先觉,吴玲,等.清洁能源优先的风-水-火电力系统联合优化调度[J].中国电机工程学报,2013,33(13):27-35.
    [61]王彩霞,乔颖,鲁宗相,等.低碳经济下风火互济系统日前发电计划模式分析[J].电力系统自动化,2011,35(22):111-117.
    [62]Yong F, Shahidehpour M. Fast SCUC for large-scale power systems [J]. IEEE Transactions on Power Systems,2007,22(4):2144-2151.
    [63]Lee F N. The application of commitment utilization factor (CUF) to thermal unit commitment [J]. IEEE Transactions on Power System,1991,6(2):691-698.
    [64]Ouyang Z, Shahidehpour S M. An intelligent dynamic programming for unit commitment application. IEEE Transactions on Power Systems,1991,6(3): 1203-1209.
    [65]Seki T, Yamashita N, Kawamotor K. New local search methods for improving the lagrangian-relaxation-based unit commitment solution [J]. IEEE Transactions on Power Systems,2010,25(1):272-283.
    [66]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation [J]. IEEE Transaction on Power System,2004,19(1):620-628.
    [67]Kumar V S, Mohan M R. Solution to security constrained unit commitment problem using genetic algorithm [J]. Electrical Power and Energy Systems,2010, 32:117-125.
    [68]Grzegorz D. Adaptive simulated annealing schedule to the unit commitment problem [J]. Electrical Power Systems Research,2010,80:465-472.
    [69]Miguel C, Jose M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem [J]. IEEE Transactions on Power Systems, 2006,21(3):1371-1378.
    [70]Ostrowski J, Anjos M F, Vanneli A. Tight mixed integer linear programming formulations for the unit commitment problem [J]. IEEE Transactions on Power Systems,2012,27(1):39-46.
    [71]Lee T Y. Optimal spinning reserve for a wind-thermal power system using EIPSO [J]. IEEE Transactions on Power Systems,2007,22(4):1612-1621.
    [72]Chen C L. Optimal wind-thermal generating unit commitment [J]. IEEE Transactions on Energy conversion,2008,23(1):273-280.
    [73]Liu G, Tomsovic K. Quantifying spinning reserve in systems with significant wind power penetration [J]. IEEE Transactions on Power Systems,2012,27(4): 2385-2393.
    [74]陈海焱,陈金富,段献忠.含风电场电力系统经济调度的模糊建模及优化方法[J].电力系统自动化,2006,30(2):22-26.
    [75]江岳文,陈冲,温步瀛.含风电场的电力系统机组组合问题随机模拟粒子群算法[J].电工技术学报,2009,24(6):129-137.
    [76]艾欣,刘晓,孙翠英.含风电场电力系统那个机组组合的模糊机会约束决策模型[J].电网技术,2011,35(12):202-207.
    [77]Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment [J]. IEEE Transactions on Power Systems,2007,22(2):800-811.
    [78]Venkata S, Istvan E, Kurt R, etal. A stochastic model for the optimal operation of a wind-thermal power system [J]. IEEE Transactions on Power Systems,2009, 24(2):940-950.
    [79]Wen J, Zheng Y, Zhi H. A novel improved particle swarm optimization approach for dynamic economic dispatch incorporating wind power[J]. Electric Power Components and Systems,2011,39(5):461-477.
    [80]Wang J, Shahidehpour M, Li Z. Security-constrained unit commitment with volatile wind power generation[J]. IEEE Transactions on Power Systems,2008, 23(3):1319-1327.
    [81]Vallee F, Brunieau G, Pirlot M, etal. Optimal wind clustering methodology for adequacy evolution in system generation studies using nonsequential monte carlo simulation [J]. IEEE Transactions on Power Systems,2011,26(4):2173-2184.
    [82]叶荣,陈皓勇,王钢,等.多风电场并网时安全约束机组组合的混合整数规划解法[J].电力系统自动化,2010,34(5):29-33.
    [83]Wang Y, Xia Q, Wang C. Unit commitment with volatile node injections by using interval optimization [J]. IEEE Transactions on Power Systems,2011,26(3): 1705-1713.
    [84]Chinneck J W, Ramadan K. Linear programming with interval coefficients [J]. The Journal of the Operational Research Society 2000,51 (2):209-220.
    [85]汤伟,王漪,于继来,等.编制直调火力发电单元月度电能交易计划的综合耗 量优化法[J].中国电机工程学报,2009,29(25):64-70.
    [86]梁志飞,夏清,许洪强,等.基于多目标优化模型的省级电网月度发电计划[J].电网技术,2007,33(13):90-95.
    [87]颜伟,李翔,梁文举,等.基于负荷分段技术的多目标月度发电计划及其遗传算法[J].电力系统自动化,2013,33(10):47-52.
    [88]周明,李科阳,李庚银,等.兼顾竞价和奖惩机制的节能发电调度方法[J].电网技术,2009,33(16):70-74.
    [89]王冠群,刘峰,梅生伟,等.合同电量优化分解模型及算法[J].电机与控制学报,2012,16(7):58-64.
    [90]张炜,何光宇,王稹,等.水火联合电力系统中期经济调度系统的研究[J].电网技术,2002,26(10):7-10.
    [91]徐乾耀,康重庆,江长明,等.多时空尺度风电消纳体系初探[J].电力系统保护与控制,2013,41(1):28-32.
    [92]温丽丽,刘俊勇.混合系统中、长期节能调度发电计划的蒙特卡罗模拟[J].电力系统保护与控制,2008,36(24):24-29.
    [93]静铁岩,吕泉,郭琳,等.水电-风电系统日前联合调峰运行策略[J].电力系统自动化,2011,35(22):97-104.
    [94]Meibom P, Weber C, Barth R. Operational costs induced by fluctuating wind power production in Germany and Scandinavia [J]. IET Renewable Power Generation,2009,3(1):75-83.
    [95]冯永青,张伯明,吴文传,等.电力市场发电机组检修计划的快速算法[J].电力系统自动化,2004,28(16):41-44.
    [96]王淳,程浩忠,谭永香,等.发电机组检修计划的模拟植物生长算法[J].电工技术学报,2008,23(9):105-110.
    [97]颜伟,林烨,罗锡斌,等.考虑负荷转移的检修计划安全校核优化方法[J].电力系统自动化,2010,34(16):92-96.
    [98]林灵兵,刘宪林,韩源,等.供电设备检修计划优化模型和算法[J].电力自动化设备,2012,32(8):91-94.
    [99]王健,文福拴,杨仁刚,等.基于机会约束规划的发电公司最优检修策略[J].电力系统自动化,2004,28(19):27-31.
    [100]张节潭,王茂春,徐有蕊,等.采用最小累积风险度法的含风电场电力系统发电机组检修计划[J].电网技术,2011,35(5):97-102.
    [101]方陈,夏清,孙欣.考虑大规模风电接入的发电机组检修计划[J].电力系统自动化,2010,34(19):20-24.
    [102]张宏宇,印永华,申洪,等.考虑大规模风电调峰要求的系统机组检修计划[J].电力系统自动化,2012,36(16):25-30.
    [103]高宗和,耿建,张显,等.大规模系统月度机组组合和安全校核算法[J].电力系统自动化,2008,32(23):28-30.
    [104]李利利,管益斌,耿建,等.月度安全约束机组组合建模及求解[J].电力系统自动化,2011,35(12):27-31.
    [105]夏清,陈雨果,陈亮.考虑月度机组组合的节能发电调度模式与方法[J].电网技术,2011,35(6):27-33.
    [106]Fu Y, Shahidehpour M, Li Z Y. Long-term security-constrained unit commitment: hybrid Dantzig-wolfe decomposition and subgradient approach [J]. IEEE Transactions on Power Systems,2005,20(4):2093-2106.
    [107]Wang P, Wang Y, Xia Q. Fast bounding technique for branch-and-cut algorithm based monthly SCUC[C]. IEEE Power and Energy Society General Meeting, USA,2012:1-8.
    [108]葛晓琳,舒隽,张粒子.考虑检修计划的中长期水火联合优化调度方法[J].中国电机工程学报,2012,32(13):36-43.
    [109]Le X, Carvalho P, Ferreira L, et al. Wind integration in power systems:operational challenges and possible solutions[J]. Proceedings of the IEEE,2011,99(1):214-232.
    [110]高宗和,滕贤亮,张小白.适合大规模风电接入的互联电网有功调度与控制方案[J].电力系统自动化,2010,34(17):37-41.
    [111]陈宁,于继来.基于电气剖分信息的风电系统有功调度与控制[J].中国电机工程学报,2008,28(16):51-58.
    [112]高翔.现代电网频率控制应用技术[M].北京:中国电力出版社,2011:182-221.
    [113]周全仁.现代电网自动控制系统及其应用[M].北京:中国电力出版社,2004:147-162.
    [114]Raul P. Differential evolution based power dispatch algorithms[D]. Puerto Rico: University of Puerto Rico,2004.
    [115]Vaisakh K, Praveena P, Mohana R, et al. Solving dynamic economic dispatch problem with security constraints using bacterial foraging PSO-DE algorithm[J]. Electrical Power and Energy Systems,2012,39(1):56-67.
    [116]孙元章,吴俊,李国杰,等.基于风速预测和随机规划的含风电场电力系统动态经济调度[J].中国电机工程学报,2009,29(4):41-47.
    [117]甘应爱,田丰,李维铮,等.运筹学[M].北京:清华大学出版社,2005:16-19.
    [118]Chiou J. A variable scaling hybrid differential evolution for solving large-scale power dispatch problems[J]. IET Generation, Transmission & Distribution, 2009, 3(2):154-163.
    [119]Basu A K, Bhattacharya A, Chowdhury S, et al. Planned scheduling for economic power sharing in a CHP-based micro-grid[J]. IEEE Transactions on Power System.2012,27(1):30-38.
    [120]郑漳华,艾芊,顾承红,等.考虑环境因素的分布式发电多目标优化配置[J].中国电机工程学报,2009,29(13):23-28.
    [121]Robic T, Filipic D. DEMO:Differential evolution for multiobjective optimization [C]. Lecture Notes in Computer Science, Berlin:Springer,2005:520-530
    [122]邱威,张建华,刘念.计及运行风险的多目标发电优化调度[J].中国电机工程学报,2012,32(22):64-72.
    [123]牛大鹏,王福利,何大阔,等.多目标混沌差分进化算法.控制与决策[J].2009,24(3):361-370.
    [124]夏澍,张建华,刘自发.基于二进制自适应微分进化算法的机组组合问题[J].电网技术,2010,34(4):110-114.
    [125]Das S, Abraham A, Konar A. Automatic clustering using an improved differential evolution algorithm[J]. IEEE Transactions on Systems and Humans,2008,38(1): 218-237.
    [126]Kukkonen S, Deb K. Improved pruning of non-dominated solutions based on crowding distance for Bi-objective optimization problems[C].2006 IEEE Congress on Evolutionary Computation, Vancouver, Canada:IEEE,2006:1178-1186.
    [127]Hwang C L, Yoon K. Multiple attribute decision making-methods and applications:A state-of-art Survey[M]. New York:Spinge- Verlag,1981.
    [128]李学斌.火电厂厂级负荷分配的多目标优化和决策研究[J].中国电机工程学报,2008,28(35):102-107.
    [129]李智欢,段献忠.多目标进化算求解无功优化问题的对比分析[J].中国电机工程学报,2010,4(5):57-65.
    [130]Schott J R. Fault tolerant design using single and multi-criteria genetic algorithm optimization[D]. Cambridge:Massachusetts Institute of Technology,1995.
    [131]Lei W, Shahidehpour M, Li Z. Comparison of scenario-based and interval optimization approaches to stochastic SCUC [J]. IEEE Transactions on Power Systems,2012,27(2):913-921.
    [132]易海琼,程时杰,侯云鹤,倪以信.基于点估计的电力系统小扰动稳定概率分 析[J].电力系统自动化,2007,31(23):1-4.
    [133]Gregor V, Claudio A. Probilistic optimal power flow in electricity markets based on a two-point estimate method[J]. IEEE Transactions on Power System,2006, 21(4):1883-1893.
    [134]潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报,2008,28(16):28-33.
    [135]王敏,丁明.含大型太阳能发电系统的极限传输容量概率计算[J].电力系统自动化,2010,34(7):31-35.
    [136]Miguel C, Jose M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems, 2006,21(3):1371-1378.
    [137]Liu H, Shi J, Qu X. Empirical investigation on using wind speed volatility to estimate the operation probability and powe output of wind turbines[J]. Energy Conversion and Management,2013,67:8-17.
    [138]Yan J, Liu Y, Han S, Qiu M. Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine[J]. Renewable and Sustainable Energy Reviews,2013,27:613-621
    [139]Morales J M, Perez-Ruiz J. Point estimate schemes to solve the probabilistic power flow[J]. IEEE Transactions on Power Systems,2007,22(4):1594-1601.
    [140]MIGUEL C, JOSE M. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems,2006,21(3):1371-1378.
    [141]吕振勇.电力法律法规知识问答[M].北京市:中国电力出版社,1997,75-76.
    [142]王彩霞,鲁宗相.风电功率预测信息在日前机组组合中的应用[J].电力系统自动化,2011,35(7):13-18.
    [143]Fu Y, Shahidehpour M, Li Z Y. Security-Constrained Optimal Coordination of Generation and Transmission Maintenance Outage Scheduling[J]. IEEE Transactions on Power Systems,2007,22(3):1302-1313.
    [144]Atwa Y M, El-Saaday E F, Salama M M A. Optimal renewable resources mix for distribution system energy loss minimization[J]. IEEE Transactions on Power Systems,2010,25(1):360-370.
    [145]赵宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003:79-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700