用户名: 密码: 验证码:
铜基三效催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着火力发电等工业的发展和机动车辆数量的增加,排放的氮氧化物(NOx,其中NO体积分数占90 %以上),一氧化碳,碳氢化合物日益增加;同时,随着全球能源危机的愈演愈烈,节能型贫燃发动机的设计和使用日趋发展。贫燃虽可提高燃料的燃烧效率,但也导致汽车尾气污染物,尤其是NOx排放量大幅度上升。汽车排放尾气中的CO、C3H6、NO既会造成严重的环境污染,也会直接危害人类的健康。因此,如何有效净化汽车尾气已成为国内外高度重视的问题。
     三效催化剂的研究一直是汽车尾气净化的主要途径,新型高效的非贵金属催化剂是近年来研究的热点。本文制备并研究了具有良好三效催化性能的新型非贵金属催化剂。①将AlNH4(SO4)2溶液缓慢滴入到NH4HCO3溶液和PEG6000的混合溶液中采用共沉淀法制备纳米氧化铝载体,等体积浸渍法浸渍助剂Ce4+、Zr4+、La3+和活性组分Cu2+,制备了催化剂Cu/Ce-Zr-La/γ-Al2O3;错误!未定义书签。②采用了溶胶凝胶法制备复合载体Ce/SnO2-TiO2,然后负载活性组分负载Cu2+,制成了催化剂Cu/Ce/ SnO2-TiO2(sol-gel)。通过活性测试分析催化性能,并采用扫描电子显微镜(SEM)、X-射线衍射(XRD)、热失重分析(TGA)、差热分析(DTA)等现代分析方法对催化剂结构进行表征,研究催化剂性能与结构的关系。
     对Cu/Ce-Zr-La/γ-Al2O3的研究结果表明,Cu/Ce-Zr-La/γ-Al2O3具有良好的三效催化性能,NO、CO和C3H6的起燃温度都较低,分别为250℃、150℃和300℃;CeO2-ZrO2对载体γ–Al2O3和活性组分Cu具有稳定作用,避免CuAl2O4尖晶石相的生成;La能够显著提高催化剂的热稳定性。
     对Cu/Ce/SnO2-TiO2(sol-gel)的研究结果表明, Ce4+可以有效提高催化剂的低温活性,与催化剂Cu/SnO2-TiO2相比,NO、CO和C3H6起燃温度分别降低了35℃、35℃和120℃,且NO、CO的最高转化率均达到90 %以上。表征结果显示,SnO2-TiO2主要以SnO2金红石结构为主,TiO2部分由锐钛矿结构变为具有较好还原活性的金红石结构,Ce4+的引入能明显细化催化剂颗粒,增强活性组分铜物种的分散度和催化剂的热稳定性,从而提高催化剂的三效催化性能。
With the development of the thermal power generation technology and other industries as well as the increasing of the number of the automobile, the emission of nitrogen oxides, carbon monoxide and hydrocarbon is increasing. Meanwhile, as the aggravation of the global energy crisis, the designation and application of energy-saving engines in lean-burn condition has been developing. Although it can improve combustion efficiency of the fuels in lean-burn condition, it results in the largely increasing emission of vehicle exhausts, especially for NOx. Not only do NO, carbon monoxide and hydrocarbon cause series environmental pollution, but also they do harm to people’s health. Therefore, much attention is paid to the problem that how to effectively purify automobile exhaust both at home and abroad.
     Three-way-catalyst purification is the main method of the tail gas treatment, and the research on the new type catalyst with high efficiency non-noble metal, has become the top topic in recent years. Two kinds of non-noble metal catalysts with high efficiency catalytic activity have been studied in this thesis:①The Al2O3 support was prepared by the co-precipitation method with a AlNH4(SO4)2 aqueous solution dropping into a mixed NH4HCO3-PEG6000 aqueous solution. The Cu/Ce-Zr-La/γ-Al2O3 catalyst was obtained by impregnation of Al2O3 with promoter Ce4+, Zr4+, La3+ and active component Cu2+ aqueous solution.②The Ce/SnO2-TiO2(sol-gel) composite support was prepared by sol-gel method, and the Cu/Ce/SnO2-TiO2 catalyst was prepared by the impregnation of Ce/SnO2-TiO2 with active component Cu2+ aqueous solution. The catalysts were characterized by means of the X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TG).
     The investigation of the Cu/Ce-Zr-La/γ-Al2O3 catalyst indicated that the catalyst Cu/La/Ce-Zr/Al2O3 exhibited the high catalytic activity, and the conversion of NO could up to 100 % in the rang of 400℃and 800℃. The addition of the CeO2-ZrO2 , which formed the solid solution, greatly improved the catalytic activity, and the La promoter increased the thermal stability of the catalyst.
     The study of the relationship between the catalytic activity and the structure of the Cu/Ce/SnO2-TiO2(sol-gel) catalyst indicated that the addition of Ce4+ can significantly enhance the low temperature catalytic activity, and the light-off temperature of NO , CO and C3H6 were lowed by 35℃、35℃and 120℃, respectively, compared to the catalyst Cu/SnO2-TiO2 . The maximum conversion of NO and CO were both up to 90 %. The results of characterization indicate that the SnO2-TiO2 exists mainly as rutile structure, which has excellent reduction activity. The catalyst Cu/Ce/SnO2-TiO2(sol-gel) shows a high three way catalytic activity when the Ce4+ was loaded on, which could remarkable refine the particle size of catalyst, improve the dispersion degree of the active composition Cu and the thermal stability of catalyst.
引文
[1] 3月1日起北京将执行国Ⅳ机动车排放标准.城市管理与科技,2008,10 (1)
    [2]沈迪新,陈宏德,田群.我国汽车尾气污染、污染控制与对策.环境科学进展,1997,5(6):23~33
    [3]王建听,傅立新,黎维彬.汽车排气污染治理及催化转化器.北京,化学工业出版社,2000:1~63
    [4] R. K. Herz, J. B. Kiela, J. A. Sell. Dynamic behavior of automotive catalysts, Carbon monoxide conversion under transient air fuel ratio conditions. Ind. Eng. Chem. Prod. Res. Dev, 1983, (3): 387~396
    [5] K. C. Taylor, R. M. Sinkevitch. Behavior of automobile exhaust catalysts with cycled feedstreams. Ind. Eng. Chem. Prod. Res. Dev, 1983 (1): 45~51
    [6] J. C. Schlatter, R·M·Sinkevitch, P. J. Mitchell. Laboratory reactor system for three - way automotive catalyst evaluation. Ind. Eng. Chem. Prod. Res. Dev, 1983 (1): 51~56
    [7] A. B. K. Lie, J. Hoebink, G. B. Marin. The effects of oscillatory feeding of CO and O2 on the performance of a monolithic catalytic converter of automobile exhaust gas: a modelling study. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1993 (1): 47 ~54
    [8] Fritz A, et al. The current state of research on automotive lean NOx catalysis. Appl. Catal. B: Environmental, 1997, 13: 1~25
    [9]张宏艳,牟元平,常志伟.汽车尾气净化三效催化剂研究进展.化工科技,2006,14(5):70~72
    [10] Tadao Nakatsuji, Akira Miyamoto. Removal technology for nitorogen oxides and sulfur oxides from exhaust gases. Catal. Today, 1991, 10: 21~31
    [11]谢松青,袁继委.汽车尾气净化催化剂的发展及展望.科技信息,2007,11
    [12]谭镜明.汽车尾气三效催化剂简介.广州环境科学,2007,22 (1):20~21
    [13]蒋平平,卢冠忠,郭杨龙.在CeO2-ZrO2中加入La2O3对改善单Pd三效催化剂性能的作用.无机化学学报,2004,20 (12):1390~1396
    [14] L. Castoldi, I. Nova L. Lietti, P. Forzatti. Study of the effect of Ba loading for catalytic activity of Pt–Ba/Al2O3 model catalysts . Catalysis Today, 2004, 96 (1-2): 43~52
    [15]邹运湖,汽车尾气净化用三效催化剂.化学工业与工程技术,1999,20 (4) :21~29 [16]李英实,陈宏德.负载型汽车尾气催化剂简介.环境科学进展,1999,7(3):52~6l
    [17] Cooper B J. Challenges in emission control catalysis for the next decade . Platinum Metals Rev, 1994, 38(3): 101
    [18]黎维彬,林缨,张雨等.含铂汽车尾气三效催化剂的研究.宁夏大学学报:自然科学版,2001,22(2):199~200
    [19]章青,贺小昆,黄荣光等.汽车尾气净化Pd催化剂的研究现状、进展及展望.贵金属,2006,27(1):69~74
    [20] Engler B H, Lox E S. Recent Trends in the Application of Tri-metal Emission Control Catalysts [M]. [s1.]: SAE940928, 1994
    [21]张爱敏,宁平.汽车尾气净化用贵金属催化材料研究进展.贵金属,2005,26(3): 66~70
    [22]王绍梅,李惠云,袁小勇.汽车尾气催化净化催化剂的研究进展.安阳师范学院学报,2004(5): 36~38
    [23] Libby W F. Promising Catalyst for Auto Exhaust . Science, 1971, 171(3970): 499-500
    [24]黎展毅,颜幼平,蔡河山.几种新型的汽车尾气净化催化剂.广东化工, 2005 (10):51~52
    [25]罗宁,姚金华,刘治中.稀土催化剂在汽车尾气净化方面的应用.重庆环境科学,1998,20(3):34~37
    [26]李兰冬,章福祥.金属-ZMS-5/堇青石整体式催化剂上稀燃汽车尾气的净化.催化学报,2006,27(1):41~44
    [27]史合群,周俊逸,崔心存.用改性三效催化剂净化汽车尾气的试验研究.江苏环境科技,2001,14(4):4~6
    [28]都雪静,许洪国.纳米TiO2含量对汽车尾气因子降解效能影响试验研究.公路交通科技,2007,24(10):155~158
    [29]相会强,刘建勇,檀丽丽.纳米稀土催化技术在汽车尾气净化中的应用.现代化工,2006,26(2):379~381
    [30]何秋梅,曾美琴,戴乐阳.纳米材料在汽车尾气净化催化剂中的应用.广东有色金属学报,2004,14(1):73~75
    [31] Jean-Pierre G. Gilibert Blanchard, Olivier Touret, et al. New Generation of Rare Earth Compounds on Automotive Catalysis, SAE Paper No. 961906
    [32] Carla E Hori, et al. Thermal Stability of Oxygen Storage Properties in Mixed CeO2-ZrO2 System, Applied Catalysis(B), 1998, 16: 105~117
    [33]蒋晓原,周仁贤,袁闲鑫等.汽车尾气净化催化剂的研究.环境污染与防治,1995,17 (2):9~11
    [34]王亚军,冯长根,王丽琼等.稀土在汽车排气催化净化中的应用.工业催化,2000,8 (5):3~7
    [35]蔡黎,赵明,皮展,龚茂初,陈耀强. Ce-Zr-La-Al2O3的制备及负载的单Pd三效催化剂.催化学报,2008.02,29 (2):108~111
    [36]杨遇春.稀土在汽车尾气净化中的应用.稀有金属,1998,22 (5):361~368
    [37]谈世韶,汪仁.镧对氧化铝载体性能的影响.稀土,1988,(2):19
    [38]周泽兴,王学中.全Pd三效催化剂研究-涂层材料的研究.环境科学,2001,20 (1):1~6
    [39] Boaro Marta, Giordano Francesca, Recchia Sandro, et al. On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts. Applied Catalysis B: Environmental, 2004, 52(3): 225~237
    [40]冯长根,樊国栋,刘霞.三效催化剂中促进剂氧化铈的作用研究进展.化工进展,2005,24 (3):227~230
    [41]蒋晓原,周仁贤,周烈华等. CeO2-CuO/Al2O3在催化剂上CO氧化物种脱附与恢复行为的研究.环境化学,1997,16 (5):418~422
    [42]卢冠忠,汪仁.氧化铈在非贵金属氧化物催化剂中的作用.催化学报,1991,12 (2):83~89
    [43] Yao H. C, et al. Ceria in automotive exhaust catalyst 1. Oxygen storage. J. Catal, 1984, (86): 254~265
    [44] Trovarelli A. Structure and oxygen storage/release properties of CeO2-base solid solutions. Coments on Inorganic Chemistry, 1999, 20(4-6): 263~284
    [45] Funabiki M. Yamada T.and Kayno K. Automotive Exhaust Catalyst. Catalysis Today, 1991(14): 33~43
    [46]刘庆峰,王茁,尚文宇等.晶须碳酸钙的开发.无机盐工业,2000,3 (32):11~12
    [47] Falini G, Gazzano M, Ripamonti A. Crystallization of calcium carbonate in presence of magnesium and polyelectroytes. J Crystal Growth, 1994, 137: 577~584
    [48]岳伟,张益群,周伟,马建新.汽车尾气催化净化过程中的水煤气反应和蒸汽转换反应.工业催化,2000,8 (5):29~33
    [49]田阳超,伏义路,林培琰. CuO/CeO2/γ- Al2O3催化剂的结构及氧物种.催化学报,1994,15 (3):189~193
    [50]黄传荣,谭宇新,毛以朝. La-Co-Ce-Pd催化剂性能的研究.现代化工,1997,12:23~25
    [51] Burton J J,Garten R L.新型催化材料[M].林西平译.北京:石油工业出版社,1984
    [52]胡逸民,李飞鹏编著.《内燃机废气净化》,中国铁路出版社,1994
    [53] Jacques Barbier Jr, Daniel Duprez. Stream effects in three way catalysis. Apllied Catalysis B: Evironment, 1994, 4: 105~140
    [54] Jerry C.Summers et al. Catalyst Technologies to Meet future Emission Requirements for Light-duty Vehicles, Catalytic Control of Air Pollutions, ACS Symposium Series vol. 495.
    [55]李青.《汽车尾气催化剂的结构及特性》,环境保护,1998.4
    [56]潘履让.《固体催化剂的制备设计与制备》,南开大学出版社,天津,1993
    [57] Zhen zhao,et al. Study of Nickel-based Perovskite-like Mixed Oxide Catalysts for Direct Decomposition of NO, Applied Catalysis B: Environmental 1996, 8: 281-297
    [58] Adams. K. M.Gandhi.H.S. Industrial & engineering chemistry product research and development. Industrial and Engineering Chemistry Research, 1983, 22: 207-212
    [59] B.I .Whittington et al. The relative importance of catalytic oxidation, steam reforming and water-gas shift reactions. Catalysis Today , 1995, 26(1): 41-45
    [60] Miguel A.Salas-Peregrin et al. Applied Catalysis, 1998, 112
    [1] Fernández-García M., Iglesias-Juez A., Martínez-Arias A., et al. Role of the state of the metal component on the light-off performance of Pd-based three-way catalysts. Journal of Catalysis, 2004, 221: 594-600.
    [2] Hori Carla E., Haryani Permana, Simon Ng K.Y., et al. Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Applied Catalysis: B, 1998, 16: 105-117.
    [1] Teraoka Y, Harada T. Selective reduction of nitrogen monoxide with hydrocarbons over SnO2 catalyst. Chemistry Letters, 1993,773~776
    [2] Kung M C, Park P W, Kim D W, et al. Lean NOx Catalysis over Sn/γ-Al2O3 Catalysts. Journal of Catalysis, 1999, 181(1): 1~5
    [3] Park P W, Kung H H, Kim D W, et al. Lean NOx catalysis over Sn/γ-Al2O3 catalysts J.Catal., 1999, 184(2):440~454
    [4]尉继英,马军,朱月香. SnO2-Al2O3复合氧化物催化剂的一氧化氮选择催化还原性能.分子催化,2001,15(1): 1~5
    [5] Maunala T, Kintaichi Y. Enhanced activity of in and Ga-supported sol-gel alumina catalysts for NO reduction by hydrocarbons in lean conditions. Applied Catalysis. B: Environmental, 1998, 15(3): 291~304
    [6] Jiang Xiaoyuan, Ding Guanghui, Lou Liping, et al. Catalytic activities of CuO/TiO2 and CuO-ZrO2/TiO2 in NO+CO Reaction. Journal of Molecular Catalysis A: Chemistry, 2004, 218:187~195
    [7] Wollner A, Longe F. Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Applied Catalysis A: General, 1993, 94(2): 181~202
    [8]赵秀华. CuO/CexTi1-xO2催化剂的结构及对NO+CO反应性能的研究.浙江大学硕学位论文,2008.05.
    [9] Guimon C, Gervasini A, Auroux A. XPS study of the adsorption of SO2 and NH3 over supported tin dioxide catalysts used in de-NOx catalytic reaction. Journal of Physical Chemistry B. , 2001, 105: 10316-0325
    [10]梁均方,马骏,刘赵穹等.脱硫脱销一体化催化剂SnO2-TiO2的程序升温还原及脱附研究.分子催化,2003,17(5):353-356
    [11] Kong I B, Huang Ma H. Preparation of the solid solution Sn0.5Ti0.5O2 from anoxide mixture via a mechanochemical process. Alloys and compounds, 2002, 336: 315-319
    [12] Kulshreshtha S K, Sasikala R, Sudarsan V. Non-random distribution of cations in Sn1-xTiO2(0.0 < x < 1.0): a 119Sn MAS NMR study. Mater. Chem., 2001, 11:930-935
    [13]贾彦荣,蒋晓原,郑小明. CuO/Sn0.8Ti 0.2O2催化剂的表征及对NO+CO反应活性研究.无机化学学报,2006,22(3):525-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700