用户名: 密码: 验证码:
不结球白菜抗芜菁花叶病毒基因分子标记与遗传定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不结球白菜(Brassica rapa L. ssp. chinensis Makino)是亚洲非常重要的蔬菜作物之一,也是我国生产面积最大的蔬菜作物。它起源于我国南方地区,有着1500年的栽培历史,全国各地有非常丰富的种质资源。不结球白菜与结球白菜有很近的亲缘关系,它们是芸苔种中最重要的两个亚种,虽然它比结球白菜的种植历史要长近千年,但不结球白菜的分子辅助选择育种研究要远远落后于结球白菜,尤其是在世界范围内。
     芜菁花叶病毒(TuMV)是危害不结球白菜的最重要病原菌之一,病毒侵染后使叶片皱缩,形成花叶,严重影响植物的光合作用,最好的防治方法是利用不结球白菜的自然抗性。国内外虽然已开展了芸苔属作物抗TuMV的研究工作,并已标记了部分抗性基因或QTLs,但至今仍没有关于不结球白菜抗TuMV基因的相关报道。
     本研究筛选了两个对TuMV抗性差异非常明显的不结球白菜纯系,Q048为TuMV抗性品系,A168-5D为TuMV高感品系。它们的F_2分离群体被用作抗TuMV基因标记和不结球白菜遗传作图的群体。
     通过对杂交亲本、F_1和F_2群体人工接种上海地区的TuMV主要株系沪1(属于TuMV的C5株系),获得各单株对TuMV的抗感数据,F_2群体中抗病单株(145)和感病单株(35)数据符合3:1的分离率(Χ~2= 2.96<Χ~2_(0.05))。利用BSA方法和AFLP标记对亲本、F_1、抗感池和建池用的F_2单株进行标记,由EaccMctt扩增的一条带符合与抗性基因连锁的要求,用此引物组合扩增180个F_2单株的DNA,第三条EaccMctt的多态性条带中有带(132)和无带(48)的数据符合3:1分离率(Χ~2= 0.27<Χ~2_(0.05)),两组数据都符合孟德尔遗传定律,证明不结球白菜抗TuMV-C5株系基因为单显性基因。利用36对AFLP引物组合扩增亲本和F_2群体,多态性标记的数据经分析作图,获得了抗TuMV基因的两端连锁标记EaccMctt3(间距为7.8cM)和EatcMcac1(间距为20.3 cM),并命名该抗性基因为TuRBCH01。
     利用57对AFLP引物组合和65个SSR引物扩增亲本和F_2群体,共获得212个多态性AFLP标记和82个多态性SSR标记。依据结球白菜参照遗传图谱,用50个只有一条多态性条带的SSR标记构建了不结球白菜遗传连锁框架图谱,每个连锁群上至少有3个位点是与参照图谱一致的。把剩余的SSR标记和所有AFLP标记插入框架图谱中,共有133个AFLP标记位点和74个SSR标记位点被用在连锁图谱中。构建的10个连锁群,总长度为1123cM,标记间平均距离为5.43cM。把通过ELISA检测获得的180个F_2单株抗感TuMV的数据与不结球白菜遗传
     连锁图谱中的207个位点的数据一起用作图软件分析,TuRBCH01位点被插入到连锁群R6上,位于EaccMctt 3(E36M62-3)和EatcMcac 1(E44M48-1)之间,间距分别为7.9cM和21 cM。我们初步判断TuRBCH01位于不结球白菜的第5条染色体上。
Pak-cho(iBrassica rapa L. ssp. chinensis Makino)is a very important economical and nutritional vegetable crop in Asia and it accounts for the largest vegetable production area (30-40%) in China. It originated in China and began to grow at about 5th century AD. There are very abundant germplasm resources of pak-choi in China. Pak-choi (ssp.chinensis) and Chinese cabbage (ssp. pekinensis) are the most important crops of B. rapa and the genetic relationship between them is very close. Though the former has a longer history than the latter for several hundred years, the breeding programs for MAS of pak-choi are fewer than Chinese cabbage throughout the world.
     Turnip mosaic virus (TuMV) is one of the most important pathogens of pak-choi and causes serious losses. It can make the host plants mosaic leaves or necrosis and seriously affect plant photosynthesis. The natural plant resistance is the most effective method to control TuMV. TuMV resistance in Brassica and a number of resistance genes or QTLs have been reported around the world. But no molecular marker linked to TuMV resistance gene has been reported in pak-choi.
     In this study, Q048, a TuMV-resistant lines was crossed with A168-5D, a susceptible line. The F_2 (180 individuals) population was constructed and used to screen the moleular marker linked to the TuMV resistance gene and to construct the genetic linkage map of pak-choi.
     The seedlings of parents, F_1 and 180 F_2 individuals were mechanically inoculated TuMV-Hu1 (TuMV-C5). The resistance evaluation was done by ELISA kit and the data of resistant and susceptible phenotypes of F_2 population (145 resistant and 35 susceptible) were analysed by chi-square test, which is very close to the expected segregation of 3:1 with significant (Χ~2 = 2.96 <Χ~2_(0.05)). AFLP technique and BSA method were used to study the F_2 population and the parents, F_1, resistant bulk, susceptible bulk, 10 resistant and 10 susceptible F_2 individuals were screened. One of the polymorphism bands amplified by EaccMctt was scored and the ratio of 132 presents to 48 absents is very close to the expected segregation of 3:1 with significant (Χ~2 = 0.27<Χ~2_(0.05)). F_2 hybrids segregated for TuMV resistance in a 3:1 ratio is for goodness of fit the expected Mendelian model based on the action of a single dominant gene. 36 AFLP polymorphic primer combinations were employed to amplify the parents and F_2 population. The data indicated that the TuMV resistance locus was positioned between AFLP markers EaccMctt3 (7.8cM) and EatcMcac1 (20.3 cM). The resistance gene was named TuRBCH01 (TuMV resistance in Brassica rapa ssp. chinensis 01).
     A genetic linkage map for pak-choi was constructed using AFLP and SSR markers based on 180 F_2 individuals. It included 133 AFLP and 74 SSR markers from 57 AFLP and 65 SSR primer combinations, respectively. According to the reference genetic linkage map of Brassica rapa genome, 50 SSR markers were previously used to construct a framework map and all AFLP markers and another 24 SSR markers were inserted. The linkage map consists of 10 linkage groups with a total distance of 1223 cM and an average interval of 5.43 cM.
     The data of resistant and susceptible phenotypes of 180 F_2 individuals (145 resistant and 35 susceptible) was analyzed with 207 markers in the genetic linkage map of pak-choi by MAPMAKER/EXP 3.0. We inserted TuRBCH01 locus into R6 using‘try’command and it was still positioned between EaccMctt 3 (E36M62-3) and EatcMcac 1 (E44M48-1). The interval observed between E36M62-3 and TuRBCH01 is 7.9cM, and 21cM between TuRBCH01 and E44M48-1. Though the intervals between TuRBCH01 locus and linked AFLP markers in the present linkage group are slightly larger, there was no significant difference between them (P>0.05). According to the report of Kim et al. (2009), TuRBCH01 should be on chromosome 5 of pak-choi.
     In this study, the TuMV-resistant gene of pak-choi was firstly detected and named. A single dominant gene was firstly proved to control TuMV-C5 resistance gene and located on the linkage group R6 in the genetic linkage map of pak-choi. We hope that our research can help to clone TuMV-resistant gene, to study the B. rapa ssp. chinensis genome and to conduct MAS in genetics and breeding.
引文
[1] Vaughan J G and Hemingway J S. The utilization of mustards. Econ. Bot. 1959, 13: 196-204
    [2]李家文.白菜的起源和进化问题.园艺学报, 1962, 1(3-4): 297-304
    [3] Nishi S. Differentiation of Brassica crops in Asia and breeding of 'Hakuran', a newly synthesid leafy vegetableze. in Brassica Crops and Wiedld Allies, . by Tsunoda S, Hta K and Gomez-Campo C. Japan Science Society Press, Tokyo, 1980, 133-150
    [4] Hanson P, Yang R Y, Chang L C,et al. Contents of carotenoids, ascorbic acid, minerals and total glucosinolates in leafy brassica pakchoi (Brassica rapa L. chinensis) as affected by season and variety.. J Sci. Food Agric. 2009, 89: 906-914
    [5]侯喜林.不结球白菜育种研究新进展南京农业大学学报, 2003, 26(4): 111-115
    [6]曹寿椿.不结球白菜的研究及进展(上).长江蔬菜, 1989, 2: 5-9
    [7] Cardiza V. and Stewart C N. Brassica biotechnology: progeress in cellular and molecular biology. In Vitro Cell. Dev. Biol. -plant 2004, 40: 542-551
    [8] Rakow G. Species origin and economic importance of Brassica. Brassica, 2004, 54: 3-11
    [9] Prakash S. and Hinata K. Taxonomy, cytogenetics and origin of crop Brassica, a review. Opera Bot. 1980,55: 1-57
    [10] Vaughan J G. A multidisciplinary study of the taxonomy and origin of Brassica crops BioScience 1977, 27(1):35-40
    [11]刘后利.几种芸薹属油菜的起源与进化.作物学报, 1984, 10(1): 9-18
    [12] Song K M, Osborn T C and Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1 Genome evolution of diploid and amphidiploid species.Theor. Appl. Genet. 1988, 75: 784-794
    [13] Song K M, Osborn T C and Williams P H. Brassica taxonomy based on nuclear restrictionfragment length polymorphisms (RFLPs). 2. Preliminary analysis of subspecies within B. rapa(syn. campestris) andB.B oleracea.... Theor Appl Genet 1988, 76: 593-600
    [14] Song K M, Osborn T C and Williams P H. Brassica taxonomy based on nuclear restrictionfragment length polymorphisms (RFLPs). 3. Genome relationships in Brassica and relatedgenera and the origin of B. oleracea and B. rapa (syn. campestris). Theor. Appl. Genet. 1990,76: 497-506
    [15] Song K M. Genome variation and evolution of Brassica amiphidiploids. Acta Hort. 1996, 407:135-144
    [16] KarpeoGDchenk. D The tion of polyploid gametes in hybrids produc.Hreditas, 1927, 9:349-368
    [17] Morinaga T. Interspecific hybridization in Brassica. I. The cytology of F1 hybrids of Bnapella and various other species with 10 chromosomes. Cytologia, 1929, 1: 16-27
    [18] Morinaga T. Interspecific hybridization in Brassica. II. The cytology of F1 hybrids of Bcernua and various other species with 10 chromosomes.... Jap J Bot 1929, 4: 277-289
    [19] Morinaga T. Interspecific hybridization in Brassica. III. The cytology of F1 hybrids of Bcernua and BB. napella. J. Dept. Agric. Kyushu Imp. Univ. 1929, 2: 199-206
    [20] Morinaga T. Interspecific hybridization in Brassica. IV. The cytology of F1 hybrids of Bcarinata and some other species with 10 chromosomes. Cytologia, 1931, 3: 77-83
    [21] Morinaga T. Interspecific hybridization in Brassica. V. The cytology of F1 hybrids of Bcarinata and B.alboglabra. Jap. J. Bot. 1933, 6: 467-475
    [22] Morinaga T. Interspecific hybridization in Brassica. VI. The cytology of F1 hybrids of Bjuncea and B.nigra. Cytologia, 1934, 6: 62-67
    [23] U N. Genome-analysis in Brassica with speal reference to the experimental formation ofci Bnapus and peculiar mode of fertilization. Jap. J. Bot. 1935, 7:389-452
    [24] Iwabuchi M, Itoh K and Shimamoto K. Molecular and cytological characterization ofrepetitie DNA sequences inv Brassica. Theor. Appl. Genet. 1991, 81:349-355
    [25] Lagercrantz U and Lydiate D J. Comparative genome mapping in Brassica. Genetics, 1996,144: 1903-1910
    [26] Sun V G. The evaluation of some taxonomic characters of cultivated Brassica with a key tospecies and varieties 2: the key. Bull. Torrey Club, 1946, 73(3): 244-281
    [27]赤藤克己.作物育种学各论.养贤堂发行,1968
    [28] Gomez C C. Developments in plant genetics and breeding. Biology of Brassica Coenospecies,Elsevier Amsterdam Lausanne New o Oxford Sha,Yrknnon Singapore Yokyo, 1999, 23: 24-27
    [29] Ren J P, McFerson J R, Li R G, et al. Identities and relationships among Chinese vegetableBrassicas as determined by Random amplified polymorphic DNA markers. J. Amer. Soc. HortSci. 1995, 120(3): 548-555
    [30]谭其猛试论大白菜品种的起源、分布和演化中国农业科学, 1979, 4: 68-75
    [31]曹家树,曹寿椿.大白菜起源的杂交验证初报.园艺学报, 1995, 22(1): 93-94
    [32]曹家树,曹寿椿,缪颖,等中国白菜各类群的分支分析和演化关系研究.园艺学报, 1997, 24 (1): 35-42
    [33]王建林,何燕,栾运芳,等.中国芸薹属植物的起源、演化与散布.中国农学通报, 2006, 22(8): 489-494
    [34] Crouch J H, Lewis B G, Lydiate D J, et al. Genetic diversity of wild, weedy and cultivatedforms of Brassica rapa. Heredity, 1995, 74:491-496
    [35] Zhao J J, Wang X W, Deng B, et al. Genetic relationships within B rassica rapa as inferredfrom AFLP fingerprints. Theor. Appl Genet. 2005, 110: 1301-1314
    [36] Takuno S, Kawahara T and Ohnishi O. Phylogenetic relationships among cultivated types ofBrassica rapa L. em. Metzg. as revealed by AFLP analysis. Genetic Resources and CropEvolution, 2007, 54: 279-285
    [37]叶静渊.《中国蔬菜栽培学》中栽培史部分校勘记.中国农史, 1990, 2: 90-102
    [38] Linnaei C. Species plantarum .Vol.I. Ray Society, London. 1753, 666-667
    [39] Bailey L H. Manual of cultivated plants (revised edition). New York. 1949, 434-438
    [40]蔬菜园艺学.中国农业书社, 1936.
    [41]李家文.中国蔬菜作物的来历和变异.中国农业科学, 1981, 1: 90-95
    [42]曹寿椿,李式军.白菜地方品种的初步研究.Ⅲ.不结球白菜的园艺学分类.南京农学院学报, 1982, 2: 30-37
    [43]林维申.中国白菜分类的探讨.园艺学报, 1980, 7(2): 21-28
    [44]郭晶心,周乃元,马荣才,等.白菜类蔬菜遗传多样性的AFLP分子标记研究.农业生物技术学报, 2002, 10: 138-143
    [45]叶静渊,明清时期白菜的演化和发展.中国农史, 1991, 1: 33-60
    [46]罗桂环.大白菜产生时间和地点的史料分析.自然科学史研究, 1992, 11(2): 171-176.
    [47] Li C W. The origin, evolution, taxonomy, and hybridization of Chinese cabbage. In: TalekarNS, Griggs TD (eds) Chinese cabbage. Asian Vegetable Research Center, Taiwan, 1980, 1-10
    [48]曹家树,曹寿椿,宋运淳.芸薹类蔬菜(n= 10)染色体G带的研究.园艺学报, 1994, 21 (3): 257-263
    [49]曹家树,曹寿椿,易清明.白菜及其相邻类群基因组DNA的RAPD分析.园艺学报, 1995, 22(1): 47-52
    [50]曹家树.中国白菜起源、演化和分类研究进展.科学出版社,园艺学年评, 1996(2): 145-159
    [51]曹家树,曹寿椿.中国白菜起源、演化和分类的研究进展与评述浙江大学学报(自然科学版), 1994, 28(增): 278-286
    [52]曹家树,曹寿椿.中国白菜叶部性状动态观察及其演化方向研究.南京农业大学学报, 1995, 18(2): 34-41
    [53]曹家树,曹寿椿.中国白菜与同属其它类群种皮形态的比较和分类.浙江农业大学学报, 1994, 20: 393-399
    [54]曹家树.结球白菜起源的分支分析和微观形态鉴定.农业科学技术研究进展与展望,北京:中国科学技术出版社, 1995, 211-216
    [55] Tomlinson J A. Epidemiology and control of virus diseases of vegetables. Ann. Appl. Biol1987,110:661-681
    [56] Shattuck V I. The biology, epidemiology and control of turnip mosaic virus. Plant BreedingReviews, 1992, 14: 199-238
    [57] Tompkins C M. Two mosaic diseases of annual stock. J. Agric. Res. 1939, 58:63-77
    [58] Schultz E S. A transmissible mosaic disease of Chinese cabbage JAgricRes 1921, 22:173-177
    [59] Gardner M W and Kendrick J B. Turnip Moaisc. J Agric Res. 1921, 22: 123-124
    [60] Smith K M. A virus disease of cultivated crucifers. Ann... Appl Biol 1935, 22: 239-242
    [61]凌立,杨演.油菜毒素病.金陵学报, 1941, 9: 293-304
    [62]中华人民共和国农业部.中国农业统计资料.北京:中国农业出版社, 2003
    [63] Shukla D D, Ward C W, Brunt A A. Turnip mosaic virus In: The Potyvirudae CABInternational, W ailingford, Oxon OXIO 8DE, UK, 1994, 385-389
    [64] Pound G S, Walker J C. Differentiation of certain crucifer viruses by the use of temperatureand host immunity reaction. Journal of Agricultural Research, 1945, 71: 255-278
    [65] McDonald J G, Hiebert E. Characterization of the cap sid and cylindrical inclusion protein ofthree strains of turnip mosaic virus. Virology, 1975, 63: 295-303
    [66] Yoshii H. On the strain distribution of turnip mosaic virus. Ann. Phytopathol. Soc. Jpn. 1963,28: 221-227
    [67] Provvident R. Evalultion of Chinese cabbage cultivars from Japan and the People's Republicof China for resistance to turnip mosaic virus and cauliflower mosaic virus. Am. Soc. HogtieSci. 1980, 105: 57l-573
    [68] Green S K and Deng T C. Turnip mosaic virus strains in cruciferous hosts in Taiwan. PlantDis. 1985,69:28-31
    [69]冯兰香,徐玲,刘佳,等.北京地区大白菜芜菁花叶病毒株系的鉴定.中国蔬菜, 1988, 4: 23-25
    [70]国家蔬菜抗病育种课题TuMV株系研究协作组.我国十省(市)十字花科蔬菜芜菁花叶病毒(TuMV)株系分化研究(II)新鉴别寄主筛选及株系划分.科学通报, 1989, l660-l664
    [71]刘栩平,路文长,林宝详,等.我国十省(市)十字花科蔬菜芜菁花叶病毒(TuMV)株系分化研究(I)用Green氏方法划分株系.病毒学杂志, 1990, 1: 82-87
    [72] Jenner C E and Walsh J A. Pathotypic variation in turnip mosaic virus with specid referenceto European isolates. Plant Pathology, 1996, 45: 848-856
    [73] Hughes S L, Green S K, Lydiate D J, et al. Resistance to turnip mosaic virus in Brassica rapaand B.Bnapus and the analysis of genetic inheritance in selected lines. Plant Pathol. 2002, 51:567-573
    [74] Ohshima K, Yamaguchi Y, Hirota R, et al. The molecular evolution of turnip mosaic virus:evidence of host adaptation, genetic recombination and geographical spread. Journal ofGeneral Virology, 2002, 83: 1511-1521
    [75] Sanchez F, Wang X, Jenner C E. Strains of turnip mosaic potyvirus as defined by themolecular analysis of the coat protein gene of the virus. Virus Research 2003, 94: 33-43
    [76] Tromimua K, Spak J, Katis N, et al. Comparisons of the genetic structure of populations ofturnip mosaic virus in West and East Eurasia. Virology, 2004, 330(2): 408-423
    [77] Tomimura K, Gibbs A J, Jenner C E,et a1. The phylogeny of Turnip mosaic virus;comparisons of 38 genomic sequences reveal a Eurasian origin an d a recent 'emergence' ineast Asia. Mol. Ecol. 2003, 12(8): 2099-2111
    [78] Tan Z Y, Wada Y, Chen J S, et al. Inter- and intralineage recombinants are common innatural populations of Turnip mosaic virus. J. Gen. Virol. 2004, 85(Pt 9): 2683-2696
    [79]姚文岳,沈护宝,丁辛顺,等.上海菜区青菜病毒病病毒种类鉴定.上海农业科技, 1979, 10: 22-25
    [80]肖英,程秉栓.电子显微镜技术在植物病毒研究中的应用.新疆农业科学, 1995, 4: 168-169
    [81] Suh S K, Cha J C, Green S K, et al. Detection of TuMV strains with monoclonal antibodies inimmunosorbent electronmicroscopy. Journal of Korea Society for Horticultural Science, 1996,37:248-251
    [82] Ostrowka K, Lehmann P, Walsh J A, et al. Susceptibility of polish winter oilseed rapes toturnip mosaic virus I. Virus detection in leaves of infected plants by ELISA test. GeneticaPolonica, 1993, 34: 153-157
    [83] Walsh J A, Rusholme R L, Hughes SL, et al. Different classes of resistance to turnip mosaicvirus in Brassica rapa. European Journal of Plant Pathology, 2002, 108: 15-20
    [84] Jenner C E, Wang X W, Ponz F, et al. A fitness cost for turnip mosaic virus to overcome hostresistance. Virus Research, 2002, 86: 1-6
    [85] Johnson B L and Barnhart D. Transfer of mosaic resistance to commercial varieties ofMatthiola incana. Proc. Am. Soc. Hortic. Sci. 1956, 67: 522-533
    [86] Zink F W and Duffus J E. Linkage of turnip mosaic virus susceptibility and downy mildew(Bremia lactucae) resistance in lettuce. J. Am. Soc. Hortic. Sci. 1970, 95: 420-422
    [87] Robbins M A, Witsenboer H, Michelmore R W, et al. Genetic mapping of turnip mosaic virusresistance in Lactuca sativa. Theor. Appl. Genet. 1994, 89: 583-589
    [88] Provvidenti R, Robinson R W and Shail J W. Chicory: a valuable source of resistance toturnip mosaic for endive and escarole. J. Am. Soc. Hogtic. Sci. 1979, 104: 726-728
    [89] Provvidenti R. A destructive disease of garden balsam caused by a strain of turnip mosaicvirus. Plant Dis. 1982, 66: 1076-1077
    [90] Walkey D G A and Webb M J W. Internal necrosis in stored white cabbage by turnip mosaicvirus. Ann. Appl. Biol. 1978, 89: 435-441
    [91]方智远,刘玉梅.我国甘蓝遗传育种的研究现状和展望.见:卢良恕主编, 21世纪中国农业科技展望,山东科学技术出版社, 1993, 514-522
    [92]王超,吴世昌,秦智伟,等.甘蓝苗期多抗性鉴定技术研究.东北农业大学学报, 2000, 2: 152-159
    [93] Shattuck V I and Stobbs L W. Evaluation of Rutabaga cultivars for turnip mosaic virusresistance and the inheritance of resistance. HortScience, 1987, 22(5): 935-937
    [94] n J A and Ward C M The reactions of some brussels sprout Fl hybrids and inbredsto cauliflower mosaic and turnip mosaic viruses. Ann. Appl. Biol. 1981, 97: 205-212
    [95] Pink D A, Sutherland R A and Walkey G A. Genetic analysis of resistance in brussels sproutto cauliflower mosaic and turnip mosaic viruses. Ann. Appl. Biol. 1986, 109: 199-208
    [96] Yoon J Y, Green S K and Ope馻 R T. Inheritance of resistance to turnip mosaic virus inChinese cabbage. Euphytica, 1993, 69:103-108
    [97] Suh S K, Green S K and Park H G. Genetics of resistance to five strains of turnip mosaicvirus in Chinese cabbage. Euphytica, 1995, 81 (1):71-77
    [98] Kim I Y. Genetics and screening of resistance to turnip mosaic virus in Chinese cabbage(Brassica campestris spp. pekinensis): (Master thesis). Korea: Seoul National University, 1995,31-34
    [99] Walsh J A, Sharpe A G, Jenner C E, et a1. Charactcrisation of resistance to turnip mosaic virus in oileed rape (Brassica napus) and genetic mapping of TuRB01. Theor. Appl. Genet. 1999,99:1149-1154
    [100] Jenner C E, Sanchez F, Nettleship S B, et al. The cylindfical inclusion gene of turnip mosaicvirus encodes a pathogenic determinant to the brassica resistance gene TuRB01. Mol. PlantMicrobe Interact. 2000, 13: 1102-1108
    [101] Rusholme R L. The genetic control of resistance to turnip mosaic virus (TuMV) in Brassica.Ph.D Thesis, University of East Anglia, Norwich, 2000
    [102] Hughes S L, Hunter P J, Sharpe A G, et al. Genetic mapping of the novel turnip mosaicvirus resistance gene TuRB03 in Brassica napus. Theor. Appl. Genet. 2003, 107 (7) :1169-1173
    [103] Rusholme R L, Higgins E E, Walsh J A and Lydiate D J. Genetic control of broad-spectrumresistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). Journal of GeneralVirology, 2007,88:3177-3186
    [104]曹必好,宋洪元,雷建军.结球甘蓝抗TuMV相关基因的克隆.遗传学报, 2002, 29 (4): 646-652
    [105]李丽丽,王圣玉,方小平,等.油菜种质资源抗病毒病鉴定研究.作物品种资源, 1992, 2: 3l-34
    [106]谢永俊,刘旭云,万洪辉.云南地方油菜种质资源抗(耐)病毒病、菌核病和霜霉病的鉴定研究.云南农业大学学报, 2001, 2: 89-92
    [107] Choi G S and Choi J K. Nucleotide sequence of coat protein gene of turnip mosaic virus(cqs strain). Korean Journal of Plant Pathology, 1993, 9: 256-262
    [108] Kong L J, Fang R X, Chen Z H, et al. Molecular cloning and nucleotide sequence of coatprotein gene of turnip mosaic virus. Nucleic. Acids. Research, 1990, 18: 5555
    [109] Nicolas O and Laliberte J F. The complete nucleotide sequence of turnip mosaic potyvirusRNA. Journal of General Virology, 1992, 73: 2785-2793
    [110] Lehmann P, Petrzik K, Jenner C, et al. Nucleotide and amino acid variation in the coatprotein coding region of turnip mosaic virus isolates and possible involvement in theinteraction with the brassica resistance gene TuRB01. Physiological and Molecular Plant Pathology, 1997,51: 195-208
    [111]卢爱兰,陈正华,孔令洁,等.抗芜菁花叶病毒转基因甘蓝型油菜研究.遗传学报, 1996, 23 (1): 77-83
    [112] Lam Y H, Wong Y S, Wang B, et a1. Use of trichosanthin to reduce infection by turnipmosaic virus. Plant Science, 1996, 114: 111-117
    [113]李彬,袁希汉.国家科技攻关白菜抗病育种进展.长江蔬菜, 2000, 1: 3-6
    [114]周雪平,濮祖芹.大豆花叶病毒外壳蛋白基因克隆及在病毒检测中的应用.病毒学报, 1994, 10 (1): 81-85
    [115]邓晓东,刘志昕,潘俊松,等.地高辛标记的DNA探针和ID-ELISA检测芜菁花叶病毒的比较.热带作物学报, 1997, 18(2): 48-52
    [116]庄木,王晓武,郑文光,等.十字花科蔬菜芜菁花叶病毒的RT-PCR快速检测.中国蔬菜, 2002, 5: 10-11
    [117]施曼玲,吴建祥,郭维,等. .芜菁花叶病毒单克隆抗体的制备及检测应用.微生物学报, 2004, 44(2): 185-188
    [118]赵荣乐,郑光字.斑点免疫结合法检测3种植物病毒.北京师范大学学报, 2004, 40(4): 513-517
    [119]刘克钧,朱月林,侯喜林,等.不结球白菜抗病育种的研究.Ⅳ.不结球白菜抗芜菁花叶病、霜霉病及黑斑病的多抗性鉴定及筛选.南京农业大学学报, 1997, 20 (3): 31-35
    [120] Niu X, Leung H and Williams P H. Sources and nature of resistance to downy mildew andturnip mosaic virus in Chinese cabbage. J. Amer. Soc. Hort. Sci. 1983, 108: 775-778
    [121]钮心恪.大白菜抗霜霉病、病毒病原始材料的筛选及抗性遗传的研究.中国蔬菜, 1984, 4: 28-32
    [122] Leung H, Williams P H. Cytoplasmic male sterile Brassica campestris breeding lines with resistance to culbroot, turnip mosaic and downy mildew. HortScience, 1983, 18(5): 774-775
    [123]鹿英杰,康永春,李光池,等.大白菜对芜菁花叶病毒抗性遗传规律的研究.黑龙江农业科学, 1988, 6: 27-31
    [124]曹光亮,曹寿椿.不结球白菜抗病育种研究. V.抗TuMV遗传研究.南京农业大学学报, 1995, 18 (1): 106-108
    [125] Liu X P, Lu W C, Liu Y K, et a1. Occurrence and strain differentiation of turnip mosaicpotyvirus and sources of resistance in Chinese cabbage in ChinaHoa. Acta hortic. 1996, 407:
    [126]徐立彬.大白菜对芜菁花叶病毒(TuMV)抗病性鉴定.北方园艺, 1996, 6: 21-23
    [127]王述彬,袁希汉,苏小俊,等.中同不结球白菜的种质资源对芜菁花叶病毒的抗病性鉴定.中国蔬菜, 2002(1): 11-13
    [128]朱常香,宋云枝,张松,等.抗芜菁花叶病毒转基因大白菜的培育.植物病理学报, 2001, 31(3): 257-264
    [129]邢德峰,李新玲,徐香铃,等.农杆菌介导法获得抗病毒转基因大白菜.哈尔滨工业大学学报, 2006, 38(5): 793-796
    [130] Staub J K, Serquen F C, Gupta M. Genetic markers map construction and their application in plant breeding. Hortscience, 1996, 31(5): 729-740
    [131]张德水,陈受宜. DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报, 1998, 5: 15-22
    [132] Grodzicker T, Williams J, Sharp P, et al. Physical mapping of temperature-sensitivemutations of adenoviruses. Cold Spring Harbor Symp Quant Biol, 1974, 39: 439-446
    [133] Botstein D, White R L, Skolnick M, et al. Construction of a genetic map in man usingrestriction fragment polymorphisms. Am. J. Hum. Genet. 1980, 32: 314-331
    [134] Nakamura Y, Leppert M, O'Connell P, et al. Variable number of tandem repeat (VNTR)markers for human gene mapping. Science, 1987,235: 1616-1622
    [135] Williams J G K, Kubelik A R, Livak K J, et al. DNA Polymorphisms amplified by arbitraryprimers are useful as genetic markers. Nuel. Acid. Res. 1990, 18: 6531-6535
    [136] Leroy X J and Leon K. A rapid method for detection of plant genomic instability usingunanchored-microsatellite primers. Plant Mol. Biol. Rep. 2000, 18: 283a-283g
    [137] Welsh J and Aed M. Fingerprinting genomes using PCR with ArbitrgPCRary Primers. Nuel.Acid. Res. 1990, 18: 7213-7218
    [138] Li G and Quiros C F. Sequence-related amplified polymorphism(SRAP), a new markersystem based on a simple PCR reaction: its application to mapping and gene tagging inBrassica. Theor. Appl. Genet. 2001, 103: 455-461
    [139] Hearne C M, Ghosh S and Todd J A. Microsatellites for linkage analysis of genetic traits.Trends Genet. 1992, 8: 288-294
    [140] Lyamiehev V. Structure-specific endonucleolytic cleavage of nucleic acids by eubacterialDNApolymerase. Seience, 1993, 26: 778-783
    [141] Inoue T, Zhong H S, Miyao A, et al. Sequence- tagged sites (STSs) as standard landmarkersin the rice genome. Theor. Appl. Genet. 1994, 89: 728-734
    [142] Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolation pathogenresistance genes from potato with potential for wide application in plants. Nature Geneitics,1996, 14:421-429
    [143] Zabeau M and Vos P. Selective restriction fragment amplification: a general method forDNA fingerprinting. Euorpean Patent Application Number: 92402629.7, Publication NumberEP 0534858 A1,1993
    [144] Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucl.Acids Res. 1995, 23: 4407-4414
    [145] Wang D G, Fan J B, Siao C J, et al. Large-scale identification,mapping,and genotyping ofsingle-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082
    [146]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社, 2002
    [147]贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学, 1996, 4(29): 1-9
    [148] Sasaki T , Miyao A and Yamamoto K. Impact of cDNA research on the rice genome researchprogram. Abstracts of Plant Genome III. Town & Country Conference Center, San Diego, CA,January, 1995, p11
    [149] Nelson J C, Leroy P, van Deynze A E, et al. Molecular mapping of hexaploid wheat:aligment with the classical map, ancestral rearrangements, and homoeology with other grassgenomes. Abstracts of Plant Genome III. Town & Country Conference Center, San Diego, CA,January, 1995, p172
    [150]杨俊品,荣廷昭.玉米RFLP分子标记研究进展.玉米科学, 1999, 7(1): 18-24
    [151] Causse M A, Fulton T M ,Yong G C, et al. Saturated molecular map of the rice genomebased on an inter-specific backcross population. Genetics, 1994, 138: 1251-1274
    [152] anksley S D. Mapping polygenes. Annu. Rev. Genet. 1993, 27: 205-233
    [153] Ritter E, Gebhardt C, Salamini F. Estimation of recombination frequencies and constructionof RFLP linkage maps in plants from crosses between heterozygous parents. Genetics, 1990, 3:645-654
    [154] Kole C, Kole P, Vogelzang R, et al. Genetic linkage map of a Brassica rapa recombinantinbred population. J. Heredity, 1997, 88(6): 553-556
    [155] Morton N E. Sequential tests for the detection of linkage. American Journal of HumanGenetics, 1995, 7:277-318
    [156] Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer packagefor constructing primary genetic linkage maps of experimental and natural populations.1987,1: 174-181
    [157] van Ooijen J W and Voorrips R E. JoinMap3 0: Software for the calculation of geneticlinkage maps. Plant Research International BV, Wageningen, The Netherlands, 2002(http://www intl-pag org)
    [158] Voorrips R E. MapChart: Software for the graphical presentation of linkage maps and QTLsThe Journal of Heredity, 2002, 93 (1): 77-78
    [159]张增翠,侯喜林.不结球白菜矮抗6号的AFLP指纹鉴定.江苏农业科学, 2004, 1: 63-64
    [160]文雁成,王汉中,沈金雄,等. SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学, 2006, 39(2): 246-256
    [161]文雁成,王汉中,沈金雄,等. SRAP和SSR标记构建的甘蓝型油菜品种指纹图谱比较.中国油料作物学报, 2006, 28(3): 233-239
    [162]景润春,黄青阳,朱英国.图位克隆技术在分离植物基因中的应用. .遗传, 2000, 22(3): 180-185
    [163]王永飞,马三梅,刘翠萍,等.遗传标记的发展和分子标记的检测技术.西北农林科技大学学报(自然科学版), 2001, 29(6): 130-136
    [164]沈新莲,张天真.作物分子标记辅助选择育种研究的进展与展望.高技术通讯, 2003, (2): 105-110.
    [165]Tanksley S D, Young N D, Paterson A H, et al. RFLP mapping in plant breeding: new toolsfor an old science. Bio-Technol. 1989,7:257-264.
    [166] Dorrell DG and Downey RK 1964 The inheritance of erueic acid content in rape seed(Brassica campestris). Can. J. Plant Sci. 44:499-504
    [167] Stringam G R. Inheritance and allelic relationship of seven chlorophyll-deficient mutants inBrassica campestris L Can. J. Genet. Cytol. 1973, 18: 221-230
    [168] Hawk J A. Single gene control of seed color and hypocotyl color in turnip rape. Can. J. Plantsci. 1982,62:331-334
    [169] Hawk J A. Tight linkage of twoseeding mutants in early-flowering turnip rape (Brassicacampestris). Can. J. Genet. Cytol. 1982, 24: 475-478
    [170] Oralwue F C and Crowder L V. Inheritance of variegation in Brassica campestris L. J. Hered1983, 74: 65- 67
    [171] Stringam G R. Genetics of two bloomless mutants in Brassica campestris L. Can. J. GenetCytol. 1976, 18: 221-230
    [172] MeroCE and Honma. S. Inheritance of bolt resistance in an interspecific cross of Brassicaspecies. J. Hered. 1984, 75:485-487
    [173] Quiros CF etal 1987 Analysis of Brassica oleraeea genome by generation of B.campestris-olerace chromosome addition 1ines: characterization by isozymes and rDNAgenes Theor. Appl. Genet. 74:758-766
    [174] Chen B Y, Heneen W K and Simonsen V. Genentics of isozyme loci in Brassica campestrisL. and in the progeny of a trigenomic hybrid between B napus L and B campestris L Genome,1990,33:433-440
    [175] Nozaki T, Anji M, Takallashi T, et al. Analysis of isozyme loci and their likages in BrassicaCampestris L Breed.. Sci. 1995, 45: 57-64
    [176] Ajisaka H, Kuginuki Y, Hida K, Enomoto S, Hirai M. A Linkage map of DNA markers inBrassica campestris. Breed Sci. 1995, 45 (Suppl.):195
    [177] Matsumoto E, Yasui C, Ohi M, et al. Linkage analysis of RFLP markers for clubrootresistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis) . Euphytica,1998, 104: 2, 79-86
    [178] Figdore S S, Kenard W, Song K M, et al. Assessment of the degree of restriction fragmentlength polymorphism in Brassica. Theor. Appl. Genet. 1988, 75:833-840
    [179] Sloeum MK,et al. Linkage arrangment of restriction length polymorphism loci in Brassicaoleracea. Theor. Appl. Genet 1990 80:57-64
    [180] Kim H R, Choi S R, Bae J, et al. Sequenced BAC anchored reference genetic map thatreconciles the tenindividual chromosomes of Brassica rapa. BMC Genomics, 2009, 10:432-446
    [181] Gao M Q, Li G Y, Yang B, et al. High-density Brassica oleracea linkage map: identificationof useful new linkages. Theor. Appl. Genet. 2007, 115: 277-287
    [182] Michelmore R W, Paran I, Kesseli R V. IdentifWication of markers linked to disease-resistancegenes by bulked segregant analysis: A rapid method to detect markers in specific genomicregions by using segregating populations. Proc. Natl. Acad. Sci. USA, 1991, 88:9828-9832
    [183] Landry B S, Hubert N, Crete R, et al. A genetic map for Brassica oleracea based on RFLPmarkers detected with expressed DNA sequences and mapping of resistance genes to race 2 ofPlasmodiophora brassicea (woronin). Genome, 1992, 35:380-384
    [184] Kinian S F and Quiros C F. Generation of a Brassica oleracea composite RFLP map:linkage arrangements among various populations and evolutionary implications. Theor. ApplGenet. 1992, 84:544-554
    [185] Chyi Y S, Hoenecke M E and Sernyk J L. A genetic map of restriction fragment lengthpolymorism loci for Brassica rapa (syn. campestris). Genome, 1992, 25(5): 746-757
    [186] Bohuon E J R, Keith D J, Parkin I A P, et al. Alignment of the conserved C genomes ofBrassica oleracea and Brassica napus. Theor. Appl. Genet. 1996, 93: 833-839
    [187]刘忠松,官云春,孟金陵.油菜分子标记研究进展.生物技术通报, 1997, 5:14-16
    [188] Camargo L E, Sarides L, Jung G, et al. Location of the self-incompatibility locus in an RFLPand RAPD map of Brassica oleraeea. Heredity, 1997, 88(1): 57-59
    [189] Voorrips R E, Jongerius M C and Kanne H J. Mapping of two genes for resistance toclubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassicaoleracea by means of RFLP and AFLP markers. Theor. Appl. Genet. 1997, 94: 75-82
    [190] Cheung W Y, Champagne G, Hubert N, et al. Comparison of the genetic maps of Brassicanapus and Brassica oleracea. Theor Appl Genet. 1997, 94: 569-582
    [191]Hu J, Sadowski J, Osborn T C, et al. Linkage group alignment from independent Brassicaoleracea RFLP maps. Genome, 1998, 41: 226-235
    [192] Moriguehi K, Kimizuka T C, Ishii K, et al. A genetic map based on RAPD, RFLP, isozyme,morphological markers and QTL analysis for clubroot resistance in Brassica oleraceaBreeding Seience, 1999, 49(4): 257-265
    [193] Sebastian R L, Howell E C, King G J, et al. An integrated AFLP and RFLP Brassicaoleracea linkage map from two morphologically distinct doubled-haploid mappingpopulations. Theor. Appl. Genet. 2000, 100: 75-81
    [194]陈书霞,王晓武,方智远,等. RAPD标记构建芥菜×甘蓝分子标记连锁图. .园艺学报, 2002, 29(3): 229-232
    [195] Gu Y, Zhao Q C, Sun D L, et al. A genetic linkage map based on AFLP and NBS markers incauliflower (Brassica oleracea var. botrytis). Botanical Studies, 2008, 49:93-99.
    [196] Landry B S, Hubert N, Etoh T, et al. A genetic map for Brassica napus based on restrictionfragment length polymorphism detected with expressed DNA sequences. Genome, 1991,34(4): 543-552
    [197] Ferreira M E, Williams P H and Osbom T C. RFLP mapping of Brassica using doubledhaploid lines. Theor. App1. Genet. 1994, 89(5): 615-621
    [198] Uzunova M, Ecke W, Weissieder K, et al. Mapping the genome of rapeseed (Brassica napusL). I. Construction of an RFLP linkage map and localization of QTLs for seed glueosincolatecontent. Theor. App1. Genet. 1995, 90(2): 194-204
    [199] Sharpe A G, Parkin I A P, Kelth D J, et al. Frequent nonreciprocal translocations in theamphidiploid genome of oilseed rape (Brassica napus L). Genome, l995, 38(7): 1112-1121
    [200] Foisset N, Delourme R, Barret P, et al. Molecular mapping analysis of Brassica napus usingisozyme, RAPD and RFLP markters on double haploid pmgeny. Theor Appl Genet. 1996,93(7): 1017-1025
    [201]刘春林,官春云,李构等.油菜分子标记图谱构建及抗菌核病性状的QTL定位.遗传学报, 2000, 27(10): 918-924
    [202] Zhao J and Meng J. Detection of loci controlling seed glucosinolate content and theirassociation with Selerotinia resistance in Brassica napus. Plant Breed. 2003, 122(1): 19-23
    [203] Lu G Y, Yang G S, Fu T D. Linkage map construction and mapping of a dominant genicmale sterility gene (Ms) in Brassica napus. Acta Genetica Sinica, 2004, 31: 1309-1315
    [204] Piquemal J, Cinquin E, Couton F, et al. Construction of an oilseed rape (Brassica napus L)genetic map with SSR markers. Theor. Appl. Genet. 2005,1514-1523
    [205]金梦阳,刘烈钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建.分子植物育种, 2006, 4(4): 520-526
    [206] Li Y Y, Ma CZ, Fu T D, et al. Construction of a molecular functional map of rapeseed(Brassica napus L.) using differentially expressed genes between hybrid and its parentsEuphytica, 2006, 152: 25-39
    [207] Sun Z D, Wang Z M, Tu J X, et al. An ultradense genetic recombination map for Brassicanapus, consisting of 13551 SRAP markers. Theor. Appl. Genet. 2007, 114:1305-1317
    [208]Fu F Y, Chai Y R, Chen L, et al. Localization of QTLs for husk proportion and lignin contentusing a high-density genetic linkage map of Brassica napus. Korean Journal of genetics, 2007,29: 343-353
    [209] Song K M, Suzuki J Y, Slocum M K, et al. A linkage map of Brassica rapa base onrestriction fragment length polymorphism loci. Theor. Appl. Genet. 1991, 82: 296-304
    [210]Teutonico R A and Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapaand comparison to the linkage maps of B. napus, B oleracea and Arabidopsis thaliana. TheorAppl. Genet. 1994, 89: 885-894
    [211] Song K M, Slocnm M, Osborn T C. Molecular marker analysis of genes contlrollingmorphological variation in Brassica rapa (syn. campestris).Theor. Appl. Genet. 1995, 90: 1-10
    [212]Tanhuanpaa P K, Vilkki J P and Vilkki H J. A linkage map of spring turnip rape based onRFLP and RAPD markers. Agric. Food. Sci. Finl 1996, 5: 209-217
    [213] Novakova B, Salava J and Lydiate D. Construction of a genetic linkage map for Brassicacampestris L. (syn.Brassica rapa L) Genetika Slechteni. 1996, 32: 249-256
    [214] Kole C,Teutonieo R, Mengistu A, et al. Molecular mapping of a locus controlling resistanceto Albugo candida in Brassica rapa. Phytopath, 1996, 86: 367-369
    [215] Ajisaka H, KuginukiY, Shiratori M, et al. Mapping of loci affecting the cultural effieiency ofmicrospore culture of Brassica rapa syn. campestris L. using DNA polymorphism. Breed Sci1999,49: 187-192
    [216]张鲁刚,王鸣,陈杭,刘玲.中国白菜RAPD分子遗传图谱的构建.植物学报, 2000, 42(5): 484-489
    [217] Lu G, Cao J S and Chen H. Genetic linkage map of Brassica campestris L using AFLP andRAPD markers. J. Zhejiang Univ. (Science). 2002, 3(5): 600-605
    [218]于栓仓,王永健,郑晓鹰.大白菜分子遗传图谱的构建与分析.中国农业科学, 2003, 36(2): 190-195
    [219]王美,张凤兰,孟祥栋,等.中国白菜AFLP分子遗传图构建.华北农学报, 2004, 19(1): 28-33
    [220] Zhao J J, Wang X W, Bonnema G, et al. A genetic linkage map of Brassica rapa based onAFLP markers. Agriculture Sciences in China, 2005, 4(4): 257-262
    [221] Kim J S, Chung T Y, King G J, et al. A sequence-tagged linkage map of Brassica rapaGenetics. 2006, 174: 29-39
    [222] Choi S R, Teakle G R, Plaha P, et al. The reference genetic linkage map for the multinationalBrassica rapa genome sequencing project. Theor. Appl. Genet. 2007, 115: 777-792
    [223] Yang X, Yu Y J, Zhang F L, et al. Linkage map construction and Quantitative Trait Locianalysis for bolting based on a double haploid poputlation of Brassica rapa. Journal ofIntegrative Plant Biology, 2007, 49(5): 664-671
    [224]单晓政,李英,高素燕,等.不结球白菜分子遗传图谱的构建及分析.西北植物学报, 2009, 29(6): 1116-1121
    [225] Cheng Y, Geng J F, Zhang J Y, et al. The construction of a genetic linkage map ofnon-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino). J. GenetGenomics, 2009, 36: 501-508
    [226] Kapoor R, Banga S S and Banga S K. A microsatellite (SSR) based linkage map of Brassicarapa. New Biotechnology, 2009, 26(5): 239-243
    [227] Kim H R, Choi S R, Bae J, et al. Sequenced BAC anchored reference genetic map thatreconciles the tenindividual chromosomes of Brassica rapa. BMC Genomics, 2009, 10:432-446
    [228] Cheung W Y, Friesen L, Rakow G F W, et al. A RFLP-based map of mustard (Brassicajuncea (L.) Czern. and Coss.). Theor. Appl. Genet. 1997, 94: 841-851
    [229] Aselsson T, Bowman C M, Sharp A G, et al. Amphidiploid Brassica juncea containsconserved progenitor genomes. Genome, 1999, 43: 679-688
    [230] Sharma R, Aggarwal R K, Kumar R, et al. Construction of an RAPD linkage map andlocalization of QTL for oleic acid level using recombinant inbreds in mustard (Brassicajuncea). Genome, 2002, 45: 467-472
    [231] Lionneton E, Ravera S, Sanehez L, et al. Development of an AFLP-based linkage map andlocalization of QTLs for seed fatty acid content in condiment mustard (Brassica juneea)Genome, 2002,45: 1203-1215
    [232] Pradhan A K, Gupta V, Mukhopadhyay A, et al. A high-density linkage map in Brassicajuncea (India mustard) using AFLP and RFLP markers. Theor. Appl. Genet. 2003, 106:607-614
    [233] Mahmood T, Ekuere U, Yeh F, et al. RFLP linkage analysis and mapping genes controllingthe fatty acid profile of Brassica juncea using reciprocal DH populations. Theor. Appl. Genet.2003, 107:283-290
    [234] Truco M J and Quiros C F. Structure and organization of the B genome based on a linkagemap in Brassica nigra. Theor. Appl. Genet. 1994, 89(5): 590-598
    [235] Lagererantz U and Lydiate D J. RFLP mapping in Brassica nigra indicates differingrecombination rates in male and female meioses. Genome, 1995, 38(2): 255-264
    [236]雷建军,曹必好,夏勇,等.结球甘蓝NBS-LRR类R基因同源序列分离.中国农业科学, 2004, 37(7): 1081-1084
    [237] Ferreira M E, Satagoban J, Yandell B S, et al. Mapping loci controlling vernalizationrequirement and flowering time in Brassica napus. Theor. Appl. Genet. 1995, 90:727-732
    [238] Farnham M W, Wang M and Thomas C E. A single dominant gene for downy mildewresistance in broccoli. Euphytica, 2002, 128: 405-407
    [239] Farinh M, Coelho P, Carlier J, et al. Mapping of a locus for adult plant resistance to downymildew in broccoli (Brassica oleracea convar. italica). Theor. Appl. Genet. 2004, 109:1392-1398
    [240] Lander E S and Botstein D. Mapping medelian factors underlying quantitative traits usingRFLP linkage maps. Genetics, 1989, 121: 185-199
    [241] Zeng Z BB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    [242] Satagopan J M, Yandell B S, Newton M A, et al. A Bayesian approach to detect quantitativetrait loci using Markov chain Monte Carlo. Genetics, 1996, 144: 805-816
    [243] Yi N J and Xu S H. Bayesian mapping of quantitative trait loci for complex binary traitsGenetics, 2000, 155: 1391-1403
    [244] Haley S S and Knott S A. A simple regression method for mapping quantitative trait loci inline crosses using flanking markers. Heredity, 1992, 69: 315-324
    [245] Luo Z W, Wu C I and Kearsey M J. Precision and high-resolution mapping of quantitativetrait loci by use of recurrent selection, backcross or intercross schemes. Genetics, 2002, 161:915-929
    [246] Mayerhofer R, Wilde K, Mayerhofer M, et al. Complexities of chromosome landing in ahighly duplicated genome: Toward map-based cloning of a gene controlling blacklegresistance in Brassica napus. Genetics, 2005, 171: 19-1988
    [247] Kaur S, Cogan N O I, Ye G, et al. Genetic map construction and QTL mapping of resistanceto blackleg (Leptosphaeria maculans) disease in Australian canola (Brassica napus L.)cultivars. Theor. Appl. Genet. 2009, 120:71-83
    [248] Tanhuanpaa P K, Vilkki J P and Vilkki H J. Mapping of a QTL for oleic concentration inspring turnip rape (BB. rapa ssp. oleifera). Theor. Appl. Genet. 1996, 92(8): 952-956
    [249] Okazaki K, Sakamoto K, Kikuchi R, et al. Mapping and characterization of FLC homologsand QTL analysis of flowering time in Brassica oleracea. Theor. Appl. Genet. 2007, 114:595-608
    [250] Lim G A C, Jewell E G, Li X, et al. A comparative map viewer integrating genetic maps forBrassica and Arabidopsis. BMC Plant Biology, 2007, 7: 40-49
    [251] Lukens L, Zou F, Lydiate D, et al. Comparison of a Brassica oleracea genetic map with thegenome of Arabidopsis thaliana. Genetics, 2003, 164: 359-372
    [252] Kaczmarek M, Koczyk G, Babula-Skowronska D et al. Comparative analysis of theBrassica oleracea genetic map and the Arabidopsis thaliana genome. Genome, 2009, 52:620-633
    [253] Hinata K and Prakash S.Ethnobotany and evolutionary origion of Indian oleiferousbrassicae. Indian J. Genet. 1984, 44: 102-112
    [254] McGrath J M and Quiros C F. Inheritance of isozyme and RFLP markers in Brassicacampestris and comparison with B. oleracea. Theor. Appl. Genet. 1991, 82: 668-673
    [255] Snowdon R J, Friedrich T, Friedt W, et al. Identifying the chromosomes of the A- andC-genome diploid Brassica species BB. rapa (syn. campestris ) and B, oleracea in theiramphidiploid B. napus. Theor. Appl. Genet. 2002, 104: 533-538
    [256] Suwabe K, Morgan C and Bancroft I. Integration of Brassica A genome genetic linkage mapbetween Brassica napus andB. rapa. Genome, 2008, 51: 169-176
    [257] Howell E C, Kearsey M J, Jones G H, et al. A and C genome distinction and chromosomeidentification in Brassica napus by sequence fluorescenece in situ hybridization and genomicin situ hybridization. Genetics, 2008, 180: 1849-1857
    [258] Geng J F, Zhu C S, Zhang X W, et al. A genetic linkage map of nonheading Chinesecabbage. J. Am. Soc. Hort. Sci. 2007, 132:816-823
    [259] Nozaki T, Kumazaki A, Koba T, etal. Linkage analysis among loci for RAPDs, isozymes andsome agronomic traits in Brassica campestris L. Euphitica, 1997, 95(l): 115-123
    [260] Suwabe K, Iketani H, Hatakeyama K, et al. Simple sequence repeat-based comparativegenomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubrootrsistance. Genetics, 2006, 173:309-319
    [261] Soengas P, Hand P, Vicente JG, et al. Identification of quantitative trait loci for resistance toXanthomonas campestris pv. campestris in Brassica rapa. Theor. Appl. Genet. 2007,114:637-645
    [262] Zhang J F, Lu Y, Yuan Y X, et al. Map-based cloning and characterization of a genecontrolling hairiness and seed coat color traits in Brassica rapa. Plant Molecular Biology,2009, 69(5): 553-563
    [263] Li F, Kitashiba H, Inaba K, et al. A Brassica rapa linkage map of EST-based SNP markersfor identification of candidate genes controlling flowering time and leaf morphological traitsDNA research, 2009, 16(6): 311-323
    [264] Wu J, Yuan Y X, Zhang X W, et al. Mapping QTLs for mineral accumulation and shoot drybiomass under different Zn nutritional conditions in Chinese cabbage (Brassica rapa L. ssppekinensis). Plant Soil, 2008, 310: 25-40
    [265] Hong C P, Plaha P, Koo D H, et al. A survey of the Brassica rapa genome by BAC-endsequence analysis and comparison with Arabidopsis thalian. Mol. Cells, 2006, 22(3):300-307
    [266] Mun J H, Kwon S J, Yang T J, et al. The first generation of a BAC-based physical map ofBrassica rapa. BMC Genomics, 2008, 9: 280-290
    [267]洪健,徐颖,黎军英,等.芜菁花叶病毒(TuMV)侵染对寄主植物光合作用的影响.电子显微镜学报, 2002, 21(2): 110-113
    [268] Zhang F L, Wang M, Liu X C, et al. Quantitative trait loci analysis for resistance againstturnip mosaic virus based on a doubled-haploid population in Chinese cabbage. PlantBreeding, 2008, 127: 82-86
    [269] Zhang J H, Pan C Q, Zhang Y W, et al. EST-PCR-RFLP markers linked to turnip mosaicvirus (TuMV) resistance gene in Chinese cabbage (Brassica rapa ssp. pekinensis). ActaPhytopathologica Sinica, 2006, 36(6): 523-527
    [270] Han H P, Sun R F, Zhang S J, et al. AFLP marker linked to turnip mosaic virus susceptiblegene in Chinese cabbage (Brassica rapa L.ssp.pekinensis). Agricultural Sciences in China, 2004, 3(4): 292-298, 1990, 13(1): 25-29
    [271]朱玉英,姚文岳,曹寿椿,等.不结球白菜抗病育种的研究. I.南京地区病毒病原种类鉴定.南京农业大学学报, 1990, 13(1): 25-29
    [272]曹寿椿,朱月林,黄保健,等.不结球白菜抗病育种的研究.II.TuMV抗源鉴定与筛选.南京农业大学学报, 1990, 13(2): 28-32
    [273]曹寿椿,朱月林,黄保健,等.不结球白菜抗病育种的研究.IV.矮抗二号和矮抗三号新品种的选育.南京农业大学学报,1993,16(3):33-37
    [274]曹寿椿,侯喜林,张蜀宁,等.不结球白菜抗病育种的研究.VII.矮抗四号新品种的选育.南京农业大学学报,1993,16(3):33-37
    [275]曹寿椿,侯喜林,郝秀明,等.不结球白菜抗病育种的研究.VIII.矮抗五号和矮抗六号新品种的选育.南京农业大学学报,1998,21(24):24-30
    [276]史公军,侯喜林.不结球白菜RAPD反应体系的优.化江西农业大学学报, 2004, 26(1): 1-4
    [277] Morgante M and Vogel J. Compound microsatellite primers for the detection of genetic olymorphisms. US Patent Application No. 08/326456, 1994
    [278] Witsenboer H, Vogel J and Michelmore R W. Identification, genetic localization, and allelicdiversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives(Lactuca spp.). Genome, 1997, 40: 923-936
    [279] Murray H G, Thompson W F. Rapid isolation of weight DNA. Nucl. Acids Res. 1980, 8:4321-4322
    [280] Rogers S O, Bendich A J. Extraction of DNA from plant tissues. Plant Mol. Biol. Manual,1988,6: 1-10
    [281]Uzunova M I and Ecke W. Abundance, polymorphism and genetic mapping ofmicrosatellites in oilseed rape (Brassica napus L). Plant Breeding, 1999, 118:323-326
    [282] Carlos J S, Emmanuel D N and Andrew J G S. Rapid silver staining and recovery of PCRproducts separated on polyacrylamide gels. Biotechniques, 1994, 17(5): 914-921
    [283] Rohlf F J Numerical taxonomy and mulitvariate analysis system version 2. 0 user guideDepartment of Ecology and Evolution , State University of New York , 1998
    [284]朱玉英,张素琴,凌超,等.不结球白菜高代自交系杂交育种的效应及其利用.上海农业学报, 1994, 10(2): 33-36
    [285] Burgess B, Mountford H, Hopkins C J, et al. Identification and characterization of simplesequence repeat (SSR) markers derived in silico from Brassica oleracea genome shotgunsequences. Molecular Ecology Notes, 2006, 6: 1191-1194
    [286] Kresovich S, Szewe-McFadden A K, Bliek, S M, et al. Abundance and characterization ofsimple.sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassicanapus L.(rapeseed). Theor. Appl. Gene1:20t. 1995, 91,206-211
    [287] Ling A E, Kaur J, Burgess B, et al. Characterization of simple sequence repeat markersderived in silico from Brassica rapa bacterial artificial chromosome sequences and theirapplication in Brassica napus. Molecular Ecology Notes 2007, 7: 273-277
    [288] Lowe A J, Jones A E, Raybould A F, et al. Transferability and genome specificity of a newset of microsatellite primers among Brassica species of the U triangle. Mol. Ecol. Notes 2002,2:7-11
    [289] Lowe A J, Moule C L, Trick M, et al. Efficient large-scale development of microsatellitesfor marker and mapping applications in Brassica crop species. Theor. Appl. Genet. 2004, 108:1103-1112
    [290] Suwabe K, Iketani H, Nunome T, et al. Isolation and characterization of microsatellites inBrassica rapaL. Theor. Appl. Genet. 2002, 104: 1092-1098
    [291] Suwabe K, Tsukazaki H, Iketani H, et al. Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor. Appl. Genet. 2003, 107:997-1002
    [292] Suwabe K Iketai, Hn Nunome T, et al. Characteristics of microsatellites in Brassica rapagenome and their potential utilisation for comparative genomics in cruciferae. Breed Res.2004, 54: 85-90
    [293] Szewc-McFadden A K, Kresovich S, Bliek S M, et al. Identification of polymorphic,conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor. Appl. Genet.1996,93:534-538
    [294] Tsuro M, Suwabe K, Kubo N, et al. Construction of a molecular linkage map of Radish (Raphanus sativus L.), based on AFLP and Brassica-SSR markers. Breeding Science, 2005,55: 107-111
    [295] Varghese J P, Rudolph B, Uzunova M I, et al. Use of 5'-anchored primers for the enhancedrecovery of specific microsatellite markers in Brassica napus L. Theor. Appl. Genet. 2000,101: 115-119
    [296] Westman A L and Kresovich S. Simple sequence repeat (SSR)-based marker variation inBrassica nigra genebank accessions and weed populations. Euphytica, 1999, 109: 85-92
    [297] Walsh J A and Jenner C E. Turnip mosaic virus and the quest for durable resistance.Molecular Plant Pathology, 2002, 3(5): 289-300
    [298] Kosambi D D. The estimation of map distance from recombination values. Ann. Eugen.1944, 12: 172-175
    [299] Bench S and舓esson M. Ten years of AFLP in ecology and evolution: why so few animals?Mol. Ecol. 2005, 14: 2899-2914
    [300] Udall J A, Quijada P A and Osborn T C. Detection of chromosomal rearrangements derivedfrom homeologous recombination in four mapping populations of Brassica napus L. Genetics,2005, 169:967-979
    [301] Porceddu A, Albertini E, Barcaccia G, et al. Linkage mapping in apomictic and sexualKentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategybased on AFLP and SAMPL markers. Theor. Appl. Genet. 2002, 104: 273-280
    [302] Nishibayasahi S. Banding in mitotic chromosomes of Brassica campestris var. pekinensiswith a trypsin-Giemsa method. Genome 1992, 35: 899-901
    [303] Olin-Fatih M. A new method for differential staining of Brassica metaphase chromosomesand karyotypes of B. campestris, B. oleracea and B. napus. Hereditas. 1994, 120: 253-259
    [304] Olin-Fatih M and Heneen W K. C-banded karyotypes of Brassica campestris, B. oleracea,andB. napus. Genome 1992, 35: 583-589
    [305] Cheng B K, Heneen W K and Chen B Y. Mitotic karyotypes of Brassica campestris andBrassica alboglabra and identification of the B. alboglabra chromosome in an addition line.Genome 1995, 38: 313-319
    [306] Johnston J S, Pepper A E, Hall A E, et al. Evolution of genome size in Brassicaceae. Ann.Bot. 2005,95:229-235

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700