用户名: 密码: 验证码:
大豆抗倒伏性评价体系的建立及主要农艺性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆起源于中国,是重要的食用植物蛋白和油脂来源,在我国国民经济发展以及世界粮食作物构成和国际油料作物生产中均占有重要地位。我国大豆常年种植面积约900万公顷,总产量约1600万吨,尚不能满足国内对大豆消费不断增长的需求,依靠进口国外转基因大豆。单产水平低和生产成本高是影响我国大豆生产发展的主要因素,提高大豆单产水平主要取决于大豆品种抗耐生物和非生物逆境性。
     近年来灾害性天气频繁发生,严重制约了大豆等作物的丰产和稳产。我国南方春大豆生长中后期正值夏季多风雨时节,地表湿润,土壤疏松,易引发倒伏,对大豆产量和品质造成严重影响。因此开展抗倒性研究、培育高产抗倒伏品种,是应对灾害性天气、实现大豆高产稳产和优质的重要途径。
     大豆倒伏性是多基因控制的数量性状,易受环境影响,仅以表型作为抗倒性育种的选择指标效率较低。本研究通过大豆品种资源田间鉴定试验,改进抗倒性鉴定和评价方法,并以中豆29和中豆32杂交衍生的重组自交系群体为材料,应用复合区间作图法开展大豆抗倒性及其相关形态性状和产量性状的遗传分析和QTL定位,旨在明确植株地上部和地下部性状与大豆抗倒性的关联,定位大豆抗倒性及主要农艺性状的数量性状位点(QTL),分析其遗传效应,为大豆抗倒性的分子标记辅助选择提供遗传学理论依据和分子标记。获得的主要结果如下:
     1.通过抗倒性田间鉴测试验研究,提出综合植株地上部和地下部重量、茎秆强度、株高及分枝数等因子组成抗倒指数[(根重×茎秆强度)/(株高×茎叶重×分枝数)×100];确认结荚期抗倒指数与实际倒伏程度呈极显著负相关(r=-0.680),能够准确反映大豆种质的抗倒性差异,适合作为评价大豆种质抗倒伏能力的综合指标。
     2.利用SSR标记构建了一张大豆遗传连锁图谱,该图谱包含28个连锁群,113个SSR标记,遗传距离1100.3 cM,平均标记间距为9.7 cM,最大距离32.4 cM,最小距离0.3 cM。与公共图谱比较,28个连锁群与公共图谱中的连锁群相对应,SSR标记在连锁群上的排列顺序与公共图谱基本一致。
     3.对大豆倒伏性及其相关8个形态性状进行了QTL定位,共检测到45个QTL,分布于8个连锁群,可解释4.4%~50.1%的表型变异。其中位于F连锁群的倒伏主效QTL(qLD-15-1)和株高主效QTL(qPH-15-2),G连锁群的主茎节数OTL(qNMS-16-1),A2和L连锁群的根重QTL(qRW-1-2和qRW-24-1)在2个年份环境均重复检测到。在倒伏OTL的附近检测出株高、根重、茎叶重、茎粗、主茎节数和分枝数OTL,表明植株地上部和地下部性状与抗倒性普遍关联。大豆倒伏主效OTL的初定位为进一步开展精细定位和分子标记辅助育种提供了依据。
     4.对大豆单株产量、产量构成因子等11个相关性状进行QTL检测和遗传效应分析,共检测到32个QTL,分布于6个连锁群,并主要集中于C2、F和I连锁群。控制百粒重、分枝荚数及有关产量性状的QTL与控制倒伏性QTL处于相同或相邻标记区间,表明产量相关性状与倒伏性存在一定的关联。I连锁群上的产量构成因子每荚粒数OTL和二、三、四粒荚数QTL不仅在2个年份均重复出现,解释的表型变异高(32%~65%),并且处于同一位置,每荚粒数和四粒荚数QTL与二、三粒荚数OTL的增效基因分别来自不同的亲本。这4个粒荚性状QTL的共位性与表型相关分析结果一致,证实每荚粒数和四粒荚数与二、三粒荚数分别由不同的机制调控,对于育种上探讨以改良大豆粒荚性状为途径提高大豆产量,提供了重要依据。
     5.对不同发育阶段的大豆株高和茎粗同时进行非条件和条件QTL定位,在11个连锁群检测到株高和茎粗QTL均为13个。不同发育时期影响大豆株高和茎粗的OTL数量、加性效应和贡献率均不相同,QTL的表达具有时序性和选择性。株高和茎粗OTL在F连锁群上存在共位性,R1~R4期均有株高和茎粗QTL同时表达,但株高和茎粗OTL的增效基因不同。株高QTL表达次数多而茎粗QTL表达次数较少,前期(V4~R3)QTL表达数量多而后期(R4~R5)表达数量较少。株高和茎粗OTL的动态变化与表型相关分析结果一致,揭示了株高和茎粗在不同时段的相互关系和作用,对于适期选择秆粗抗倒的高产材料具有指导作用。
Soybean[Glycine max(L.) Merr.]originates in China.It is one of the important sources of protein and fat for human.In China,soybean is a major oilseed crop and is grown on about nine million hectares and total output about 16 million ton.Because of high velocity winds and frequent heavy rainfall,lodging is a common problem in production for soybean in the southern China.Lodging damage reduces both harvested yield and seed quality. Therefore,lodging resistance is one of the most important goals in soybean breeding.
     Lodging represents a quantitative trait and is difficult to assess on a phenotypic basis. Marker-assisted selection(MAS) would become an important tool to improve lodging resistance in soybean.In this study,we mapped and characterised quantitative trait loci (QTLs) for lodging resistance,as well as morphological traits correlated with lodging and yield traits,in a segregating population of 165 recombinant inbred lines derived from the cross of the lodging-resistant soybean variety zhongdou 29 with the susceptible variety zhongdou 32.Field data were obtained in two years.The aim of current study was to explore genetics based on lodging resistance in soybean and gain useful molecular markers for molecular-assisted selection.The results are as following.
     1.Index of lodging resistance(ILR) made up of different components was designed based on the mechanics as a comprehensive index to determine lodging resistance of 30 spring soybean cultivars.The ILR,(root weight×stem intension)/(plant height×shoot weight×branch number)×100,test at podding stage was significant negative relation with percentage of prostrate plant(r=-0.680).The test result could prove that the ILR might be used as an indicator to evaluate the lodging resistance of soybean objectively and accurately.
     2.The linkage map including 28 linkage groups with 113 SSR markers.The map covered 1100.1 cM in length with an average marker interval of 9.7 cM,minimal interval of 0.3 cM and maximal interval of 32.4 cM.The order of markers in this map was identical to the order of "Consensus Linkage Map".
     3.With the method of composite interval mapping(CIM) 45 QTL for lodging and related traits were detected on 8 linkage groups,explaining 4.4%-50.1%phenotypic variation. One QTL(qLD-15-1) of lodging and one QTL(qPH-15-2) of plant height on linkage group F were both detected in two years;one QTL of nodes on main stem and 2 QTLs of root weigh were detected in two years on linkage groups G,A2 and L respectively.The positions of some QTLs of plant height,root weight,shoot weight,stem diameter,nodes on main stem and branch number were close to those of lodging,showed that the lodging resistance is associated with the characters in aerial part and underground portion.The result might provide a basis for the further fine mapping and molecular marker-assisted breeding.
     4.32 QTLs for yield,seed and pod traits were detected on 6 linkage groups,which majority were located on linkage groups C2,F and I.The QTLs of 100-grain weight and pod number on branch were in same or adjacent marker interval with the QTL of lodging, showed the correlation between yield-related traits and lodging.On linkage group I,the QTLs for yield components of number of seeds per pod,two-seed pod,three-seed pod,and four-seed pod were mapped to the same position in two years,explaining 32%-65% phenotypic variation.The positive alleles of QYLs for number of seeds per pod and four-seed pod,QTLs for two-seed pod and three-seed pod were from different parents,the four QTLs of seed and pod traits were mapped to the same loci.The result was consistent with the correlation analysis of phenotypic traits.The result showed that the regulatory mechanisms of number of seeds per pod and four-seed pod,two-seed pod and three-seed pod were different,which may provide an important basis for promotion of soybean yield by improving seed and pod traits.
     5.Based on unconditional and conditional QTL mapping methods,13 QTLs for plant height and 13 QTLs for stem diameter were detected on eleven linkage groups.The number, additive effects and contribution rate of QTLs for plant height and stem diameter were different at different measuring stages,which indicated that these QTLs expressed timely and electively.The QTLs of plant height and stem diameter on linkage groups F were mapped to the same loci and they were expressed simultaneously from R1 to R4 stages.In the early stages QTLs expressed more than in late stages,and QTLs for plant height expressed more times than QTLs for stem diameter.The positive alleles of QTLs for plant height and stem diameter were from different parents.The developmental dynamic of QTLs for plant height and stem diameter was consistent with the correlation analysis ofphenotypic traits at different developmental stages.
引文
1.包劲松,何平,夏英武,陈英,朱立煌.不同发育阶段水稻苗高的QTL分析.遗传,1999,21(5):38-40
    2.陈庆山,张忠臣,刘春燕,王伟权,李文滨.应用Charleston×东农594重组自交系群体构建SSR大豆遗传图谱.中国农业科学,2005,38(7):1312-1316
    3.陈幼玉,祈建民,林荔辉,梁康迳,周瑞阳,吴建梅.红麻株高与茎粗性状的动态发育遗传分析.应用生态学报,2005,16(6):1011-1016
    4.方宣钧,吴伟人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    5.盖钧镒.试验统计方法.北京:中国农业出版社,2000,248-252
    6.盖钧镒,章元明,王健康.植物数量性状遗传体系.北京:科学出版社,2003,341-350
    7.何慈信,朱军,严菊强,Benmoussa M,吴平.水稻干物质重发育动态的QTL定位.中国农业科学,2000,33(1):24-32
    8.贺春林,李卫东,薛应离.夏大豆品种抗倒伏性的遗传研究.河南农业大学学报,1993,27(2):196-200
    9.堀内久满,古贺义昭.水稻抗倒伏性与育种.农业技术,1989,44(9):41-45
    10.莱利 J.小麦育种理论与实践.庄巧生,杨作民译.北京:农业出版社,1982,111-123
    11.李得孝,员海燕,周联东.玉米抗倒伏指标及其模拟研究.西北农林科技大学学报(自然科学版),2004,32(5):53-56
    12.梁康迳,,林文雄,王雪仁,陈志雄,郭玉春,梁义元,陈芳育,李亚娟.籼型三系杂交水稻茎蘖数的发育遗传研究.中国农业科学,2002,35(9):1033-1039
    13.梁康迳,,林文雄,陈志雄,李亚娟,梁义元,郭玉春,何华勤,陈芳育.不同环境下水稻谷粒重的发育遗传分析.中国农业科学,2003,36(10):1113-1119
    14.刘峰,陈受宜,庄炳昌.大豆基因组F连锁群较高密度图谱的构建和基因定位.自然科学进展,2000,10(11):1012-1017
    15.刘峰,庄炳昌,张劲松,陈受宜.大豆遗传图谱的构建和分析.遗传学报,2000,27(11):1018-1026
    16.刘立峰,李自超,穆平.基于作物QTL的分子育种研究进展.分子植物育种, 2004,2(1):77-83
    17.刘学义,宛煜嵩,王珍,马俊奎,史宏,任小俊,任冬莲,张小虎,李有应,冯凤鸣,徐进,李永起,方宣钧.大豆重组自交系Jinf的构建及主要农艺性状和SSR基因型分析.分子植物育种,2003,1(2):157-177
    18.马均,马文波,田彦华,杨建昌,周开达,朱庆森.重穗型水稻植株抗倒伏能力研究.作物学报,2004,30(2):143-148
    19.马育华.植物育种的数量遗传学基础.江苏:江苏科学技术出版社,1982,442-445
    20.蒙忻,刘学义,方宣钧.利用大豆分子连锁图定位大豆胞囊线虫4号生理小种抗性QTL.分子植物育种,2003,(1):6-21
    21.蒲定福,周俊儒,李邦发,李全,周强.根倒伏小麦抗倒性评价方法研究.西北农业学报,2000,9(1):58-61
    22.邱丽娟,常汝镇,刘章雄,关荣霞.大豆种质资源描述规范和数据标准.北京:中国农业出版社.2006
    23.邱丽娟,王昌陵,周国安,陈受宜,常汝镇.大豆分子育种研究进展.中国农业科学,2007,40(11):2418-2436
    24.孙德生,李文滨,张忠臣,陈庆山,杨庆凯.大豆株高QTL发育动态分析.作物学报,2006,32(4):509-514
    25.田保明,袁志华,王建平.油菜茎秆抗倒伏的力学分析及综合评价探讨.河南农业科学,2005,4:30-32
    26.王春乙,娄秀荣,王建林.中国农业气象灾害对作物产量的影响.自然灾害学报,2007,5:37-43
    27.王宏林,喻德跃,王永军,陈受宜,盖钧镒.应用重组自交系群体定位大豆根重QTL.遗传,2004,26(3):333-336
    28.王连铮,郭庆元.现代中国大豆.北京:金盾出版社,2007.
    29.王贤智,张晓娟,周蓉,沙爱华,吴学军,蔡淑平,邱德珍,周新安.大豆重组自交系群体荚粒性状的QTL分析.作物学报,2007,33(3):441-448
    30.王莹,杜建林.大麦根倒伏抗性评价方法及其倒伏系数的通径分析.作物学报,2001.27(6):941-945
    31.王勇,李晴棋.小麦品种抗倒性评价方法研究.华北农业科学,1995,10(3): 84-88
    32.王永军,吴晓雷,贺超英,张劲松,陈受宜,盖钧镒.大豆作图群体检验与调整后构建的遗传图谱.中国农业科学,2003,36(11):1254-1260
    33.吴晓雷,王永军,贺超英,陈受宜,盖钧镒,王学臣.大豆重要农艺性状的QTL 分析.遗传学报,2001a,28(10):947-955
    34.吴晓雷,贺超英,王永军,张志永,东方阳,张劲松,陈受宜,盖钧镒.大豆遗传图谱的构建和分析.遗传学报,2001b,28(11):1051-1061
    35.肖世和,张秀英,闫长生,张文祥,海林,郭会君.小麦茎秆强度的鉴定方法研究.中国农业科学,2002,35(1):1-11
    36.肖应辉,罗丽华,闫晓燕,高艳红,王春明,江玲,矢野昌裕,翟虎渠,万建民.水稻品种倒伏指数QTL分析.作物学报,2005,31(3):348-354
    37.谢甫绨,董钻,王晓光,孙艳环.大豆倒伏对植株性状和产量的影响.大豆科学,1993,12(1):81-85
    38.谢甫绨,胡凤新,赵庆祥,马振宾.不同倒伏程度对大豆生育性状和产量性状的影响.辽宁农业科学,1994,(5):43-46
    39.徐正进,张树林,周淑清,刘丽霞.水稻穗型与抗倒伏性关系的初步分析.植物生理学通讯,2004,40(5):561-563
    40.严建兵,汤华,黄益勤,石永刚,李建生,郑用琏.不同发育时期玉米株高QTL 的动态分析.科学通报,2003,48(18):1959-1964
    41.杨惠杰,杨仁崔,李义珍,姜照伟,郑景生.水稻茎秆性状与抗倒性的关系.福建农业学报,2000.15(2):1-7
    42.杨喆,关荣霞,王跃强,刘章雄,常汝镇,王曙明,邱丽娟.大豆遗传图谱的构建和若干农艺性状的QTL定位分析.植物遗传资源学报,2004,5(4):309-314
    43.叶子弘,朱军.陆地棉开花成铃性状的遗传研究Ⅲ.不同发育阶段的遗传规律.遗传学报,2000,27(9):800-809
    44.张德水,董伟,惠东威,陈受宜,庄炳昌.用栽培大豆与野生大豆间的杂种F_2群体构建基因组分子标记连锁框架图.科学通报,1997a,42(12):1326-1330
    45.张德水,陈受宜,惠东威,庄炳昌.栽培大豆与半野生大豆杂种F_2群体中RFLP 标记的偏分离及其形成原因的分析.遗传学报,1997b,24:362-367
    46.赵芳明,刘桂富,朱海涛,丁效华,曾瑞珍,张泽民,李文涛,张桂权.用单片段代换系对不同时期水稻分蘖数QTL的非条件和条件定位.中国农业科学,2008,41(2):322-330
    47.周蓉,王贤智,沙爱华,张晓娟,周新安.大豆数量性状定位的研究进展.中国农学通报,2005,21(10):30一35
    48.周蓉,涂赣英,沙爱华,王贤智,张晓娟,周新安.大豆种质的倒伏性调查及其相关农艺性状分析.大豆科学,2007a,26(2):41-44
    49.周蓉,王贤智,张晓娟,沙爱华,吴学军,涂赣英,邱德珍,周新安.大豆种质倒伏抗性评价方法研究.大豆科学,2007b,26(4):484-489
    50.周蓉,王贤智,陈海峰,张晓娟,单志慧,吴学军,蔡淑平,邱德珍,周新安吴江生.大豆倒伏性及其相关性状的QTL分析.作物学报,2009,35(1):57-65
    51.周新安,王贤智,蔡淑平,吴学军,沙爱华,邱德珍,张晓娟.大豆重组白交系群体三、四粒荚变异及其与产量的关系.中国油料作物学报,2005,27(4):22-25
    52.朱军,季道藩,许复华.陆地棉花铃动态的遗传分析.见:国际棉花学术讨论会文集.北京:中国农业科技出版社,1993,294-312
    53.朱军.发育性状的遗传分析.见:朱军编,遗传模型分析方法.北京:中国农业出版社,1997,163-174
    54.朱军.复杂数量性状基因定位的混合模型方法.见:王连铮,戴景瑞主编,全国作物育种学术讨论会论文集.中国作物学会第六届理事会暨全国作物育种学术讨论会,北京1998.北京:中国农业科技出版社,1998,19-20
    55.朱军.运用混合线形模型定位复杂数量性状基因的方法.浙江大学学报(自然科学版),1999,33(3):327-335
    56.朱军.数量性状遗传分析的新方法及其在育种中的应用.浙江大学学报(农业与生命科学版),2000,26(1):1-6
    57.Akkaya M S,Bhagwat A A,Cregan P B.Length polymorphism of simple sequence repeat DNA in soybean.Genetics,1992,132:1131-1139
    58.Akkaya M S,Shoemaker R,Specht J E,Bhagwat A A,Cregan P B.Integration of simple sequence repeat DNA marker into a soybean linkage map.Crop Sci,1995,35:
    tttt QTL
    ??1439.1445
    
    59. Apuya N R, Frazier Keim P, Roth E J, Lark K G. Restriction fragment length polymorphism as genetic markers in soybean, Glycine max (L.) Merr. Theor Appl Genet, 1988,75:889-901
    
    60. Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 1991, 9(3): 208-219
    
    61. Atchley W R. Ontogeny, timing of development and genetic variance-covariance structure. Am Nat, 1984, 124: 519-540
    
    62. Atchley W R. Developmental quantitative genetics, conditional epigenetic variability and growth in mice. Genetics, 1997, 147: 765-776
    
    63. Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A. Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet, 1995, 90: 294-302
    
    64. Badu R, Nair S K, Prasanna B M, Gupta H S. Integrating marker-assisted selection in crop breeding-Prospect and challenges. Current Science, 2004, 87: 607-619
    
    65. Battazar B M, Mansur L M. Identification of restriction fragment length polymorphisms (RFLP's) to map soybean cyst nematode resistance genes in soybean. Soybean Genetics Newsl, 1992, 19: 120-122
    
    66. Board J. Reduced lodging for soybean in low population is related to light quality. Crop Sci, 2001,41: 379-384
    
    67. Brucker E, Niblack T, Kopisch-Obuch F J, Diers B W. The effect of rhgl on reproduction of Heterodera glycines in the field and greenhouse and associated effects on agronomic traits. Crop Sci, 2005, 45: 1721-1727
    
    68. Brummer E C, Graef G L, Orf J, Wilcox J R, Shoemaker R C. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci, 1997, 37: 370-378
    
    69. Cao G Q, Zhu j, He C X, Gao Y J, Yan J Q, Wu P. Impact of epistasis and QTL environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl genet, 2001, 103: 153-160
    
    70. Chang S J C, Doubler T W, Kilo V, Suttner R, Klein J, Schmidt M E, Gibson P T, Lightfoot D A. Two additional loci underlying durable field resistance to soybean sudden death syndrome (SDS). Crop Sci, 1996, 36: 1684-1688
    
    71. Chang S J C, Doubler T W, Kilo V, Suttner R, Klein J, Schmidt M E, Gibson P T, Lightfoot D A. Association of field resistance to soybean sudden death syndrome (SDS) and cyst nematode (SCN). Crop Sci, 1997, 37: 965-971
    
    72. Chapman A, Pantalone V R, Ustun A, Allen F L, Landau-Ellis D, Trigiano R N, Gresshoff P M. Quantitative trait loci for agronomic and seed quality traits in an F_2 and F_(4:6) soybean population. Euphytica, 2003, 129: 387-393
    
    73. Chung J, Babka H L, Graef G L, Staswick P E, Lee D J, Cregan P B, Shoemaker R C, Specht J E. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci, 2003,43: 1053-1067
    
    74. Concibido V C, Denny R L, Lange D A, Orf J H, Young N D. RFLP mapping and marker assisted selection of soybean cyst nematode resistance in PI209332. Crop Sci, 1996a, 36: 1643-1650
    
    75. Concibido V C, Young N D, Lange D A, Denny R L, Danesh D, Orf J H. Targeted comparative genome analysis and quantitative mapping of a major partial-resistance gene to the soybean cyst nematode. Theor Appl Genet, 1996b, 93: 234-241
    
    76. Concibido V C, Lange D A, Denny R L, Hautea R, Orf J, Yong N D. Genome mapping of soybean cyst nematode gene in 'Peking', PI90763, and PI88788 using DNA markers. Crop Sci, 1997, 37: 258-264
    
    77. Concibido V C, Vallee B La, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine sofa into commercial soybean cultivars. Theor Appl genet, 2003, 106: 575-582
    
    78. Concibido V C, Diers B W, Arelli P R. A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci, 2004, 44: 1121-1131
    
    79. Cregan P B, Bhagwat A A, Akkaya M S, Rongwen J. Microsattelite fingerprinting and mapping of soybean. Methods Mol Cell Biol, 1994, 5: 49-61
    
    80. Cregan P B, Qiugley C V. Simple sequence repeat DNA markers analysis. In: Caetano-Anolles G, Gresshoff P M ed. DNA markers: Protocols, applications and overviews. New York: John Wiley & Sons, 1997. 173-185
    81. Cregan P B, Jarvik T, Bush A L, Shoemaker R C, Lark K G, Kahler A L, Kaya N, VanToai T T, Lohnes D G, Chung J, Specht J E. An integrated genetic linkage map of the soybean genome. Crop Sci, 1999a, 39: 1464-1490
    
    82. Cregan P B, Mudge J, Fikus E W, Danesh D, Denny R, Young N D. Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhgl locus. Theor Appl genet, 1999b, 99: 811-818
    
    83. Csanadi G, Vollmann J, Stift G, Lelley T. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl genet, 2001, 103: 912-919
    
    84. Diers B W, Keim P, Fehr W R, Shoemaker R C. RFLP analysis of soybean seed protein and oil content. Theor Appl genet, 1992, 83: 608-612
    
    85. Diers B W, Arelli A P R, Kasha T. Genetic mapping of soybean cyst nematode resistance genes from PI 88788. Soybean Genet Newsl, 1997, 24: 194-195
    
    86. Flint-Garcia S A, Darrah L L, McMullen M D, Hibbard B E. Phenotypic versus marker-assisted selection for stalk strength and second -generation European corn borer resistance in maize. Theor Appl genet, 2003, 107: 1331-1336
    
    87. Frary A, Nesbitt T C, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K B, Tanksley S D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85-88
    
    88. Fridman E, Carrari F, Liu Y S, Fernie A R, Zamir D. Zooming in a quantitative trait for tomato yield using interspecific introgression. Science, 2004, 305: 1786-1789
    
    89. Fridman E, Liu Y S, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D. Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics, 2002, 266(5): 821-826
    
    90. Guzman P S, Diers B W, Neece D J, Martin S K St, LeRoy A R, Grau C R, Hughes T J, Nelson R L. QTL associated with yield in three backcross-derived populations of soybean. Crop Sci, 2007, 47: 111-122
    
    91. Hnetkovsky H, Chang S J C, Doubler T W, Gibson P T, Lightfoot D A. Genetic mapping of loci underlying field resistance to soybean sudden death syndrome (SDS). Crop Sci, 1996, 36: 393-400
    
    92. Hoeck J A, Fehr W R, Shoemaker R C, Welke G A, Johnson S L, Cianzio S R. Molecular marker analysis of seed size in soybean. Crop Sci, 2003, 43: 68-74
    
    93. Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl genet, 2004, 109:552-561
    
    94. Iqbal M J, Meksem K, Njiti V N. Kassem M, Lightfoot D A. Microsatellite markers identify three additional quantitative trait loci for resistance to soybean sudden death syndrome (SDS) in Essex X Forrest RILs. Theor Appl genet, 2001, 102: 187-192
    
    95. Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784-791
    
    96. Kabelka E A, Carlson S R, Diers B W. Glycine soja PI 468916 SCN resistance loci's associated effects on soybean seed yield and other agronomic traits. Crop Sci, 2006, 46: 622-629
    
    97. Kato A. Relationship between root lodging and five nondestructively determined traits in maize ( Zea mays L.). Maydica, 1998, 43 (1): 65-74
    
    98. Keim P, Olson T C, Shoemaker R C. A rapid protocol for isolating soybean DNA. Soybean Genet Newsl, 1988, 15:150-152
    
    99. Keim P, Shoemaker R C, Palmer R C. Restriction fragment length polymorphism diversity in soybean. Theor Appl genet, 1989, 77: 786-792
    
    100. Keim P, Diers B W, Olson T C, Shoemaker R C. RFLP mapping in soybean : association between marker loci and variation in quantitative traits. Genetics, 1990a, 126: 735-742
    
    101. Keim P, Diers B W, Shoemaker R C. Genetic analysis of soybean hard seededness with molecular markers. Theor Appl genet, 1990b, 79: 465-469
    
    102. Keim P, Schupp J M, Travis S E, Clayton K, Zahu T, Shi L, Ferreria A, Webb D M A. High-density soybean genetic map based on AFLP markers. Crop Sci, 1997, 37: 537-543
    
    103. Kheiralla A I, Whittongton A J. Genetic analysis of growth in tomato: the F_1 generation. Ann Bot, 1962, 26(114): 489-504
    
    104. Knapp S J. Marker-assisted selection as a strategy for increasing the probability of selecting superior genotypes. Crop Sci, 1998, 38: 1164-1174
    
    105. Keller M, Karutz Ch, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating Wheatxspelt population. TheorAppl Genet, 1999,98: 1171-1182
    
    106. Kopisch-Obush, F J, McBroom R L, Diers B W. Association between SCN resistance loci and yield in soybean. Crop Sci, 2005, 45: 956-965
    
    107. Lande R, Thompson R. Efficiency of marker-assisted selection in improvement of quantitative traits. Genetics, 1990, 124: 743-756
    
    108. Lark K G, Weisemann J M, Matthews B E, Plamer R, Chase K, Macalma T. A genetic map of soybean (Glycine max. ) using an intraspecific cross of two cultivars: 'Minsoy' and 'Noir 1'. Theor Appl Genet, 1993, 86: 901-906
    
    109. Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M. Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet, 2004, 109: 658-668
    
    110. Lee S H, Bailey M A, Mian M A R, Carter Jr T E, Ashley D A, Hussey R S, Parrott W A, Boerma H R. Molecular markers associated with soybean plant height, lodging, and maturity across locations. Crop Sci, 1996a, 36: 728-735
    
    111. Lee S H, Bailey M A, Mian M A R, Shipe E R, Ashley D A, Parrot W A, Hussey R S, Boerma H R. Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl genet, 1996b,92:516-523
    
    112. Lee S H, Bailey M A, Mian M A R, Carter Jr T E, Shipe E R, Ashley D A, Parrot W A, Hussey R S, Boerma H R. RFLP loci associated with soybean seed protein and oil content across population and location. Theor Appl genet, 1996c, 93: 649-657
    
    113. Lee S H, Park K Y, Lee H S, Park E H, Boerma H R. Genetic mapping of QTLs conditioning soybean sprout yield and quality. Theor Appl genet, 2001, 103: 702-709
    
    114. Li J M, Thomson M, McCouch S R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics, 2007, 168: 2187-2195
    
    115. Maiko Inoue, Gao Z S, Cai H W. QTL analysis of lodging resistance and related traits in Italian ryegrass (Lolium multiflorum Lam.). Theor Appl Genet, 2004, 109:1576-1585
    
    116. Mahalingam R, Skorupska H T. DNA markers for resistance to Heterodera glycines race 3 in soybean peking. Breeding Sci, 1995, 45: 435-443
    
    117. Mansur L M, Lark K G, Kross H, Oliveira A. Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.) Theor Appl genet, 1993a, 86: 907-913
    
    118. Mansur L M, Orf J, Lark K G. Determining the linkage of quantitative trait loci to RFLP markers using extreme phenotypes of recombinant inbreds of soybean (Glycine max L. Merr.). Theor Appl genet, 1993b, 86: 914-918
    
    119. Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36:1327-1336
    
    120. Maughan P J, Saghai Maroof M A, Buss G R. Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 1995, 38: 715-723
    
    121. Maughan P J, Saghai Maroof M A, Buss G R. Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl genet, 1996a, 93: 574-579
    
    122. Maughan P J, Saghai Maroof M A, Buss G R, Huestis G M. Amplified fragment length polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic line analysis. Theor Appl genet, 1996b, 93: 1432-1442
    
    123. McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
    
    124. Menchey E K, Aycock Jr M K. Anther-derived dihaploid for lodging improvement in tobacco. Crop Sci, 1998, 38: 698-701
    
    125. Meksem K, Doubler T W, Chancharoenchai K, Njiti V, Chang S J C, Rao-Arelli A P, Cregan P,Gray L E, Gibson P T, Lightfoot D A. Clustering among loci underlying soybean resistance to Fusarium solani, SDS and SCN in near-isogenic lines. Theor Appl genet, 1999,99: 1131-1142
    
    126. Meksem K, Pantazopoulos P, Njiti V, Hyten L D, Arelli P R, Lightfoot D A. 'Forret' resistance to the soybean cyst nematode is bigenic: Saturation mapping of the rhgl and Rhg4 loci. Theor Appl genet, 2001, 103: 710-717
    
    127. Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Jr. Prrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl genet, 1996b, 93: 1011-1016
    
    128. Mian M A R, Ashley D A, Vencill W K, Boerma H R. QTLs conditioning early growth in a soybean population segregating for growth habit. Theor Appl genet, 1998a, 197: 1210-1216
    
    129. Mian M A R, Wells R, Carter T E. RFLP tagging of QTLs conditioning specific leaf weight and leaf size in soybean. Crop Sci, 1998b, 38: 354-360
    
    130. Molnar S J, Rai S, Chrette M. Simple sequence repeat (SSR) marker linked to El, E3, E4 and E7 maturity genes in soybean. Genome, 2003,46 (6): 1024-1036
    
    131. Moreau L, Charcosset A, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998, 148: 1353-1365
    
    132. Mudge J, Concibido V, Denny R, Young N, Orf J. Genetic mapping of a yield depression locus near a major gene for soybean cyst nematode resistance. Soybean Genetics Newsletter, 1996,23: 175-178
    
    133. Njiti V N, Shenaut M A, Suttner R J, Schmidt M E, Gibson P T. Relationship between soybean sudden death syndrome (SDS) and yield components in F_6-derived lines. Crop Sci, 1998, 38: 673-678
    
    134. Njiti V N, Schmidt C R, Schmidt M E, Lightfoot D A. Mapping loci underlying yield in Illinois. Soybean Genetics Newsletter, 1997, 24: 136-138
    
    135. Njiti V N, Meksem K, Iqbal M J, Johnson J E, Kassem M A, Zobrist K F, Kilo V Y, Lightfoot D A. Common loci underlie field resistance to soybean sudden death syndrome in Forrest, Pyramid, Essex, and Douglas. Theor Appl Genet, 2002, 104: 294-300
    
    136. Orf J H, Chase K, Jarvik T, Mansur L M, Cregan P B, Adler F R, Lark K G Genetics of soybean agronomic traits: I. comparison of three related recombinant inbred populations. Crop Sci, 1999a, 39: 1642-1651
    
    137. Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci, 1999b, 39: 1652-1657
    
    138. Panthee D R, Pantalone V R, West D R, Saxton A M, Sams C E. Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci, 2005, 45:2015-2022
    
    139. Peat W E, Whittongton A J. Genetic analysis of growth in tomato: segregating generation. Ann Bot, 1965, 29(116): 735-744
    
    140. Prabhu R R, Njiti V N, Bell-Johnson B, Schmidt M E, Klein J H, Lightfoot D A. Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome suing two DNA markers. Crop Sci, 1999, 39: 982-987
    
    141. Price A H, Tomos A D. Genetic dissection of root growth in rice (Oryza sativa L) II: Mapping quantitative trait loci using molecular markers. Theor Appl genet, 1997, 95: 143-152
    
    142. Qiu B X, Arelli P R, Sleper D A. RFLP marker associated with soybean cyst nematode resistance and seed composition in a "Peking X Essex" population. Theor Appl genet, 1999, 98: 356-364
    
    143. Reinprecht Y, Poysa V W, Yu K, Rajcan I, Ablett G R, Pauls K P. Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merr.) germplasm. Genome, 2006, 49(12): 1510-1527
    
    144. Schneider K A, Brothers M E, Kelly J D. Marker-assisted selection to improve drought resistance in common bean. Crop Sci, 1997, 37: 51-60
    
    145. Schuster I, Abdelnoor R V, Marin S R R. Identification of a new major QTL associated with resistance to soybean cyst nematode (Heterodera glycines). Theor Appl Genet, 2001, 102: 91-96
    
    146. Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increase seed protein concentration in soybean. Crop Sci, 2000,40: 1438-1444
    
    147. Shi C H, Wu J G, Lou X B. Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L). Field Crop Res, 2002a, 76(1): 1-9
    
    148. Shi C H, Wu J G, Zhang X M. Developmental analysis on genetic behavior of brown rice recovery in indica rice across environments. Plant Sci, 2002b, 163(3): 555-561
    
    149. Shoemaker R C, Olson T C. Molecular linkage map of soybean (Glycine max L. Merr.). In: O'Brien S J ed. Genetic maps: Locus maps of complex genomes. New York: Cold Spring Harbor Laboratory Press, 1993. 6.131-6.138
    
    150. Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups. Crop Sci, 1995, 35: 436-446
    
    151. Singh R J, Hymowitz T. The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl genet, 1988, 76: 705-711
    
    152. Smalley M D, Fehr W R, Cianzio S R, Han F, Sebastian S A, Streit L G. Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Sci, 2004, 44: 436-442
    
    153. Song Q J, Marek L F, Shoemaker R C, Lark K G, Concibido V C, Delannay X, Specht J E, Cregan P B. A new integrated genetic linkage map of the soybean. Theor Appl genet, 2004, 109: 122-128
    
    154. Specht J E, Hume D J, Kumudini S V. Soybean yield potential -a genetic and physiological perspective. Crop Sci, 1999, 39: 1560-1570
    
    155. Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001,41:493-509
    
    156. Tar'an B, Warkentin T, Somers D J, Miranda D, Vandenberg A, Blade S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet, 2003, 107:1482-1491
    
    157. Tasma I M, Lorenzen L L, Green D E, Shoemaker R C. Mapping genetic loci for flowering time, maturity and photoperiod insensitivity in soybean. Mol Breed, 2001,8: 25-35
    
    158. Tischner T, Allphin L, Chase K, Orf J H, Lark K G. Genetics of seed abortion and reproductive traits in soybean. Crop Sci, 2003, 43: 464-473
    
    159. Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTL with epistatic effects and QTL X environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264
    
    160. Wang D, Arelli P R, Shoemaker R C, Diers B W. Loci underlying resistance to race 3 of soybean cyst nematode in Glycine soja plant introduction 468916. Theor Appl Genet, 2001, 103:561-566
    
    161. Wang D, Shi J, Carlson S R, Cregan P B, Ward R W, Diers B W. A low-cost, high- throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop Sci, 2003, 43: 1828-1832
    
    162. Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl genet, 2004,108:458-467
    
    163. Webb, D M, Baltazar B M, Rao-Arelli A P, Schupp J, Clayton K, Keim P, Beavis W D. Genetic mapping of soybean cyst nematode race-3 resistance loci in the soybean PI 437654. Theor Appl genet, 1995, 91: 574-581
    
    164. Xu Y B. Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.). Theor Appl genet, 1991, 93: 243-249
    
    165. Yamanaka N, Ninomiya S, Hoshi M, Tsubokura Y, Yano M, Nagamura Y, Sasaki T, Harada K. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion. DNA Res, 2001, 8: 61-72
    
    166. Yamanaka N, Watanabe S, Masaki K T, Fuchigami H H, Takahashi R, Harada K. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line. Theor Appl genet, 2005,110:634-639
    
    167. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl genet, 1998a, 97:267-274
    
    168. Yan J Q, Zhu J, He C X, Benmoussa M, Wu P. Quantitative trait loci analysis for the developmental behavior of plant height in rice (Oryza sativa L.). Genetics, 1998b, 150: 1257-1265
    
    169. Yuan J, Njiti V N, Meksem K, Iqbal M J, Triwitayakorn K, Kassem My A, Davis G T, Schmidt M E, Lightfoot D A. Quantitative trait loci in two soybean recombinant inbred line populations segregating for yield and disease resistance. Crop Sci, 2002, 42: 271-277
    
    170. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    
    171. Zhang W K, Wang Y J, Luo G Z, Zhang J S, He C Y, Wu X L, Gai J Y, Chen S Y. QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl genet, 2004, 108:1131-1139
    
    172. Zhu H, Briceno G, Dovel R, Hayes P M, Liu B H, Liu C T, Ullrich S E. Molecular breeding for grain yield in barley: an evaluation of QTL effects in a spring barley cross. Theor Appl genet, 1999, 98: 772-779
    
    173. Zhu J. Analysis of conditional genetic effects and variance components in developmental genetics. Genetics, 1995, 141: 1633-1639
    
    174. Zhu J, Weir B S. Diallel analysis for sex-linked and maternal effects. Theor Appl genet, 1996,92: 1-9
    
    175. Zhu J, Weir B S. Mixes model approaches for the genetics of quantitative traits. In: Chen L S, Ruan S G, Zhu J eds. Advanced topics in biomathematics: Proc Int Conf on Mathematical Biology. Singapore: World Scientific Publishing Co, 1998. 321-330
    
    176. Zou J J, Singh R J, Lee J, Xu S J, Cregan P B, Hymowotz T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl genet, 2003, 107: 745-750

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700