用户名: 密码: 验证码:
玉米抗丝黑穗病分子标记开发与主效抗病基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米(Zea mays L.)丝黑穗病是一种世界性病害,也是我国春玉米产区的主要病害之一。这种病害是由土壤或种子带菌传播的真菌病害,其病原菌丝轴黑粉菌(Sphacelotheca reiliana(K(u|¨)hn)Clint)在玉米幼苗期地下部分侵入、系统感染,成株期表现典型症状,在雄穗和雌穗上产生黑粉孢子。数量遗传学研究表明,玉米对丝黑穗病的抗性属数量性状遗传,同时受基因加性、显性和上位性效应控制,其中基因加性效应占主导作用,非加性效应作用较小,抗性能稳定遗传。随着分子生物学的发展,现代数量遗传学和生物技术手段也已应用于玉米丝黑穗病的抗性遗传研究。迄今,多位研究者在国内外玉米种质中发现了多个抗病基因位点(QTL)及其连锁分子标记,并获得了与丝黑穗病抗性相关的候选基因(TUGs,tentative unique genes)。这些研究结果为玉米丝黑穗病抗性基因的发掘奠定了良好基础,但现有研究结果还尚不能完全满足基因克隆及分子标记辅助育种的需要。
     本文围绕玉米丝黑穗病主效抗性基因精细定位及分子标记开发开展研究。主要研究内容、方法和结果如下:
     1.以玉米自交系为材料,采用BSA和AFLP标记相结合的方法,开发了2个与玉米丝穗病抗性相关SCAR标记。
     利用玉米10个主要抗丝黑穗病病自交系和10个主要感病自交系构建一组抗、感基因池。用这组抗、感基因池随机筛选101对AFLP引物,平均每对引物扩增46个片断,共扩增约4646个片断,其中由56对引物扩增的65个片断在抗、感基因池间呈现多态性。用筛选获得的56对AFLP引物分析组成抗、感池的20个自交系,经χ~2独立性测验,发现7个片断似乎与丝黑穗病抗性相关,分别为P54M71-148、P44M62-331、P46M37-136、P46M37-137、P44M46-147、P38M46-137和P51M38-130。将7个片断回收、克隆和测序,经同源性分析,片断P46M37-136和P46M37-137为同源序列。对6个回收差异片断的序列设计6对引物(根据2个同源序列设计ASP引物),然后利用抗、感基因池及其组成自交系的预扩产物和相应的基因组DNA分别对6对引物进行检验。检验结果表明,6对引物全部转化为SCAR标记,分别为S126、S258、AS136/A137、S98、S131和S100。进一步利用其它54个玉米丝黑穗病抗、感自交系对转化的6个SCAR标记进行验证。经χ~2独立性测验,ASP(χ_c~2=26.06)和S100(χ_c~2=4.13),表明它们与丝黑穗病抗性相关,并将其分别定位于玉米染色体的bin1.09和bin3.08区域。
     2.利用玉米的2个BC3回交群体,采用BSA和AFLP标记相结合的方法,开发了1个与玉米丝穗病抗性相关SCAR标记。
     利用2个抗玉米丝黑穗病自交系(Qi319和Mo17,供体亲本)与1个感病自交系(黄早四,轮回亲本)构建2个BC3回交群体(BC3Q群体和BC3M群体)。BC3Q群体,即齐319(高抗,供体亲本)×黄早四(高感,轮回亲本)群体;而BC3M群体,即Mo17(抗病,轮回亲本)×黄早四(高感,轮回亲本)群体。通过对2个BC3群体进行丝黑穗病抗病鉴定筛选得到抗、感极端株系,利用群体中的极端抗、感株系分别构建了两组抗、感基因池。分别利用抗、感基因池及相应的亲本自交系筛选获得了31对AFLP引物,平均每对引物扩增46个片断,共扩增约1426个片断。对于BC3Q群体,有8对引物的11个片断在抗池、抗病亲本齐319和感池、感病亲本黄早四之间呈现多态性;对于BC3M群体,有9对引物的10个片断在抗池、抗病亲本Mo17和感池、感病亲本黄早四间呈现多态性。进一步用这些多态性引物组合分析组成相应抗、感基因池的个体,经χ~2独立性测验,在两个群体中初步发现共有6个片断与丝黑穗病抗性相关,分别为P12M48-215、P13M61-152、P39M46-137、P64M47-204、P13M49-185和P64M47-170。将这6个片断分别回收、克隆及测序,但片断P13M49-185没有回收成功。将其它5个片断进行同源性分析,序列P64M47-204与玉米基因组未知功能的mRNA高度同源。对回收得到的5个序列共设计了7对引物(根据P64M47-204设计3对引物),利用相应抗、感池及组成个体的预扩产物和基因组DNA分别进行验证,只有3对引物成功转化成了SCAR标记,分别是S130、S193和S116。此后,进一步利用相应BC3回交群体中更多抗、感株系和74个玉米自交系进行验证,经χ~2独立性测验,S130与丝黑穗病抗性高度相关,并将其定位于玉米染色体bin2.09区域,即研究发现的抗玉米丝黑穗病主效QTL区域。
     3.采用SSR和SCAR标记定位玉米抗丝黑穗病主效QTL。
     利用玉米染色体bin2.09主效QTL区域的5个SSR标记和新开发的SCAR标记S130完善抗病QTL区段遗传连锁图谱,获得平均间距为4.78cM的区段加密图谱。用软件Winqtl cartographer2.5的单标记分析法分析,发现该区域QTL的连锁标记有11个,分别是bnlg1520、umc1525、p3864185、p3946135、bnlg1893、umc1207、umc2184、umc2077、S130、p5138120和p3762147;利用复合区间作图法分析,发现该区域QTL连锁标记有6个,分别为umc1207,umc2184,umc2077,S130和p5138120,它们被包含于单标记分析法获得的连锁标记。继后,以6个QTL连锁标记分析2个BC3回交群体中的抗、感株系,通过比较同一群体内抗病家系和感病家系供体抗病亲本导入片断的大小,拟将玉米丝黑穗病抗性基因定位在一定的区域内。根据BC3Q群体分析结果,将位于bin2.09区域的抗病QTL定位在标记bnlg1893附近,并由标记umc1525和umc1207界定到12cM的区域;根据BC3M群体的分析结果,同时比较QTL定位及BC3Q群体的基因定位结果,推测在玉米基因组bin2.09上可能存在另1个丝黑穗病抗性基因,位于标记S130和p5138120的右侧,暂时未能被明确界定。
     4.基于抗病与感病玉米自交系序列差异开发了2个STS标记。
     首先,通过分析www.maizegdb.org网站IBM2 2008 Neighbors Frame2图谱上抗玉米丝黑穗病QTL区域内(标记umc1525和umc1207之间)的标记及相关序列,发现RFLP位点mmp195e的2个相关序列AZ916344和AZ916345均为RGA序列ZmGsstuc11.12-04.4163.2的一部分。然后对ZmGsstuc11.12-04.4163.2序列中片断AZ916344和AZ916345分别设计引物AZ44和AZ45,扩增抗、感自交系齐319、Mo17和黄早四基因组DNA。分析表明,序列AZ916344在3个自交系中序列几乎一致,而序列AZ916345在自交系Mo17,齐319与黄早四中存在2处差异明显的In/Del位点。最后针对这2处In/Del位点再次设计引物MH-1和MH-2,经检测,MH-1和MH-2能在齐319、Mo17和黄早四间得到特异性、多态性扩增产物,随即开发成为2个STS标记,并进一步定位于玉米染色体bin1.09区域。
Head smut of maize(Zea mays L.) is a kind of worldwide disease and is also an important constraint in spring maize region of China.Head smut,caused by Sphacelotheca reiliana(K(u|¨)hn) Clint,is a soil-borne or seed-borne systemic disease.The fungus invades plants during emergence or at the seedlings stage through teliospores and grows systemically with the meristem.Infection becomes visible at a late stage of plant development,when tassels and ears are partially or totally replaced by sori filled with teliospores.Quantitive genetics studies have revealed that maize resistance to S.reiliana is under polygenic control and the mode of gene action is predominantly additive or dominant.Further,molecular biology techniques were applied to study inheritance of head smut.Many resistant quantitive trait lici(QTLs) had been detected in the germplasm of China and abroad,and the linkage markers had also been indentified.Moreover,some TUGs(tentative unique genes) had been identified by the methods of SSH and cDNA chip. All the results would be useful for finding resistance genes for S.reiliana,but could not meet for propose of both marker-assisted selection(MAS) and map-based cloning.
     In the dissertation,we studied head smut of maize on two subjects.One was marker developing,and the other was fine mapping the major resistant gene for S.reiliana.The main methods and results are as follows:
     1) Basing on inbred lines,a combination of BSA with AFLP method was applied to develop SCAR primers for the detection of resistance to Sporisorium reiliana in maize:
     The 10 most resistant and the 10 most susceptible inbred lines for head smut of maize were used to form the resistant and the susceptible DNA bulk,respectively.Then the two bulks were analyzed with 101 AFLP primer combinations.About 4646 bands were amplified with an average of 46 bands of each AFLP primer pairs.And 65 polymorphic fragments involving in 55 AFLP primer pairs between the resistant and the susceptible bulk were identified.Further,the 65 polymorphic bands were tested by the 20 inbred lines composed of the two bulks,andχ2 test for independence was done.There were 7 candidate fragments showing association with resistance to S.reiliana,including P54M71-148, P44M62-331,P46M37-136,P46M37-137,P44M46-147,P38M46-137 and P51M38-130. Then they were all extracted,cloned,and sequenced.P46M37-136 and P46M37-137 fragments were homologous with one nucleotide InDel and one single nucleotide transversion.Then all of 6 candidate SCAR primers were designed,including l allele-specific PCR primers(ASP).Each primer was tested by the pre-selective amplification products and genomic DNA of both the two bulks and their composed inbred lines.All the 6 candidate SCAR primers were all developed into SCAR markers.They were S126、S258、AS136/A137、S98、S131and S100.Moreover,the SCAR markers were tested by other 54 inbred lines andχ2 test for independence was done.Only 2 SCAR markers,ASP and S100,were associated with resistance to S.reilian and mapped at chromosome bin1.09 and bin3.08 in maize,respectively.
     2) Basing on two sets of BC3 progenies,a combination of BSA with AFLP method was applied to develop SCAR primers for the detection of resistance to Sporisorium reiliana in maize:
     Two sets of BC3 progenies were generated with 2 resistant inbred lines(Mo17 and Qi319) and 1 susceptible inbred line(Huangzao4) of head smut of maize.One was BC3Q, derived from the cross Qi319(donor parent,highly resistant)×Huangzao4(recurrent parent,highly susceptible),the other was BC3M,derived from the cross Mo17(donor parent,highly resistant)×Huangzao4(recurrent parent,highly susceptible).Families of BC3 progenies were evaluated for resistance to S.reiliana under artificial inoculation. Then two sets of resistant and susceptible DNA bulks were prepared respectively,with QR-bulk and QS-bulk coming from BC3Q progeny and MR-bulk and MS-bulk from BC3M progeny.The DNA bulks and corresponding parental lines were analyzed with 31 AFLP primer pairs,respectively.About 1426 bands were amplified with an average of 46 bands of each AFLP primer pairs.For BC3Q,11 polymorphic fragments involving in 8 AFLP primer pairs between QR-bulk,Qi319 and QS-bulk,Huangzao4 were identified.For BC3M,10 polymorphic bands involving in 9 AFLP primer pairs between MR-bulk,Mo17 and MS-bulk,Huangzao4 were identified.Furthermore,these 21 polymorphic bands were tested by the individuals composed of the bulks,andχ2 test for independence was done. There were 6 candidate fragments showing association with resistance to S.reiliana, including P12M48-215,P13M61-152,P39M46-137,P64M47-204,P13M49-185 and P64M47-170.Then they all were extracted,cloned,and sequenced,with 5 candidate bands except P13M49-185 were re-amplified successfully.A search for sequences homologous with the AFLP sequences was conducted in Genbank and the fragment of P64M47-204 showed significant alignments with a part of EU974082.1,a Zea mays clone 439268 mRNA sequence with unknown function.All of 7 candidate SCAR primers were designed basing on the 5 sequeces.Each primer was tested by its corresponding pre-selective amplification products and genomic DNA,both corresponding bulks and their relevant individuals.Thus,3 SCAR markers,S130、S193and S116,were developed.Moreover,the 3 SCAR markers were tested by more resistant and susceptible individuals from the corresponding BC3 progeny and 74 inbred lines,andχ2 test for independence was done respectively.Only 1 SCAR marker S130 was associated with resistance to S.reilian and mapped at chromosome bin 2.09 in maize.
     3) Mapping of the major QTL conferring resistance to Sporisorium reiliana using SSR and anchored SCAR markers in maize:
     First,a relatively fine genetic linkage map of chromosome bin 2.09 was generated by adding another 5 SSR markers and 1 SCAR marker S130,with an average distance of 4.78 cM between adjacent markers.With single marker analysis methods,all of 11 markers showed linked to the major QTL resistance to S.reiliana,including bnlg1520,umc1525, p3864185,p3946135,bnlg1893,umc1207,umc2184,umc2077,S130,p5138120 and p3762147.Also,composite interval mapping were employed,and the possible linked markers were umc1207,umc2184,umc2077,S130 and p5138120,which were lying in the linked markers determined by single marker analysis method.Then the QTL linked markers were used to analyze the most resistant and susceptible families of the two sets of BC3 progenies(BC3Q and BC3M in chapter2).Analysis of genotypes between the most resistant and susceptible families of BC3Q progeny allowed delimiting the major QTL into an interval of 12 cM,flanked by the SSR marker umc1525 and umc1207.And according to the genotype analysis for the most resistant and susceptible families of BC3M progeny,we deduced that there was another resistant gene locating at right side of S130 and p5138120 in bin 2.09 except for the one located in the interval(umc1525/umc1207) by comparing the results of QTL mapping and fine mapping resulting from BC3Q progeny.
     4) Developing STS marker basing on the polymorphic sequences between inbred lines of maize:
     First,we analyzed all the loci between umc1525 and umc1207 of IBM2 2008 Neighbors Frame2 map,which were in the resistant QTL supporting interval for the head smut of maize.Then two related GSS of RFLP locus mmp195e,AZ916344 and AZ916345, were identified.They were all a part of ZmGsstuc11-12-04.4163.2,which might snythsize proteins having a region of leucine rich repeats(LRRs).Second,two primers,AZ44 and AZ45,were designed according to AZ916344 and AZ916345 fragment basing on ZmGsstuc11-12-04.4163.2 sequence.And the corresponding sequences in Qi319,Mo17 and Huangzao4 were got by PCR method and sequenced and analyzed.The sequences of AZ916344 among Qi319,Mo17 and Huangzao4 were nearly identical,while the corresponding sequences of AZ916345 among them had two In/Del loci.At last,two primers,MH-1and MH-2,were designed according to the two In/Del loci and tested by the genomic DNA of Qi319,Mo17 and Huangzao4,respectively.Polymorphic and specific bands were observed and two STS markers were developed.Further,they were all mapped at chromosome bin1.09 in maize.
引文
1.白金铠,潘顺法,戚佩坤.高粱玉米丝黑穗菌交互接种试验.植物保护学报,1964,3(3):216
    2.白金铠,宋佐衡,陈捷等等.玉米病害的病菌变异与抗病品种选育.玉米科学,1994,1:67-72
    3.陈海梅,李林志,卫宪云等.小麦EST-SSR标记的开发、染色体定位和遗传作图.科学通报,2005,50(20):2208-2216
    4.陈立军.张家口地区玉米丝黑穗病大发生原因分析与综合防治.农业科技通讯,2008,10:97-98
    5.陈全求,詹先进,蓝家样等.EST分子标记开发研究进展.农业生物技术科学,2008,24(9):72-77
    6.陈军方,任正隆,高丽锋等.从小麦EST序列中开发新的SSR引物.2005,31(2):154-158
    7.丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6(4):464-468
    8.杜玮南,孙红霞,方福德.单核苷酸多态性的研究进展.国外医学(遗传学分册),2000(4):392-394
    9.段永钊,李兴鑫,艾方珍等.陕西省玉米丝黑穗病抗源筛选与鉴定.西北农业学报,1992,1(4):83-86
    10.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002,32-35
    11.高树仁.玉米抗丝黑穗病遗传分析及数量性状基因定位.吉林长春,吉林大学博士研究生论文,2005.
    12.高树仁,李新海,王振华等.玉米抗丝黑穗病的基因效应.作物学报,2006,32(10):1453-1457
    13.贺字典,陈捷,高增贵等.玉米丝黑穗病菌生理分化研究.植物保护学报,2006,22(7):428-430
    14.贺字典,陈捷,高增贵等.玉米丝黑穗病及病菌生理分化研究进展.玉米科学,2005,13(4):117-120,131
    15.华南农业大学,河北农业大学主编.植物病理学(第二版).北京,中国农业出版社,1985,157-160
    16.华致莆,白宝璋,赵晓军.玉米丝黑穗病生理分化的研究.吉林农业大学学报,1995,17(2):32-37
    17.吉海莲,李新海,谢传晓等.基于元分析的抗玉米丝黑穗病QTL比较定位.植物遗传资源学报,2007,8(2):132-139
    18.晋齐鸣,李建平,张秀文等.松辽平原玉米主要病虫害综合治理体系研究.玉米科学,2000,8(2):84-88
    19.晋齐鸣,骈跃斌,宋淑云等.玉米苗期病害诊断与防治技术研究.吉林农业大学学报,2004,26(4):355-359
    20.晋齐鸣,王晓鸣,王作英等.东北春玉米区玉米丝黑穗病大发生原因及对策玉米科学.2003, 11(1):86-87
    21.贾菊生,张前.玉米丝黑穗病菌冬孢子萌发条件的研究.植物保护学报,1990,17(2):109-112
    22.康绍兰,李兴红,乔秀娟等.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅰ.河北农业大学学报,1994,17(3):78-84
    23.李洪杰,李义文,张艳敏等.组织培养创造抗白粉病小麦-簇毛麦染色体易位及分子标记辅助选择.遗传学报,2000,27(7):608-613
    24.李兴红,康绍兰,李金云等.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅱ.河北农业大学学报,1995,18(1):57-61
    25.刘聪莉.鉴定玉米对丝黑穗病抗性的简易方法.莱阳农学院学报,1997,14(4):259-260
    26.刘金元,刘大钧,陈佩度等.分子标记辅助育种新尝试.与Prn2和Pm4a基因紧密连锁RFLP 标记在小麦抗白粉病育种中的应用.南京农业大学学报,1997,20(2):1-5
    27.刘锡若,薛国典.玉米品种对丝黑穗病的抗病性和幼苗诊断的研究.植物保护学报,1983,10(4):274-275
    28.刘显军,王振华,刘长华等.东北地区玉米丝黑穗病菌类型分化的初步研究.玉米科学,2008,16(6):103-107
    29.刘志勇,王晓玲.小麦抗叶锈基因Lr9、Lr24的分子标记辅助选择研究.农业生物技术学报,2000,8(1):113-116
    30.马秉元,李亚玲.玉米丝黑穗病早期特异症状.植物保护,1982,(3):11
    31.马秉元,李亚玲,段双科.玉米对丝黑穗病的抗性与遗传初步研究.中国农业科学,1983,4:12-17
    32.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析(综述).农业生物技术学报,1999,7(4):386-394
    33.Matyac CA,Kommedahl T.由丝轴黑粉菌诱导的玉米苗期褪绿斑及其在抗病性鉴定中的应用.烟台师范学院报(自然科学版),1985,3(1):70
    34.孟金陵,Sharpe A,Bowman c,et al.用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报,1996,23(4):293-306
    35.梅振邦,徐国英,王河成等.玉米对丝黑穗病的抗性遗传规律.山西农业科学,1982,11:10-13
    36.倪深.玉米抗丝黑穗病相关基因的筛选及抗病机理初探.湖北武汉,华中农业大学硕士研究生论文,2006
    37.石红良,姜艳喜,王振华等.玉米抗丝黑穗病QTL分析.作物学报,31(11),2005,1449-1454
    38.宋淑云,孙秀华,郭文广等.玉米种质资源抗丝黑穗病鉴定.吉林农业科学,2000,25(3):32-33
    39.王桂林,张树娥,崔良国等.山东省的优异玉米种质资源.作物品种资源,1992,2:15-16
    40.王金华,王铨茂.玉米丁布对玉米丝黑穗病菌抗性关系的研究.植物保护学报,1989,16(3):187-191
    41.王晓明,戴法超.玉米病虫害田间手册.北京,中国农业科技出版社,2002
    42.王新望,赖菁茹,刘广田.农艺性状优良冬小麦phlb系的创造及标记辅助选择的应用.作物学报,2000,26(3):327-332
    43.王远路.玉米丝黑穗病发病率相关因素分析和抗病资源筛选[学位论文].北京,中国农业大学,2005
    44.吴新兰,庞志超,田立民等.高粱丝黑穗菌的生理分化.植物病理学报,1982,12(1):13-18
    45.吴新兰,庞志超,田立民等.玉米丝黑穗病菌侵染条件与栽培防病措施的研究.植物保护学报,1981,8(1):41-46
    46.徐建龙,徐建龙,罗利军等.水稻单株有效穗数和每穗粒数的QTL剖析.遗传学报,2001,28(8):752-759
    47.徐秀德,赵廷昌.高粱丝黑穗菌生理小种鉴定初报.辽宁农业科学,1991,1:46-47
    48.徐秀德,董怀玉,姜玉等.高粱丝黑穗病菌种内分化的RAPD分析.菌物系统,2003,22:56-61
    49.玉米种质资源抗丝黑穗病鉴定协作组.玉米种质资源抗丝黑穗病鉴定研究.作物品种资源,1992,1:27-28
    50.袁邦前.玉米丝黑穗病的发生及防治.云南农业,2002,2:16
    51.张海燕,潘惠新,张博等.与美洲黑杨抗黑斑病基因连锁的SCAR标记的开发.南京林业大学学报(自然科学版),2007,31(1):15-18
    52.翟虎渠,王健康.应用数量遗传(第二版).北京,中国农业科学技术出版社,2007,159-160
    53.张传福,景蕊莲,张改生等.单核苷酸多态性在植物研究中的应用.植物遗传资源学报2004,5(3):304-308
    54.张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位.分子植物育种,2004,2(3):743-746
    55.张志德.玉米抗丝黑穗病性苗期鉴定方法的研究.植物保护学报,1984,11(4):283-284
    56.赵羹梅,王淑芳,刘聪莉.玉米丝黑穗病原菌侵染的一些细胞学研究.植物病理学报,1991,21:267-270
    57.赵晋锋,宋殿珍,张文忠等.玉米丝黑穗病的发生与防治及对抗病育种的一些探讨.山西农业科学,2002,30(2):60-62
    58.浙江大学.通用型分子标记开发方法及所设计的禾本科通用型标记.中国,发明专利,CN1769492,2006
    59.郑铁军,李宝英,郭玉莲.玉米丝黑穗病菌致病力分化研究.玉米科学,2006,14(3):165-166,169
    60.周晓果,张正斌.作物数量性状基因座定位及分析研究进展.西北植物学报,2005,25(3):625-630
    61.Agrama H,Houssin S,Tarek M.Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize.Molecular Genetics and Genomics,2002,267:814-819.
    62.Ali A,Baggett JR.Inheritance of resistance to head smut disease in corn.J Amer Sco Hort Sci,1990,115(4):668-672
    63. Alpert KB, Tanksley SD. High-resolution mapping and isolation of yeast artificial chromosome conting containing fw2.2: A mojor fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci (USA), 1996, 93: 15503-15507
    
    64. Al-Slhaily IA, Mankin CJ, Semeniuk G. Physiologic specialization of Sphacelotheca reiliana to sorghum and corn. Phytopathology, 1963, 53: 723-726
    
    65. Baier W, Kr(?)ger W. Sphacelotheca reiliana on maize. II-Field studies on the effect of soil conditions. South Afr J Agric Sci, 1962, 5:183-190
    
    66. Barua UM, Chalmers KJ, Hackett CA, et al. Identification of RAPD markers linked to a Rhynchosporium secalis resistance locus in barley using near-isogenic lines and bulked segregant analysis. Heredity, 1993,71: 177-184
    
    67. Bennetzen JL. Genetic fine-mapping technology. In: Haussmann HH, Geiger DE, Hess CT,Hash, et al. eds. Application of molecular markers in plant breeding. India, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 2000: 213
    
    68. Bernardo R, Bourrier M, Olivier JL. Generation means analysis of resistance to head smut in maize. Agronomie, 1992, 12: 303-306
    
    69. Berruyer R, Adreit H, Milazzo J, et al. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1. Theoretical and Applied Genetics, 2003,107:1139-1147
    
    70. Brewbaker JL, Lu XW. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (K(?)hn) Clint Maize Genetics Cooperation Newsletter, 1999, 73: 36
    
    71. Buckler ES, Gaut BS, McMullen MD. Molecular and functional diversity of maize. Curr Opin Plant Biol, 2006, 9:172-176.
    
    72. Chalmers KJ, Waugh R, Sprent JI, et al. Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity, 1992, 69:465-472
    
    73. Ching A, Caldwell KS, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC Genet, 2002, 3: 1-14
    
    74. Cynthia J, Coffman RW, Doerge, et al. Intersection tests for single marker QTL analysis can be more powerful than two marker QTL analysis. BMC Genetics, 2003,4:10
    
    75. Darvasi A,Weinreb A, Minke V, et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134:943-951
    
    76. Doi K, Izawa T, Fuse T, et al. Ehd1, a B-type response regulator in rice, confers short-day promotion to of flowering and controls FT-like gene expression independently of Hd1. Genes &Development, 2004, 18: 926-936
    
    77. Dorweiler J, Stec A, Kermicle J, et al. Tesominte glume architecture LA genetic locus control linga key step in maize evolution. Science, 1993, 262:233-235
    
    78. Dutzmann S, Duben J. Maiskopbrand zukuenftig auch in Deutschland von Bedeutung, Mais,1993,21:140-142
    79. Edwards K, John stone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res, 1991, 19(6): 1349
    
    80. Fan FJ, Fan YY, Du JH, et al. Fine Mapping of C(Chromogen for Anthocyanin)Gene in Rice.Rice Science, 2008, 15(1) :5-10
    
    81. Foster JH. Study of the etiology and inheritance of resistance to maize head smut Sphacelotheca reiliana (Kuhn) Clint. USA,Texas, PhD diss Texas A&M University, College Station, 1979
    
    82. Frederiksen RA. Head smuts of corn and sorghum. Proc Corn Sorghum Res Conf, 1977,32:89-104
    
    83. Hao ZF, Li XH, Zhang SH. Towards an expanded linkage map and exploration on co-dominant scoring of AFLPs in maize. Acta genetica Sinica, 2005,32(9): 960-968.
    
    84. Halisky PM, Smeltzer DG. Disease of corn, sorghum and sudangrass head smut established in California. California Agriculture, 1961, 1: 10-12
    
    85. Halisky PM. Prevalence and Pathogenicity of Sphacelotheca reiliana causing head smut of corn in California. Phytopathology, 1962, 52: 199-202
    
    86. Halisky PM. Head smut of sorghum, sudangrass, and corn, caused by Sphacelotheca reiliana (K(?)hn) Clint. Hilgardia, 1963, 34: 287-304
    
    87. Halisky PM. Physiologic specialization and genetics of the smut fungi III. Bot Rev, 1965, 31:114-150
    
    88. Herrera RA, Vallejo AB. Distribution of races of head smut (Sporisorium reilianum) in the northeast and southwest areas of Mexico. Sorghum Newsletter, 1986,29: 86
    
    89. Hittalmani S, Shashidhar HE, Bagali PG, et al. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002,125:207-214
    
    90. Horejsi T, Box J M, Staub J E. Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J Amer Soc Hort Sci, 1999,124(2):128-135
    
    91. Joannou YM. Degradation of diazinon by 2, 4-dihydroxy-7-meghoxy-2H-1, 4-benzoxazin-3 (4H)-one in maize. Phytochem, 1980, 19: 1607-1611
    
    92. Jackson GM, Njuguna. Combating head smut of maize caused by Sphacelotheca reiliana through resistance breeding. In: CIMMYT and KARI, eds. Proceedings of Seventh Eastern and Southern Africa Regional Maize Conference. Nairobi, Keny, 2001, 110-112
    
    93. Kruber W. Sphacelotheca reiliana on maize. I. Infection and control studies. South African J. Agr Sci, 1962, 5: 43-56
    
    94. Kojima S, Takahashi Y, Kobayashi Y, et al. Hd3, a rice ortholog of Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43(10): 1096-1105
    
    95. Kosambi DD. The estimation of map distance from recombination values. Ann Eugen, 1944, 12:172-175
    96. Lacy GH, Hirano SS, Victoria JI, et al. Inhibition of soft-rotting E winia spp strains by 2,4-dihydroxy-7-meghoxy-2H-1, 4-benzoxazin- 3(4H)-one in relation to their pathogencity on zea mays. Phytopathol, 1979,69 (7): 757-763
    
    97. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121:185-199
    
    98. Lande R, Thompson R. Efficiency of marker-assisted selection in improvement of quantitative traits. Genetics, 1990,124:743-756
    
    99. Lee M. DNA markers in plant breeding programs. Adv Agron, 1995,55:265-344
    
    100. Li WT, Zeng R Z,Zhang ZM, et al. Mapping of S-b locus for F1 pollen sterility in cultivated rice using PCR based markers. Acta Botanica Sinica, 2002,44(2):463-467
    
    101. Li XH, Gao SR, Shi HL, et al. Analysis of QTL for resistance to head smut (Sporisorium reiliana) in maize. Field Crops Research, 2008, 106(2): 148-155
    
    102. Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (K(?)hn) Clint. Maize Genetics Cooperation Newsletter, 1999, 73:36
    
    103. L(?)bberstedt T, Xia XC, Tan G, et al. QTL mapping of resistance to Sphacelotheca reiliana in maize. Theor Appl Genet, 1999, 99: 593-598
    
    104. Liibberstedt T, Melchinger AE, Klein D. Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize. Phytopathology,1998,88:1324-1329
    
    105. Martinez C, Roux C, Jauneau A, et al. Effect of water potential on the development of an haploid strain of Sporisorium reilianum f.sp. Zeae. plant and soil, 2003,251: 65-71
    
    106. Matyac CA, Kommedahl T. Occurrence of chlorotic spots on corn seedlings infected with Sphacelotheca reiliana and their use in evaluation of head smut resistance. Plant Dis, 1985,69:251-254.
    
    107. Mehta BK, Frederiksen RA, Collier J, et al. Evaluation of Physiologic Specialization in Sphacelotheca reiliana. Phytopathology, 1967, 57: 925-928
    
    108. Members of the Complex Trait Consortium. The nature and identification of quantitative trait loci: a community's view. Genetics, 4: 911-916
    
    109. Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832
    
    110. Monna L, Lin HX, Kojima S, et al. Genetic dissection of a genomic region for a quantitative trait locus Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theoretical and Applied Genetics, 2002, 104:772-778
    
    111. Murai H, Hashimoto Z, Sharma PN, et al. Construction of a high-resolution linkage map of a rice brown planthopper (Nilaparvata lugensstal) resistance gene bph2. Theoretical and Applied Genetics, 2001,103:526-532
    
    112. Olson M, Hood L, Cantor C, et al. A common language for physical mapping of the human genome. Science, 1989,245: 1434-1435
    
    113. Paran I, Michelmore RW. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet, 1993, 85:985-993
    
    114. Potter AA. Head smut of sorghum and maize. J Agr Res, 1914,2: 339-368
    
    115. Quirin EA, Ogundiwin EA, Prince JP, et al. Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto.5.2, a major QTL for resistanceto Phytophthora capsici Leon in pepper. Theor Appl Genet, 2005,110: 605-612.
    
    116. Ribaut JM, Hoisington D. Marker-assisted selection: new tools and strategies. Trends in plant science, 1998(6): 236-239
    
    117. Saghai-Maroof MA, Soliman K, Jorgensen RA, et al. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics.Proc Natl Acad Sci USA, 1984, 81:8014-8018.
    
    118. Schwartz SH, Tan BC, Gage DA, et al. Specific oxidative cleavage of carotenoids by Vp14 of maize. Science, 1997, 276:1872-1874
    
    119. Simpson WR. Head smut of corn in Idaho. Plant Dis Rep, 1966, 50: 215-217
    
    120. Stephen RW, Raymond TY, Warren RG, et al. Plasterk Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map. Nature Genetics, 2001,28: 160 - 164
    
    121. Stromberg EL, Stienstra WC, Kommedahl T, et al. Smut expression and resistance of corn to Sphacelotheca reiliana in Minnersota. Plant Dis, 1984, 68: 880-884.
    
    122. Stromberg, EL. Head smut of Maize, a new disease in Minnersota (Abstr). Phytopathology,1981,71:906
    
    123. Takahashi Y, Shomura A, Sasaki T, et al. Hd3, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the subunit of protein kinase CK2. PNAS, 2001,98(14):7922-7927
    
    124. Takeuchi Y, Lin SY, Sasaki T, et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theoretical and Applied Genetics,2003,107:1174-1180
    
    125. Tanksley SD. Introgression of genes from wild species. In: Tanksley SD and Orton TJ (Eds).Isozymes in plant genetics and breeding, Part A. Elsevier, Amsterdam, 1983, 331-337
    
    126. Tenaillon MI, Sawkins MC, Long AD, et al. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. Mays L.). Proc Natl Acad Sci USA, 2001,98:9161-9166
    
    127. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23 (21): 4407-4414
    
    128. Wang SC, Basten CJ, Zeng ZB. Program in Statistical Genetics. North Carolina Sate University,Raleigh, NC. 2003. (WinqtlCart, Version 2.0).
    
    129. Wang ZL, Wang LX, Dai JR, et al. Molecular Identification and Mapping of a Maize Gene (Rf3) in S-type CMS Using AFLP, RFLP and SCAR Techniques. 2001,.28(5): 464-470
    
    130. Wu XL, Pang ZC, Tian LM, et al. On the environmental factors affecting infection and cultural measures of controlling corn head smut (in Chinese, English abstract). Acta Phytophyl Sin,1981,8:41-46
    
    131.Xie CX, Zhang SH, Li MS et al. Inferring Genome Ancestry and Estimating Molecular Relatedness Among 187 Chinese Maize Inbred Lines. Acta Genetica Sinica.2007,34(8):738-748
    
    132. Xie CQ, Xu SZ. Efficiency of multisage marker-assisted selection in the improvement of multiple quantitative traits. Heredity, 1998, 80:489-498
    
    133. Xu ML, Huaracha E, Korban SS. Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome, 2001, 44: 63-70
    
    134. Xu ML, Melchinger AE, Lubberstedt T. Species-Specific detection of the maize pathogens Sporisorium reiliana and Ustilago maydis by dot blot hybridization and PCR-based asays. Plant Dis,1999, 83:390-395
    
    135. Yamamoto T, Kuboki Y, Lin SY, et al. Fine mapping of quanti taive trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice as single Mendelian factors. Theor Appl Genet, 1997, 97:37-44
    
    136. Yamamoto T, Lin HX, Sasaki T, et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics, 2000,154:885-891
    
    137. Yano M, Katayose Y, Ashikari M, et al. Hd6, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell,2000, 12, 2473-2484
    
    138. Yerkes WD, Niederhauser JS, Borlaug NE, et al. Some plant diseases observed in Mexico. Plant Dis Rep, 1959,43:500-503
    
    139. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European patent application publication number, EP 0534858 B2, 1993
    
    140. Zhang ZF, Wang Y, Zheng YL. AFLP and PCR-based markers linked to Rf3, a fertility restorer gene for S cytoplasmic male sterility in maize. Molecular Genetics and Genomics, 2006, 276(2):162-169
    
    141.Zeng ZB. Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci (USA), 1993, 90(23): 10972-10976
    142. Zeng ZB. Precision mapping of quantitative trait loci.Genetics, 1994, 136(4):1457-1468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700