用户名: 密码: 验证码:
Ⅰ中国对虾(Fenneropenaeus chinensis)AFLP分子标记遗传连锁图谱的构建以及相关性状的QTL定位分析 Ⅱ蓝鳃太阳鱼(Lepomis macrochirus)AFLP分子标记遗传连锁图谱的构建及性别决定机制初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以中国对虾抗白斑综合症病毒病(White Spot Syndrome Virus, WSSV)选育群体第四代为母本,野生中国对虾为父本,采用单对亲本人工精荚移植的方式产生F1代,F1代个体家系内兄妹交产生F2代为作图群体。利用含WSSV的毒饵,采用口饲法进行作图个体的抗病感染实验,以个体摄食毒饵后的存活时间作为抗病指标,同时记录个体死亡时的体长、体重等参数,作为中国对虾抗病、生长性状的数量性状位点(Quantitative Traits Locus, QTL)定位分析的性状参数。实验共获得42尾个体作为作图群体。首先利用MAPMAKER/EXP3.0遗传连锁图谱分析软件构建了三个中国对虾的扩增片段限制性长度多态性(Amplified Fragment Length Polymorphism, AFLP)分子标记遗传连锁图谱。62对AFLP选择性引物组合共产生529个分离位点,其中符合1:1孟德尔分离比例的位点共253个,利用拟测交理论这将些位点分别构建了中国对虾F1亲本雌虾、雄虾的遗传连锁图谱。符合3:1孟德尔分离比例的位点共276个,利用F2自交模型和这些位点构建了中国对虾F1亲本共同的AFLP分子标记连锁图谱。三张连锁图上分别有31、25和44个连锁群,连锁的标记数量分别为94个、81个和129个。雌虾连锁图谱长度比雄虾的稍长。雌虾最大连锁群长度为82.9cM,连锁群最大标记数为6个;雄虾最大连锁群长度为103.8cM,连锁群最大标记数为8个;中国对虾共有图谱的连锁群最大长度80.6cM,连锁群最大标记数为8个。三张图谱的分辨率为分别为2.4cM、2.4cM和2.1cM。标记间隔距离分别为12.20cM、11.45cM和11.12cM。图谱密度已经达到中等密度连锁群的要求。各标记在连锁群上的分布比较均匀,没有出现成簇分布的现象。图谱覆盖率分别达到50.21%,51.93%和48.08%。分析了作图群体选择以及相应的作图策略在中国对虾中应用的可行性。在构建获得的中国对虾三张遗传连锁图谱的基础上,利用MAPMAKER/QTL1.1软件,以区间作图法(Interval mapping,IM)对中国对虾的抗病性和生长性状,包括体长、全长、体重进行了QTL定位分析。在三张连锁图上,共获得了11个QTL位点。其中四个和中国对虾全长相关,两个和体长相关,两个和体重相关,三个和抗病性相关。四个与中国对虾全长相关的QTL位点分别分布在四个不同的连锁群上,有两个与体长相关的QTL位点连锁,一个与体重相关的QTL位点连锁,另外一个单独分布在一个连锁群上。说明中国对虾全长是由多基因控制的性状。与抗病性相关的三个QTL位点分别分布在三个不同的连锁群上,其中有两个是和体重相关的QTL位点连锁的,说明抗病性和个体体重存在一定的程度的关联并且中国对虾抗病性状也是由多基因控制或影响的。11个QTL位点中,有4个位点的加性效应值为负,其余的均为正值。而显性效应只在中国对虾通用连锁图谱中获得定位的QTL位点上具有,并且均为正值。各位点的变异解释率从23.4%到66.9%不等,对导致高变异解释率的原因进行了分析和探讨。对某些QTL位点性状值差异的亲本来源进行了分析。
     利用性别特异性基因组池(sex-specific genomic DNA pool)策略,对分别由经过表型性征和组织解剖性腺确认的24尾雄性和24尾雌性蓝鳃太阳鱼(Bluegill sunfish, Lepomis macrochirus)组成的基因组池进行了AFLP分析,64对选择性引物组合共在两个性别特异性基因组中筛选获得7个与性别相关的特异性位点,其中6个位点与雌性相关,1个与雄性相关。在随后的个体性别特异性位点的检测中,7个位点在24尾个体中的检出频率从16.67%到41.67%不等。这些标记被作为与性别相关的候选标记纳入到随后的蓝鳃太阳鱼AFLP分子标记遗传连锁图谱的构建当中。在遗传连锁图谱的构建工作中,利用连续多代隔离培养的蓝鳃太阳鱼两个地理群体的个体分别作为父本和母本,采用单对亲本交配的方法获得F1代家系,作图群体包括两个亲本以及F1代共90尾孵化30天左右的仔鱼。以拟测交理论为构图策略,构建获得了蓝鳃太阳鱼雄鱼和雌鱼的AFLP分子标记遗传连锁图谱。64对AFLP选择性引物组合共产生1:1分离标记438个,其中包括一个雌性标记和9个共显性标记,这个性别标记与前期实验中获得的7个标记中的一个雌性相关标记对应。438个标记中,222个标记来自于母本,偏分离标记6个(P<0.01),作图标记数量为216个。母本连锁图包括39个连锁群(LOD≥4.0),其中大于4个标记的连锁群为21个。定位192个连锁标记,其中包括1个雌性性别标记和4个共显性标记。母本连锁群平均连锁标记数为4.92个,最大连锁群长度为122.9cM,连锁群最大标记数量为14个,标记间平均图距为11.29cM,连锁图谱实际长度为1727.8cM,母本图谱覆盖率为64.04%。其中,母本连锁图的8号连锁群定位了1个雌性性别标记,此连锁群被认为是和蓝鳃太阳鱼性别形成相关的。在母本连锁图的5、6、8、10、11号连锁上都发现由非常明显的标记成簇分布现象,除5号连锁群外,其余连锁群上标记成簇分布在连锁群的端部位置。父本分离标记219个,偏分离标记4个(P<0.01),作图标记数量为212个。父本连锁图包括40个连锁群(LOD≥4.0),其中大于4个标记的连锁群为21个。40个连锁群包括191个分离标记,其中包括4个共显性标记。父本连锁群平均连锁标记4.77个,最大连锁群长度为345.3cM,连锁群最大标记数量为19个,标记间平均图距为10.58cM,连锁图谱实际长度为1598.2cM,父本图谱覆盖率为66.26%。父本连锁图的11、31和32号连锁群存在明显的标记成簇分布现象,分布位置集中在连锁群的端部。成簇分布的标记位于连锁群的端部位置与蓝鳃太阳鱼的染色体结构为端部或近端部着丝粒构造相一致,暗示连锁群上标记成簇分布的位置可能对应染色体的着丝粒部位,不过,需要最后确定连锁群与染色体的物理定位关系后才能下结论。实验获得的蓝鳃太阳鱼母本39个连锁群与父本40个连锁群的数量都超过了该物种单倍体24条染色体的数目,说明目前获得连锁群有一些是分布在同一条染色体上的。以后的工作需要通过增加标记数量或标记种类以达到连锁群数目和染色单体数目的一致性。母本连锁图长度稍长于父本连锁图,大约相差129cM,这与其它高等生物以及鱼类中的虹鳟和斑马鱼的规律是一致的。父本连锁图与母本连锁图最大的差别在于父本拥有一个长达345.3cM的连锁群,而母本中缺乏与此长度相近的连锁群,表明蓝鳃太阳鱼雌性和雄性在染色体组成上有较大的差异。筛选获得的7个与性别相关的标记中,有6个是雌性相关的,而只有1个是雄性相关的,暗示蓝鳃太阳鱼雌性拥有异型性染色体或者拥有雄性不具备的染色体可能性比较高,即支持蓝鳃太阳鱼的性决定模式为ZZ/ZW型或XX/XO型。根据获得的父本连锁图谱在最大连锁群上与母本有较大的差异,结合与蓝鳃太阳鱼可以进行种间杂交的绿太阳鱼的性别决定机制为XX/XO型,初步认定蓝鳃太阳鱼的性染色体组成为XX/XO型。该研究结果首次报道了蓝鳃太阳鱼的AFLP分子标记遗传连锁图谱和性别标记以及其图谱上的定位。
Amplified Fragment Length Polymorphism (AFLP) markers were used to construct the linkage map of Fenneropenaeus chinensis. We sampled maternal individual from the fourth successively selected generation of disease resistance population of F. chinensis and paternal individual from wild population, respectively. Artificial insemination was used to generate F1 family; F2 families totally 42 bodies came from sisterhood intercross between F1 families. The F2 progenies were firstly subjected to the WSSV challenge, the survival time were recorded as the index of disease resistance traits of F. chinensis, the data of its total length, body length and weight were recorded as well when the individual was found death. All the data recorded would be involved in the QTLs mapping. Sixty-two primer combinations produced 529 segregating bands; of which 253 segregate in a 1:1 model and 276 in a 3:1 model. The female and male 1:1 ratio makers were used to construct the respective linkage based on the pseudo-testcross strategy. The 3:1 ratio segregant markers were used to construct the common linkage map of F. chinensis using F2 intercross model. The female linkage map contains 94 segregating markers, which were linked in 31 linkage groups (including linkage couples), covering 51.39% of F. chinensis genome with the interval of 12.20cM. The length of maximum linkage group was 82.9 cM, the maximum number of markers in a linkage group was 6. The male linkage map contains 81 segregating markers, which were linked in 25 linkage groups, covering 50.21% of F. chinensis with the interval of 11.45cM. The length of maximum linkage group was 103.8 cM, the maximum number of markers in a linkage group was 8. The 276 markers in a 3:1 model were used to construct the common F. chinensis linkage map based on F2 intercross model strategy. The common linkage map consists of 44 linkage maps with 129 markers, covering 48.08% of F. chinensis genome with the interval of 11.12cM. The length of maximum linkage group was 80.6 cM, the maximum number of markers in a linkage group was 8. All the linked markers distributed evenly in linage groups, no cluster marker was found in any linkage group. The density and coverage of these three linkage groups showed that they matched the medium density linkage map standard. The linkage mapping strategies we applied in F. chinensis and mapping families were discussed. Based on the three linkage maps, QTLs (Quantitative Trait Loci) associated with body length, total length, weight and disease resistance were analyzed by MAPMAKER/QTL1.1 software using interval mapping (IM). There were totally 11 loci were detected on 6 linkage groups. Four of them were associated with body length, two with total length, two with weight and three with disease resistance. The four QTLs loci associated with body length distributed on four different linkage groups, two of them linked with QTLs of total length, one of them linked with QTLs of weight, and the last one distributed in a single linkage group, which suggested that the trait of total length was polygenic controlled. The three QTLs with disease resistance distributed on three different linkage groups, two of them linked with two QTLs of weight, which suggested that the individual’s disease resistance was related with the body’s weight and multi-genes controlled the disease resistance as well. Except four QTLs additive value were negative, the other seven were positive. The dominance value only owned by the QTLs that based on the common linkage groups of F. chinensis and they were all positive. The variance explained ratio of 11 QTLs was from 23.4% to 66.9%. Following with the QTLs additive and dominant values, the individual’s trait values of different genotypes were analyzed. The reasons that resulted in some very high variance explained were discussed based on the QTL mapping method, data recording and the size of mapping family.
     AFLP technique has been used in this study for detection the sex-specific markers of bluegill sunfish based on sex-type DNA pool strategy. The phenotypically female and male individuals that composed of sex-type genetic DNA pool were subjected to gonad anatomy to confirm their sexualities. Seven sex-specific markers were identified from 64 different primer combinations amplification across the female and male genomic DNA pools that composed of 24 female and male individuals, respectively. Six were female and one was male related marker. The sex-specific markers were subsequently analyzed individually: there were 16.67%-41.67% of 24 female or male individuals were detected sharing the sex-specific markers. In the linkage analysis, paternal and maternal bodies that selected from two different bluegill population that kept in South centers for several generations consisted in a single-pair parent. The single-pair parent and their 90 progenies were analyzed using as mapping family based on double-pseudo testcross strategy, sixty-four primer combinations that as same as in the sex-specific markers analysis produced totally 438 segregant loci, including 1 sex-specific and 9 co-dominant markers. In maternal linkage map, 192 markers distributed on 39 linkage groups (LOD≥4.0); There were 21 linkage groups that owned at least 4 markers, the maximum length and markers number of linkage groups were 122.9 cM and 14, respectively; the average markers number in each linkage group were 4.92, the average markers space was 11.29 cM, the genome coverage of maternal linkage map was 64.04%. In maternal linkage map, we have acquired a sex-specific linkage group 8. The cluster markers on linkage groups 5, 6, 8, 10 and 11 were tended to distribute by the end of linkage groups. For the paternal linkage map, 191 linked markers, including 4 co-dominant, distributed on 40 linkage groups (LOD≥4.0). The linkage groups that owned at least 4 markers number was 21, the average markers number of each linkage group was 4.77 in paternal linkage map, and average markers space is 10.58cM. The maximum length and markers number of linkage groups in paternal linkage map were 345.3cM and 19, respectively. The genome coverage of paternal linkage map was 66.26%. The linkage groups 11, 31 and 32 were found had cluster markers at the end of linkage groups. Bluegill sunfish karyotype showed that this kind of fish had diploid numbers of 48, consisting of telocentrics and acrocentrics with very short arms, in the linkage map of bluegill sunfish, many of the cluster AFLP markers distributed by the end of linkage groups, which were consistent with the chromosomes structure, but only the chromosomes become defined in bluegill sunfish, the locations of the cluster markers could be better defined. The maternal and paternal linkage group numbers were more than the haploid chromosomes number (2n=48) of bluegill, which suggested some linkage groups shared the same one chromosome, with supplement more AFLP markers and some other types marker, such as SSR, the number of linkage groups should match haploid chromosome number. The length of maternal linkage map was 129cM more than the paternal map, which was similar as in the other vertebrate organisms and other fishes, such as in rainbow trout and zebrafish. The maximum length of linkage groups in paternal map was 345.3 cM, we could not find any other matchable groups in maternal linkage map, which suggested that the difference between male and female chromosome of bluegill sunfish was obviously. Of all the 7 sex-specific markers, 6 were female specific and one was male, the chance that female owned heteromorphic sex chromosome or the female had one more chromosome than the male were good, namely the sex chromosome system of bluegill sunfish were ZW/WW or XX/XO type. The evidence that the paternal owned a much bigger linkage groups than the maternal, combined with the evidence that the green sunfish, its sex chromosome system was XX/XO, could hybridize with bluegill sunfish very easily, more suggested that the bluegill sunfish had XX/XO sex chromosome system. This work was the first study of linkage mapping of bluegill sunfish using AFLP markers, and it was the first time we tried to clear the sex determination mechanism from DNA markers and linkage mapping.
引文
1、Agresti, J.J., Seki, S., Cnaani, A., Poompuang, S., Hallerman, E.M., Umiel, N., Hulata, G., Gall, G.A.E., May, B., 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185, 43– 56.
    2、Alonso-Blanco C., Peeters A.J.M., Koornneef M., Lister C., Dean C., Bosch N. van den, Pot J., Kuiper M.T.R., 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombination inbred line population. The Plant Journal, 14(2), 259-271
    3、Barendse, W., Armitage, S.M., Kossarek, L.M., Shalom, A., Kirkpatrick, B.W., Ryan, A.M., Clayton, D., Li, L., Neibergs, H.L., Zhang, N., Grosse, W.M., Weiss, J., Creighton, P., McCarthy, F., Ron, M., Teale, A.J., Fries, R., McGraw, R.A., Moore, S.S., Georges, M., Soller, M., Womack, J.E., Hetzel, D.J.S., 1994. A genetic linkage map of the bovine genome. Nature Genetics, 6, 227-235
    4、Chakravarti A, Lasher K, Reefer J, 1991. A maximum likelihood for estimating genome length using genetic linkage data. Genetics 128: 175-182
    5、Cnaani A., Hallerman E.M., Ron M. Weller J.I., Indelman M., Kashi Y., Gall G.A.E., Hulata G., 2003, Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture, 223, 117-128
    6、Dib, C., Faure, S., Fizames, C., Samson, D., Drouot, N., Vignal, A., Millasseau, P., Marc, S., Hazan, J., Seboun, E., Lathrop, M., Gyapay, G., Morissette, J., Weissenbach, J., 1996. A comprehensive genetic map of the human genome based on 5,264 microsatellite. Nature, 380(6570), 152-154
    7、Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., O’Connor, T.J., Evans, C.A., DeAngelis, M.M., Levinson, D.M., Kruglyak, L., Goodman, N.m Copeland, N.G., Jenkins, N.A., Hawkins, T.L., Stein, L. Page, D.C., Lander, E.S., 1996. A comprehensive genetic map of the mouse genome. Nature, 380(6579), 149-152
    8、Ellegren, H., Chowdhary, B.P., Johansson, M., Marklund, L., Fredholm, M., Gustavsson, I., Andersson, L., 1994. A primary linkage map of the porcine genome reveals a low rate of recombination. Genetics, 137, 1089-1100
    9、Felip A., Young W.P., Wheeler P.A., Thorgaard G.H., 2005, An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). 2005, Aquaculture, 247, 35-43
    10、Grattapaglia D., Sederoff R., 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers.
    11、Hubert S., Hedgecock D., 2004, Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 168, 351-362
    12、Kai, W., Kikuchi, K., Fujita, M., Suetake, H., Fujiwara, A., Yoshiura, Y., Ototake, M., Venkatesh, B., Miyaki, K., Suzuki, Y., 2005, A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics, 171: 227-238
    13、Knapik E.W., Goodman A., Ekker M., Chevrette M., Delado J., Neuhauss S., Shimoda N., Driever W., Fishman M.C., Jacob H.J., 1998. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature genetics, 18(4), 338-343.
    14、Kocher T.D., Lee W.J., Sobolewska H., Penman D., McAndrew B., 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 148, 1225-1232
    15、Lee B.Y., Lee W.J., Streelman J.T., Carleton K.L., Howe A.E., Hulata G., Slettan A., Stern J.E., Terai Y., Kocher T.D., 2005, A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics, 170, 237-244
    16、Li L., Guo X.M., 2004, AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigas Thunberg. Marine biotechnology, 6(1), 1436-2228
    17、Li L., Xiang J.H., Liu X., Zhang Y., Dong B., Zhang X.J., 2005, Construction of AFLP-based genetic linkage map for Zhikong scallop, Chalamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245, 63-73
    18、Li Y.T., Byme K., Miggiano E., Whan V., Moore S., Keys S., Crocos P., Preston N., Lehnert S., 2003, Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture, 219, 143-156
    19、Li Y.T., Dierens L., Byrne K., Miggiano E., Lehnert S., Preston N., Lyons R., 2006, QTL detection of production traits for the Kuruma prawn Penaeus japonicus (Bate) using AFLP. Aquaculture, 258, 198-210
    20、Liu Z.J., Karsi A., Li P., Cao D.F., Dunham R., 2003, An AFLP-based genetic linkagemap of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 165, 687-694
    21、Lyttle, T.W., 1991. Segregation distorters. Annu. Rev. Genet. 25, 511-557.
    22、Moore, S.S., Whan V., Davis G.P., Byrne K., Hetzel D.J.S., Preston N., 1999, The development and application of genetic markers for the Kuruma prawn Penaeus japonicus. Aquaculture 173, 19-32
    23、Nakamura K., Ozaki A., Iwai K., Sakamoto T., Yoshizaki G., Okamoto N., 2001, Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics, 265, 687-693
    24、Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Morita, Y., Hasegawa, Kazuhito, H., Nishigaki, R., Shimada, A., Wada, H., Kusakabe, T., Suzuki, N., Kinoshita, M., Kanamori, A., Terado, T., Kimura, H., Nonaka, M., Shima, A., 1999, A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics, 154, 1773-1784
    25、Nichols K.M., Young W.P., Danzmann R.G., Robison B.D., Rexroad C., Noakes M., Phillips R.B., Bentzen P., Spies I., Knudsen K., Allendorf F.W., Cunningham B.M., Brunelli J., Zhang H., Ristow S., Drew R., Brown K.H., Wheeler P.A., Thorgaard G.H., 2003, A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). 2003, Animal Genetics, 34, 102-115
    26、Ozaki A., Sakamoto T., Nakamura K., Coimbra M.R.M., Akutsu T., Okamoto N., 2000. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics, 265, 23-31
    27、Palti Y., Shirak A., Cnaani A., Hulata G., Avtalion R.R., Ron M., 2002, Detection of genes with deleterious alleles in an inbred line of tilapia (Oreochromis aureus). Aquaculture, 206, 151-164
    28、Pe′rez F., Erazo C., Zhinaula M., Volckaert F., Caldero’n J., 2004, A sex-specific linkage map of the white shrimp Panaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture, 242, 105-118
    29、Poompuang S., Na-Nakorn U., 2004, A preliminary genetic map of walking catfish(Clarias macrocephalus). Aquaculture, 232, 195-203
    30、Robison, B.D., Wheeler, P.A., Sundln, K., Slkka, P., Thorgaard, G.H., et al., 2001, Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). The Journal of Heredity, 92(1), 16-22
    31、Rodriguez M.F., LaPatra S., Williams S., Famula T., May B., 2004, Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture, 241, 93-115
    32、Ross K.J., Fransz P., Jones G.H., 1996. A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosome research, 4(7), 507-516
    33、Sakamoto T., Danzmann R.G., Gharbi K., Gharbi K., Howard P., Ozaki A., Khoo S.K., Woram R.A., Okamoto N., Ferguson M.M., Holm L., Guyomard R., Hoyheim B., 2000, A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 155, 1331-1345
    34、Sakamoto T., Danzmann R.G., Okamoto N., Ferguson M.M., Ihssen P.E., 1999, Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss), Aquaculture, 173, 33-43
    35、Stuber C.W., Edwards M.D., Wendel J.F., 1987. Molecular marker-facilitated investigation of quantitative trait loci in maize II. Factor influencing yield and its component traits. Crop Science, 27, 639-648
    36、Vos P, Hodgers R, Bleek M, Reijians M, van de Lee Y, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414
    37、Waldbieser G.C., Bosworth B.G., Nonneman D.J., Wolters W.R., 2001, A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 158, 727-734
    38、Wang S., Bao Z.M., Pan B., Zhang L.L., Yao B., Zhang A.B., Bi K., Zhang Q.Q., 2004, AFLP linkage map of and intraspecific cross in Chlamys farreri. Journal of Shellfish Research, 23(2), 491-499
    39、Wang W.J., Kong J., Bao Z.M., Deng J.Y., Zhuang Z.M., 2001. Isozyme variation in four populations of Penaeus chinensis shrimp. Biodiversity, 9(3), 241-246
    40、Wilson K., Li Y.T., Whan V., Lehnert S., Byrne K., Moore S., Pongsomboon S., Tassanakajon A., Rosenberg G., Ballment E., Fayazi Z., Swan J., Kenway M., Benzie J., 2002, Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 204, 297-309
    41、Young, W.P., Wheeler, P.A., Coryell, V.H., Keim, P., Thorgaard, G.H., 1998, A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 148, 839-850
    42、Yu Z.N., Guo X.M., 2003, Genetic linkage map of the eastern oyster Crassostrea virginica Gmlin. The Biological Bulletion, 204(3), 327-338
    43、Zhao-Bang Zeng. 1994, Precision mapping of quantitative trait loci. Genetics, 136, 1457-1468
    44、Zimmerman A.M., Wheeler P.A., Ristow S.S., Thorgaard G.H., 2005, Composite interval mapping reveals three QTL associated with pyloric cacea number in rainbow trout, Oncorhynchus mykiss, Aquaculture, 2005, 247, 85-95
    45、包振民,张全启,王海,高洁,戴继勋. 1993.中国对虾三倍体的诱导研究II.细胞松弛素B处理.海洋学报,15(3),101-105
    46、岑丰. 1993.我国水产养殖业的回顾与展望.现代渔业信息,8(1),2-6
    47、邓灯,张庆文,王伟继,刘萍,孟宪红,孔杰,孔晓谕,2005,中国对虾几个产卵场群体携带白斑综合症病毒状况调查。水产学报,29(1),74-78
    48、邓景耀,庄志猛. 2001.渤海对虾补充量变动原因的分析及对策研究.中国水产科学,7(4),125-128
    49、何建国,周化民,姚伯,1999,白斑综合症杆状病毒的感染途径和宿主种类。中山大学学报(自然科学版),38(2),65-69
    50、李健,刘萍,何玉英,宋全山,牟乃海,王清印。2005,中国对虾快速生长新品种“黄海1号”的人工选育.水产学报,29(1):1-5
    51、李杰勤,张启军,叶少平,赵兵,梁永书,彭勇,吴发强,王世全,李平。2005,四种不同QTL作图方法的比较研究.作物学报,31(11):1473-1477
    52、李莉,郭希明,2003,利用RAPD和AFLP标记初步构建太平洋牡蛎的遗传连锁图谱。海洋与湖沼,34(5),541-551
    53、林谦,毛孝强,杨德,张雪梅。2004,QTL作图主要统计方法及主要作图群体.云南农业大学学报. 19(2):121-127
    54、刘峰,谢新民,郑艳红。2006,罗非鱼优良品系——吉罗罗非鱼的育成始末.水产科技情报,33(1):8-12
    55、刘仁虎,孟金陵,2003. MapDraw:在Excel中绘制遗传连锁图的宏.遗传25(3): 317-321
    56、刘志毅,相建海,周国瑛,龚祖埙. 2000.用基因枪将外源DNA导入中国对虾.科学通报,45(23),2539-2544
    57、宋晓玲,黄倢,王崇明,1996.皮下及造血组织坏死杆状病毒对中国对虾亲虾的人工感染。水产学报,20(4),374-378
    58、孙昭宁,刘萍,李健,孟宪红,孔杰,张秀梅. 2006. RAPD和SSR两种标记构建的中国对虾遗传连锁图谱.动物学研究,27(3),317-324
    59、王清印,著. 2007.海水养殖生物的细胞工程育种.海洋出版社,3-18
    60、王伟继,高焕,孔杰,王清印. 2005.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异.高技术通讯,15(9),81-86
    61、王伟继,孔杰,董世瑞,栾生,王清印. 2006.中国明对虾AFLP分子标记遗传连锁图谱的构建. 2006,动物学报,52(3),575-584
    62、相建海,1988.中国对虾染色体的研究。海洋与湖沼,19(3),205-209
    63、相建海,周令华,刘瑞玉,朱谨钊,李富华,李笑虹,王洪发,刘旭东. 1992.中国对虾(Penaeus chinensis)四倍体诱导.海洋科学,4,55-61
    64、徐云碧1994. QTL作图效率的影响因素——群体大小.浙江农业大学学报,20(6),573-578
    65、尹佟明,黄敏仁,王明庥,朱立煌,何平,翟文学,1999.利用RAPD标记构建响叶杨和银白杨分子标记连锁图谱.植物学报,1999,41(9),956-961
    66、岳志芹,王伟继,孔杰,戴继勋,王清印2004,AFLP分子标记构建中国对虾遗传连锁图谱的初步研究。高技术通讯,5,88-93
    67、张乃禹,1985.中国对虾生长的数理分析.海洋科学,9(4),1-7
    68、张晓军,余黎明,李富华,相建海. 2006. EGFP基因在中国明对虾原代培养细胞中的导入和表达.中国生物工程杂志,26(2),38-43
    69、张新叶,尹佟明,诸葛强,黄敏仁,朱立煌,翟文学,钨荣领,王明庥,2000.利用RAPD标记构建美洲白杨×欧美杨分子标记连锁图谱.遗传,22(4),209-213
    1、Voorrips R.E., Jogerius M.C., Kanne H.J., 1997. Mapping of two genes for resistance to clubroot (Plasmodiphora brassicas) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet. 94, 75-82
    2、Tan Y.D., Wan C., Zhu Y., Lu C., Xiang Z., 2001. An amplified fragment length polymorphism map of the silkworm. Genetics 157, 1277-1284
    3、Allendorf F.W., Gelman W.A., Thorgaard G.H., 1994. Sex linkage of two enzyme loci in Oncorhynchus mykiss (rainbow trout). Heredity 72, 498-507
    4、Alonso-Blanco C., Peeters A.J.M., Koornneef M., Lister C., Dean C., Bosch N. van den, Pot J., Kuiper M.T.R., 1998. Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombination inbred line population. The Plant Journal, 14(2), 259-271
    5、Abucay J.S., Mair G.C., Skibinski D.O.F., Beardmore J.A., 1999. Environmental sex determination: the effect of temperature and salinity on sex ratio in Oreochromis niloticus L. Aquaculture 173, 219-234
    6、Aday D.D., Philipp D.P., Wahl D.H., 2006. Sex-specific life history patterns in bluegill (Lepomis macrochirus) interacting mechanisms influence individual body size. Oecologia, 147, 31-38
    7、Agresti, J.J., Seki, S., Cnaani, A., Poompuang, S., Hallerman, E.M., Umiel, N., Hulata, G., Gall, G.A.E., May, B., 2000. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture 185, 43– 56.
    8、Baras E., Prignon C., Gohoungo G., Melard C., 2000. Phenotypic sex differentiation of blue tilapia under constant and fluctuating thermal regimes and its adaptive and evolutionary implications. Journal of Fish Biology, 57, 210-223
    9、Baroiller J., Chourrout D., Fostier A., Jalabert B., 1995. Temperature and sex chromosomes govern sex ratios of the mouthbrooding cichlid fish Oreochromsi niloticus. Journal of Experimental Zoology, 273, 216-223
    10、Baroiller J.F., Nakayama I., Foresti F., Chourrout D., 1996. Sex determination studies in two species of teleost fish, Oreochromis niloticus and Leporinus elongatus. Zoological Studies, 35, 279-285
    11、Barwick D.H., 1984. Role of fish distribution on estimates of standing crop in a cooling reservoir. North American Journal of Fisheries Management, 4, 308-313
    12、Blazquez M., Zanuy S., Carillo M., Piferrer F., 1998b. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp> Zool. 281, 207-216
    13、Carrasco, L.A.P., Penman D.J., Bromage, N., 1999. Evidence for the presence of sex chromosomes in Nile tilapia (Oreochromis niloticus) form synaptonemal complex analysis of XX, XY, and YY genotypes. Aquaculture, 173, 207-218
    14、Chang X.T., Kobayashi T., Todo T., Ikeuchi T., Yoshiura Y., Kajiura-Kobayashi H., Morrey C., Nagahama Y., 1999b. Molecular cloning of estrogen receptors alpha and beta in the ovary of a teleost fish, the tilapia (Oreochromis niloticus). Zool. Sci. 16, 653-658
    15、Chistiakov D.A., Hellemans B., Haley C.S., Law A.S., Tsigenopoulos C.S., Kotoulas G., Bertotto D., Libertini A., Volckaert F.A.M., 2005. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics, 170, 1821-1826
    16、Cnaani A., Hallerman E.M., Ron M. Weller J.I., Indelman M., Kashi Y., Gall G.A.E., Hulata G., 2003, Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture, 223, 117-128
    17、Coimbra M.R.M., Kobayashi K., Koretsugu S., Hasegawa O., Ohara E., Ozaki A., Sakamoto T., Naurse K., Okamoto N., 2005. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture 220, 203-218
    18、Colbourne J.K., Neff B.D., Wright J.M., Gross M.R., 1996. DNA fingerprinting of bluegill sunfish (Lepomis macrochirus) using (GT)n microsatellites and its potential for assessment of mating success. Can. J. Fish. Aquat. Sci. 53, 342-349
    19、Cole K.S., Shapiro D.Y., 1995. Social facilitation and sensory mediation of adult sex change in a cryptic, benthic marine goby. J. Exp. Mar. Biol. Ecol. 186, 65-75
    20、Conover D.O., Fleisher M.N., 1986. Temperature-sensitive period of sex determination in the Atlantic silverside, Menidia menidai. Can. J. Fish. Aquat. Sci. 43, 514-520
    21、Conover D.O., Heins S.W., 1987. Adaptive variation in environment and genetic sex determination in a fish. Science. 213, 577-579
    22、Craig J.K., Foote C.J., Wood C.C., 1996. Evidence for temperature-dependent sex determination in sockeye salmon (Oncorhynchus nerka). Can. J. Fish.Aquat. Sci. 53, 141-147
    23、D’Cotta H., Fostier A., Guiquen Y., Goveoroun M/, Baroiller J.F., 2000. Search for genes involved in the temperature-induced gonadal sex differentiation in the tilapia, Oreochromis niloticus. Journal of Experimental Zoology, 290, 574-585
    24、Desprez D., Melard C., 1998. Effect of ambient water temperature on sex determination in the blue tilapia Oreochromis aureus. Aquaculture, 162, 79-84
    25、Devlin R.H., Biagi C.A., Smailus D.E., 2001. Genetic mapping of Y-chromosomal DNA markers in Pacific salmon. Genetica, 111, 43-58
    26、Devlin R.H., Nagahama Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191-364
    27、Dominey W.J., 1980. Female mimicry in male bluegill sunfish—a genetic polymorphism. Nature, 284, 546-548
    28、Ezaz M.T., Harvey S.C., Noonphakdee C., Teale A.J., McAndrew B.J., Penman D.J., 2004. Isolation and physical mapping of sex-linked AFLP markers in Nile tilapia (Oreochromis niloticus L.)
    29、Felip A., Young W.P., Wheeler P.A., Thorgaard G.H., 2005. An AFLP-based approach for the identification of sex-linked markers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 247, 35-43
    30、Fitzpatrick M.S., Gale M.L., Schreck C.B., 1994. Binding characteristics of an androgen receptor in the ovaries of coho salmon, Oncorhynchus kisutch. Gen, Comp. Endocrinol. 95, 399-408
    31、Fuller P.L., Nico L.G., Williams J.D., 1999. Non-indigenous fishes introduced into inland waters of the United States. Special publication 27, American Fisheries Society, Bethesda, Maryland.
    32、Gates M.A., Kim L., Egan E.S., Cardozo T., Sirotkin H.I., Dougan S.T., Lashkari D., Abagyan R., Schier S.F., Talbot W.S., 1999. A genetic linkage map for zebrafish: comparative analysis and location of genes and expressed sequences. Genome Research 9,334-347
    33、Godwin J., 1994a. Behavioural aspects of protandrous sex change in the anemonefish, Amphiprion melanopus, and endocrine correlates. Animal Behav. 48, 551-567
    34、Goto R., Kayaba T., Adachi S., Yamauchi K., 2000a. Effects of temperature on sex determination in marbled sole Limanda yokohamae. Fish. Sci. 66, 400-402
    35、Griffiths R., Orr K.J., Adam A., Barber I., 2000. DNA sex identification in the three-spined stickleback. Journal of fish biology, 57, 1331-1334
    36、Hashagen KA Jr., 1973. Population structure changes and yields of fishes during the initial eight years of impoundment of a warm-water reservoir. California Fish and Game, 59, 221-244
    37、Heiligenberg W., 1965. Color polymorphism in the males of an African cichlid fish. Journal of Zoology, 146, 95-97
    38、Hunter G.A., Donaldson E.M., 1983. Hormonal sex control and its application to fish culture. Fish Physiol. 9, 223-303
    39、Iturra P., Bagley M., Vergara N., Imbert P., Medrano J.F., 2001. Development and characterization of DNA sequence OmyP9 associated with sex chromosomes in rainbow trout. Heredity, 86, 412-419
    40、Iturra P., Lam N., de la Fuente M., Vergara N., Medrano J.F., 2001. Characterization of sex chromosomes in rainbow trout and coho salmon using fluorescence in situ hybridization (FISH). Genetica, 111, 125-131
    41、James H.T., Carl D.W., 1994. Effects of stocking density and dietary protein on green sunfish (Lepomis cyanellus)×male sunfish (L. macrochirus) hybrids overwintered in ponds. Aquaculture, 113, 83-89
    42、James H.T., Carl D.W., Julia A.C., Martin W.B., 1993. Pond culture of female green sunfish (Lepomis cyanellus)×male sunfish (L. macrochirus) hybrids stocked at two sizes and densities. Aquaculture, 126, 305-313
    43、Kai, W., Kikuchi, K., Fujita, M., Suetake, H., Fujiwara, A., Yoshiura, Y., Ototake, M., Venkatesh, B., Miyaki, K., Suzuki, Y., 2005, A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics, 171: 227-238
    44、Kawamura K., Yonekura R., Katano O., Taniguchi Y., Saitoh K., 2006. Origin anddispersal of bluegill sunfish, Lepomis macrochirus, in Japan and Korea. Molecular Ecology, 15, 613-621
    45、Kelly P.D., Chu F., Woods L.G., Ngo-Hazelett P., Cardozo T., Huang H., Kimm F., Liao L., Yan Y.L., Zhou Y.Y., Johnson S.L., Ruben A., Schier A.F., Postlethwait J.H., Talbot W.S., 2000. Genetic linkage mapping of zebrafish genes and ESTs. Genome Research 10, 558-567
    46、Kime D.E., Hyder M., 1983. The effect of temperature and gonadotropin on testicular steroidogenesis in Sarotherodon (tilapia) mossambicus in vitro. Gen. Comp. Endocrinol. 50, 105-115
    47、Kime D.E., Manning N.J., 1986. Maturational and temperature effects on steroid hormone production by testes of the carp, Cyprinus carpio. Aquaculture 54, 44-55
    48、Kocher T.D., Lee W.J., Sobolewska H., Penman D., McAndrew B., 1998. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics, 148, 1225-1232
    49、Lee B.Y., Hulata G., Kocher T.D., 2004. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity, 92, 543-549
    50、Lee B.Y., Lee W.J., Streelman J.T., Carleton K.L., Howe A.E., Hulata G., Slettan A., Stern J.E., Terai Y., Kocher T.D., 2005, A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics, 170, 237-244
    51、Lee B.Y., Penman D.J., Kocher T.D., 2003. Identification of a sex-determining region in Nile tilapia (Oreochromis niloticus) using bulked segregant analysis. Animal genetics, 34, 379-383
    52、Liu Z.J., Karsi A., Li P., Cao D.F., Dunham R., 2003, An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 165, 687-694
    53、Manning N.J., Kime D.E., 1984. Temperature regulation of ovarian steroid production in the common carp, Cyprinus carpio L., in vivo and in vitro. Gen. Comp. Endocrinol. 57, 377-382
    54、Manning N.J., Kime D.E., 1985, The effect of temperature on testicular steroid production in the rainbow trout, Salmo gairdneri, in vitro and in vivo. Gen. Comp. Endocrinol. 57, 377-382
    55、Marchand O., Govoroun M., D’Cotta H., McMeel O., Lareyre J., Bernot A., Laudet V., Guiguen Y., 2002. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss. Biochimica et biophysica Acta, 1493, 180-187
    56、Matsuda M., Nagahama Y., Shinomiya A., Sato T., Matsuda C., Kobayashi T., Morrey C.E., Shibata N., Asakawa S., Shimizu N., Hori H., Hamaguchi S., Sakaizumi M., 2002. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 417, 559-563
    57、Nakamura K., Ozaki A., Iwai K., Sakamoto T., Yoshizaki G., Okamoto N., 2001, Genetic mapping of the dominant albino locus in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics, 265, 687-693
    58、Nakamura Y. Kobayashi T., Chang X.T., Nagahama Y., 1998. Gonadal sex differentiation in teleost fish. J. Exp. Biol. 281, 362-372
    59、Naruse, K., Fukamachi, S., Mitani, H., Kondo, M., Matsuoka, T., Kondo, S., Hanamura, N., Morita, Y., Hasegawa, Kazuhito, H., Nishigaki, R., Shimada, A., Wada, H., Kusakabe, T., Suzuki, N., Kinoshita, M., Kanamori, A., Terado, T., Kimura, H., Nonaka, M., Shima, A., 1999, A detailed linkage map of medaka, Oryzias latipes: comparative genomics and genome evolution. Genetics, 154, 1773-1784
    60、Neff B.D., 2001. Genetic paternity analysis and breeding success in bluegill sunfish (Lepomis macrochirus). Journal of heredity, 92, 111-119
    61、Ning Y., Liu X.D., Wang Z.Y., Guo W., Li Y.Y., Xie F.J., 2007. A genetic linkage map of large yellow croaker Pseudosciaena crocea. Aquaculture 264, 16-26
    62、Ohara E., Nishimura T., Nagakura Y., Sakamoto T., Mushiake K., Okamoto N., 2005. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi). Aquaculture 244, 41-48
    63、Oldfield R.G., 2005. Genetic, abiotic and social influences on sex differentiation in cichlid fishes and the evolution of sequential hermaphroditism. Fish and fisheries, 6, 93-110
    64、Ozaki A., Sakamoto T., Nakamura K., Coimbra M.R.M., Akutsu T., Okamoto N., 2000. Quantitative trait loci (QTLs) associated with resistance/susceptibility to infectious pancreatic necrosis virus (IPNV) in rainbow trout (Oncorhynchus mykiss). Molecular Genetics and Genomics, 265, 23-31
    65、Pandian T.J., Sheela S.G., 1995. Hormonal induction of sex reversal in fish. Aquaculture 138, 1-22
    66、Patino R., Davis K.B., Schoore J.E., Uguz C., Struessmann C.A., Parker N.C., Simco B.A., Goudie C.A., 1996. Sex differentiation of channel catfish gonads: normal development and effects of temperature. J. Exp. Zool. 276, 209-218
    67、Pavlidis M., Koumoundouros G., Sterioti A., Somarakis S., Divanach P., Kentouri M., 2000. Evidence of temperature-dependent sex determination in the Euopean sea bass (Dicnetrarchus labras L.). J. Exp. Zool. 287, 225-232
    68、Perry G.M.L., Ferguson M.M., Sakamoto T., Danzmann R.G., 2005. Sex-linked quantitative trait loci for thermotolerance and length in the rainbow trout. Journal of heredity, 96(2), 97-107
    69、Philipp D.P., Gross M.R., 1994. Genetic evidence of cuckoldry in bluegill Lepomis macrochirus. Mol. Ecol. 3, 563-569
    70、Piferre F., 2001. Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197, 229-281
    71、Poompuang S., Na-Nakorn U., 2004. A preliminary genetic map of walking catfish (Clarias macrocephalus). Aquaculture, 232, 195-203
    72、Quinitio G.F., Caberoy N.B., Reyes Jr.,D.M., 1997. Induction of sex change in female Epinephelus coioides by social control. Isr. J. Aquacult. 49, 77-83
    73、Roberts, F.J., 1964. A chromosome study of twenty species of Centrarchidae. J. Morph. 115, 401-408.
    74、Robison, B.D., Wheeler, P.A., Sundln, K., Slkka, P., Thorgaard, G.H., et al., 2001, Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). The Journal of Heredity, 92(1), 16-22
    75、Rodriguez M.F., LaPatra S., Williams S., Famula T., May B., 2004, Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture, 241, 93-115
    76、Rubin D.A., 1985. Effect of pH on sex ratio in cichlids and a poeciliid (Teleostei). Copeia, 233-235
    77、Sakamoto T., Danzmann R.G., Gharbi K., Gharbi K., Howard P., Ozaki A., Khoo S.K.,Woram R.A., Okamoto N., Ferguson M.M., Holm L., Guyomard R., Hoyheim B., 2000, A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 155, 1331-1345
    78、Shirak A., Palti Y., Cnaani A., Korol A, Hulata G., Ron M., Avtalion R.R., 2002. Association between loci with deleterious alleles and distorted sex ratios in an inbred line of tilapia (Oreochromis aureus). The Journal of Heredity 93(4), 270-276
    79、Sun X.W., Liang L.Q., 2004. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 238, 165-172
    80、Tabata K., 1995. Reduction of female proportion in lower growing fish separated from normal and feminized seedlings of hirame Paralichthys olivaceus. Fish. Sci. 61, 199-201
    81、Thompson K.W., 1976. Some aspects of chromosomal evolution of the Cichlidae (Teleostei: Perciformes) with emphasis on neotropical forms. PhD thesis, Unviersity of Texas, Austin, TX,132pp
    82、Thorgaard G.H, 1977. Heteromorphic sex chromosomes in male rainbow trout. Science, 196(4292), 900-902
    83、Vos P, Hodgers R, Bleek M, Reijians M, van de Lee Y, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23: 4407-4414
    84、Waldbieser G.C., Bosworth B.G., Nonneman D.J., Wolters W.R., 2001, A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 158, 727-734
    85、Wang L.H., Tsai C.L., 2000. Effects of temperature on the deformity and sex differentiation of tilapia, Orecochromis mossambicus. Journal of Experimental Zoology, 286, 534-537
    86、Warner R.R., 1975. The adaptive significance of sequential hermaphroditism in animals. The American naturalist, 109, 61-82
    87、Warner R.R., Swearer S.E., 1991. Social control of sex change in the bluehead wrasse, Thalassonma bifasciatum (Pisces: Labridae). Biol. Bull. 181, 199-204
    88、Yamamoto E., 1999. Studies on sex-manipulation and production of cloned population in hirame, Paralichthys olivaceus (Temminck & Schlegel). Aquaculture 173, 235-246
    89、Yamazaki F., 1983b. Sex control and manipulation in fish. Aquaculture 33, 329-354
    90、Young, W.P., Wheeler, P.A., Coryell, V.H., Keim, P., Thorgaard, G.H., 1998, A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 148, 839-850
    91、Zhang J.Z., 2004. Evolution of DMY, a newly emergent male sex-determination gene of medaka fish. Genetics, 166,1887-1895
    92、Zimmerman A.M., Wheeler P.A., Ristow S.S., Thorgaard G.H., 2005, Composite interval mapping reveals three QTL associated with pyloric cacea number in rainbow trout, Oncorhynchus mykiss, Aquaculture, 2005, 247, 85-95
    93、Li L., Xiang J.H., Liu X., Zhang Y., Dong B., Zhang X.J., 2005, Construction of AFLP-based genetic linkage map for Zhikong scallop, Chalamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 245, 63-73
    94、Pe′rez F., Erazo C., Zhinaula M., Volckaert F., Caldero’n J., 2004, A sex-specific linkage map of the white shrimp Panaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture, 242, 105-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700