用户名: 密码: 验证码:
中国近海大气波导的统计特征分析及演变机理的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气波导对雷达探测和无线电通讯有重要影响,是世界各国国防关注的热点之一。近年来,我国对大气波导的关注和投入与日俱增。然而,广阔海洋上观测数据严重缺乏与长期连续的大范围观测难以实施等现状,严重制约了大气波导的理论研究。现有针对我国近海大气波导分布特征的统计研究由于时间和空间分辨率较低,与实际应用还存在较大差距。对于大气波导的演变机理,国内研究主要从电波传播理论分析和天气形势诊断角度进行研究,而对大气波导的热力和动力特征演变机理的深入研究相当少。随着大气数值模式的快速发展与广泛应用,高时空分辨率的数值模拟已逐渐成为研究大气波导的重要手段。本文旨在利用大气再分析数据与大气数值模拟结果,统计分析中国近海大气波导的发生规律和分布特征,并在此基础上借助数值模拟详细研究典型天气过程中大气波导的演变机理。
     本文首先利用2006-2007年NCEP-FNL大气再分析数据对中国近海大气波导的时空分布特征进行了统计分析,探讨了其气候学成因,对我国近海大气波导特征有了较为全面的了解;接着基于大气模式MM5,对2007年全年中国近海大气波导进行了高时空分辨率的数值模拟,根据模拟结果,采用经验正交函数(EOF)分解方法研究了影响我国东部局部海域低空波导形成的天气学特征;同时还利用模拟结果进行了蒸发波导的直接诊断,分析了蒸发波导的季节变化与海洋环流和海面气象条件的相关关系;然后,利用MM5模拟研究了一次黄海海雾过程中大气波导的发生规律;之后,选用比MM5更先进的WRF模式及其三维变分系统(3DVAR),利用尽可能丰富的特性层探空观测数据和卫星遥感数据,进行了一系列的数据同化对比试验,找到了对于大气波导模拟最佳的同化方案,在此基础之上模拟并研究了我国东部和东南沿海海陆风过程中大气波导的演变机理;论文最后讨论了各种大气数值模式在大气波导研究中的优势,对大气波导问题进行了展望。
     借鉴气象上成熟的研究方法,本文对于大气波导的研究手段有所创新:(1)将EOF方法引入大气波导研究中。本文中依据大气数值模拟结果确定东南海域的低空波导样本,利用EOF方法找出有利于该局部海域波导产生的主要天气形势。此方法可有效应用于其他局部海域。(2)利用成熟的中尺度大气模式,通过合理精细化近海面垂直分层,直接进行蒸发波导的模拟,而不必依赖于蒸发波导模型,避免了对于气象要素输入的敏感性和局地经验参数选择的局限性。
     本文的主要结论有:(1)中国近海大气波导出现概率及波导类型的变化与东亚季风活动紧密关联,季风是其气候学成因;夏季时渤、黄、东海沿岸海域大气波导明显增多,与海陆风局地环流有关。(2)对于中国东部局部海域,当位于冷高压偏南侧、或热带低压的西北侧、或南部高压与北部低压之间时,依次对应着有利于产生低空大气波导的三种主要天气形势:第一种形势(约占41%)下的波导高度较高(约1300-1500m),第二种形势(约占7%)下的波导强度较大(约17M),它们的共同点是辐散下沉形成稳定逆温层且大气低层较强的水汽平流造成较大的水汽垂直梯度;第三种形势(约占4%)下,平流过程是形成大气波导的主要原因。(3)蒸发波导的空间分布受中国近海海洋环流的强烈影响,存在一个与黑潮区域相一致的带状波导高出现概率区域,台湾暖流、黄海暖流和对马暖流使得在某些季节相应海域蒸发波导出现概率高于其周围海域。(4)大气波导与海雾过程有着紧密联系,对于黄海平流海雾,雾顶水汽垂直梯度可达到50%/100m,而导致大气波导发生在雾顶100~200m的高度内;同时雾体的辐射冷却作用使大气层结稳定度增强,波导层强增大;大气波导比海雾对水汽条件更敏感,一旦发生水汽的垂直混合便迅速消失。(5)受海陆风影响,我国东部和东南沿海大气波导地出现具有显著的日变化规律;海风时,陆地干空气上升并在海上下沉,与低层的潮湿空气形成强烈的水汽梯度,同时空气被压缩增温,形成热内边界层,大气波导就发生在其中;陆风时,海上水汽垂直混合,波导消失,在有地形作用下形成的背风波时,这个过程更加迅速。
The research of atmospheric ducts, a world focus of national defense, has a significant influence on radar detections and radio communications. China has paid more attention to the issue of atmospheric ducts in recent years. However, the research of ducts is restricted by lack of observations over vast oceans. There is a gap to practical guiding for the low spatial-temporal resolution of statistics. For mechanisms of ducts, currently, local researchers mainly focus on the theories of radio propagation and the weather situation diagnosis, but rarely on the thermodynamic and dynamic mechanisms of ducts. Fortunately, high-resolution numerical models offer an alternative way of gaining insight into ducts. In this thesis, based on the reanalysis data and numerical simulation results, the distribution features and occurrence frequency of atmospheric ducts over China Seas are statistically analyzed, and the mechanisms of ducts evolution during some typical synoptic processes are also studied by numerical models.
     First of all, to get an overall understanding, NCEP-FNL reanalysis data is used in statistic analysis of atmospheric ducts and its climate genesis over China Seas; second, meso-scale atmospheric model MM5 with a very high vertical resolution provides an annual variation of simulated ducts. According to the simulation results, the main weather types which are favorable for ducts over a regional sea at east are studied in details using empirical orthogonal function (EOF) decomposition; meanwhile, MM5 results are used to diagnose evaporation duct directly, and the relationship between the seasonal distributions and marine conditions, including ocean oceanic circulations and atmospheric conditions near the sea surface; third, the association of ducts with sea fog over Yellow Sea is analyzed in a case study; fourth, WRF model with its 3DVAR module is chosen for data assimilation tests and development mechanism research of ducts in a sea-land breeze circulation; at last, the advantages of various numerical models are discussed, and some issues of atmospheric ducts are prospected.
     Referring to methods in meteorology, some ideas for duct research are introduced: (1) EOF for ducts. Based on simulation results, EOF is an effective approach to study synoptic features of atmospheric ducts over a regional sea. (2) Meso-scale model can be used to simulate evaporation duct by refining model vertical levels reasonably, but not depend on evaporation duct model.
     The results are summarized as follows:(1) there exists a close relationship between the variance of appearance probability and types of the ducts and eastern Asia monsoon activities; coastal zones along the Bohai Sea, the Yellow Sea and the East China Sea have a distinct high occurrence probability during summer. (2)Three top weather situations are favorable for duct occurrence of the regional sea at east: southern to a cold anticyclone, north-western to a tropical low, and between a northern low and a southern high, respectively. In the first situation (accounts for 41%) duct height is relatively high (1300~1600m), and duct strength is much intense (17M) in the second (accounts for 7%). The similarity of these two types is that air divergence and subsidence results in inversion, and strong water vapor advection causes large vertical humidity gradient in lower atmosphere. However, in the third situation (accounts for 4%) advection plays an important role. (3) There obviously exists a belt-region with high evaporation duct occurrence(EDO) along the Kuroshio, and EDO is also relatively higher in some seasons near the regions of Taiwan warm current, the Yellow sea warm current and the Tsushima Warm Current. (4)Ducts occur at the top of sea fog with a height of 100-200m,where relative humidity gradient can be up to 50%/100m; due to the long wave radiation cooling in sea fog, more stable the atmospheric layer is, more intense the ducts are; ducts have a much more rapid response to humidity gradient than sea fogs do. (5) Daily variations of duct occurrences is related to the sea-land breeze in east and southeast coast; sea wind leads to a thermal internal boundary layer where ducts appear in when dry air raising over land and subsidence over sea. The air near sea surface is warming caused by compression and has a huge humidity gradient with upper air. Vertical mixing intense when land air flow over sea and the humidity gradient reduces, then the ducts disappear. This process can be accelerated by lee waves.
引文
陈莉,高山红,康士峰,张玉生,吴增茂.中国近海大气波导的时空特征分析.电波科学学报,2009,24(4):702-708
    陈莉,高山红,康士峰,张玉生,吴增茂.中国近海局部海域低空大气波导的天气学特征分析.电子学报,2010,待刊
    陈绍鑫.近海海面上晴空回波的雷达观测.山东海洋学院学报,1983,13(2):107-112
    陈业国,何冬燕.WRF模式同化系统在“碧利斯”台风暴雨数值模拟中的应用.海洋预报,2009,26(1):62-69
    成印河,何宜军,赵振维.利用AMSR-E卫星数据反演蒸发波导高度的BP神经网络方法.海洋技术,2008,27(4):63-67
    戴福山,李群,董双林,等.大气波导及其军事应用.北京:解放军出版社,2002
    丁飞,察豪,林伟,等.区域海面蒸发波导观测试验方案设计,数采与监测,2006,22(41):144-146
    高倩.澳开发可预测大气波导现象的软件系统.飞航导弹,1999,29(12):59
    高山红,齐伊玲,张守宝,傅刚,2010a:利用循环3DVAR改进黄海海雾数值模拟初始场ⅠWRF数值试验.中国海洋大学学报.待刊.
    高山红,齐伊玲,张守宝,傅刚,2010b:利用循环3DVAR改进黄海海雾数值模拟初始场Ⅱ:RAMS数值试验.中国海洋大学学报.待刊.
    郭铁宝.由海面蒸发波导预报平流海雾的方法.海洋预报,2004,21(4):40-47
    何彩芬,黄旋旋,丁烨毅,等.宁波非气象雷达回波的人工智能识别及滤波.应用气象学报,2007,18(6):856-863
    胡基福,气象统计原理与方法.青岛:青岛海洋大学出版社,1996
    胡晓华,费建芳,张翔,等.一次大气波导过程的数值模拟.气象科学,2008,28(3):294-300
    焦林,张永刚,张宇.利用卫星数据反演海洋蒸发波导的研究.海洋技术,2007,26(4):58-61
    焦林,张永刚.大气波导条件下雷达电磁盲区的预报研究.西安电子科技大学学报,2007,34(6):989-994
    焦林,张永刚.基于中尺度模式MM5下的海洋蒸发波导预报研究.气象学报,2009,67(3):382-387
    乐肯堂,毛汉礼.冬季黄海南部温盐结构和流系.海洋与湖沼,1990,2l:505-515
    李诗明,陈陟,乔然.海上蒸发波导模式研究进展及面临问题.海洋预报(增刊),2005,22:128-139
    李云波, 张永刚, 唐海川,等.海气通量算法在海上蒸发波导诊断中的应用,海洋技术,2008,27(1):106-110
    李云波,张永刚,黄小毛.异常海洋大气条件下红外与微波折射特征差异研究.微波学报,2009,25(5):24-28
    蔺发军,刘成国,潘中伟.近海面大气波导探测及与其它研究结果的比较.电波科学学报,2002,17(3):269-281
    蔺发军,刘成国,成思,杨玉萍.海上大气波导的统计分析. 电波科学学报,2005,20(1):64-68
    蔺发军,王红光,林乐科等.风向对蒸发波导环境特性影响的研究.电波科学学报,2007,22(3):410-413
    刘成国,潘中伟.低空大气波导的研究状况及前景.电波与天线,1996,1:1-6
    刘成国,潘中伟,郭丽.中国低空大气波导出现概率和波导特征量的统计分析.电波科学学报,1996,11(2):60-66
    刘成国,黄际英,江长荫,等.用伪折射率和相似理论计算海上蒸发波导剖面[J].电子学报,2001,29(7):970-972
    刘成国,黄际英,江长荫,等.我国对流层波导环境特性研究[J].西安电子科技大学学报,2002,29(1):119-122
    刘成国,黄际英,江长荫.东南沿海对流层大气波导结构的出现规律.电波科学学报,2002,17(5):509-513
    刘衍韫,刘秦玉,潘爱军.太平洋海气界面净热通量的季节、年际和年代际变化.中国海洋大学学报,2004,34(3):341-350
    潘中伟,刘成国,郭丽.东南沿海波导结构的预报方法.电波科学学报,1996,11(3):58-64
    戎华,曲晓飞,吴秀琴.大气波导对电子侦察设备的影响.现代防御技术,2007,35(1):92-95
    盛峥,徐如海,石汉青.海洋大气波导对雷达探测性能影响的研究.现代雷达,2008,30(4):18-25
    苏纪兰,中国近海的环流动力机制研究.海洋学报,2001,23(4):1-16
    孙健,赵平.用WRF与MM5模拟1998年三次暴雨过程的对比分析.气象学报,2003,61(6):693-701
    孙玉巧,刘勤娣,赵学东,等.超折射回波与短时降水的统计关系.河南气象,1996,3:7-8
    唐海川,王华,黄小毛,等.黄海海域一次典型大气波导过程分析.海洋技术,2007,26(4):89-93
    唐海川,王华,李云波.黄海部分海域大气波导分布规律及其成因.海洋技术,2008,27(1):115-117
    田斌,察豪,张玉生等.蒸发波导A模型在我国海区的适应性研究.电波科学学报,2009,24(3):556-561
    王彬华.1983:海雾,海洋出版社
    王华,张永刚,张宇,等.大气波导对多普勒气象雷达的影响分析.见:中国气象学会,中国气象学会2006年年会论文集2006年
    翁学传,王从敏.T-S点聚的初步研究和夏季台湾暖流的起源.海洋科学集刊,1984,21:113-133
    吴炜.集合卡尔曼滤波中模式偏差的线性订正及其在有限区域地面资料同化中的应用:[博士学位论文].青岛:中国海洋大学,2009
    姚展予,赵柏林,李万彪,等.大气波导特征分析及其对电磁波传播的影响.气象学报,2000,58(5):605-615
    郑琦,邢文革.大气波导效应及其对低空探测的影响分析.现代雷达,2005,27(5):19-21
    张军.2005:军事气象学,气象出版社
    张星,张祥林.大气波导对雷达测距和测高的影响.火力与指挥控制,2006,31(8):84-90
    赵洪,杨学联,邢建勇,等.WRF与MM5对2007年3月初强冷空气数值预报结果的对比分析.海洋预报,2007,24(2):1-8
    赵天保,艾丽坤,冯锦明.NCEP再分析资料和中国站点观测资料的分析与比较.气候与环境研究,2004,9(2):278-294
    赵天保,符淙斌.中国区域ERA-40、NCEP-2再分析资料与观测资料的初步比较与分析.气 候与环境研究,2006,11(1):14-32
    周发琇,王鑫,鲍献文,2004:黄海春季海雾形成的气候特征,海洋学报,26,28-37
    朱天正,解卫民.利用雷达超折射回波作12小时晴雨预报.山东气象,1996,16(4):16-18
    左雷,察豪,田斌,等.海上蒸发波导PJ模型在我国海区的适应性初步研究.电子学报,2009,37(5):1100-1103
    Ao C O, Meehan T K, Hajj G A, et al. Lower-Troposphere Refractivity Bias in GPS Occultation Retrievals. J. Geophys. Res.,2003,0108-0227
    Adhikari N P, DRI, Reno, et al. Analysis and prediction of microwave refractivity profiles in nocturnal marine cloud layers. Fifth Conference on Coastal Atmospheric and Oceanic Prediction and Processes,2003
    Ajjaji Radi, AL-Katheri AA, Dhanhani A. Tuning of WRF 3DVar data assimilation system over Middle—East and Arabian Peninsula. The 8th WRF Users"Workshop,2007
    Atkinson B W, J G Li, and R S Plant. Numerical modelling of the propagation environment in the atmospheric boundary layer over the Persian Gulf. J. Appl. Meteorol.,2001,40:586-603
    Atkinson B W, M Zhu. Coastal effects on radar propagation in atmospheric ducting conditions. Meteorol. Appl.,2006,13:53-62
    Axel von Engeln, J Teixeira. A Ducting Climatology derived from ECMWF Global Analysis Fields. J. Geophys. Res.,2004,109 (D18):1-18
    Babin S M. A new model of the oceanic evaporation duct and its comparison with current models. PhD. dissertation, University of Maryland,1996
    Babin S M. A case study if subrefractive conditions at Wallops Island, Virginia. Journal of applied meteorology,1995,34:1028-1038
    Babin S M. Surface duct height distributions for Wallops Island, Virginia,1985-1994. Journal of applied meteorology,1996,35:86-93
    Babin S M, Young G S, Carton J A. A New Model of the Oceanic Evaporation Duct. Journal of applied meteorology,1997,36:193-204
    Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois,and Q. Xiao,2004:A Three-Dimensional Variational Data Assimilation System for MM5:Implementation and Initial Results. Mon. Wea. Rev.,132,897-914.
    Bean B R, Dutton E J. Radio Meteorology. New York:Dover Publication Inc,1968
    Bech, J., Sairouni, A., Codina, B., et al. Weather radar anaprop conditions at a Mediterranean coastal site. Phys. Chem. Earth (B),2000,25:829-832
    Bech J, Codina B, Lorente J, Bebbington D. Monthly and daily variations of radar anomalous propagation conditions:How "normal" is normal propagation.2002, Proceedings of ERAD: 35-39
    Bech J, Codina B, Lorente J, Bebbington D. The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J Atmos Oceanic Technol,2003,20:845-855
    Bech J, Codina B, Lorente J. Forecasting weather radar propagation conditions, Meteorol Atmos Phys,2007,96,229-243
    Brooks I M, Goroch A K, Rogers D P. Observations of strong surface radar ducts over the Persian Gulf. J. Appl. Meteorol.,1999,38:1293-1310
    Burk S D, Thompson W T. Meso-scale modeling of summertime refractive conditions in the southern California Bight. J. Appl. Meteorol.,1997,36:22-31
    Cheong B L, R Palmer, V Chandrasekar and F Junyent. Real-time Refractivity Retrieval Using the Magnetron-based CASA X-band Radar Network During the Spring 2008 Campaign, International Geoscience & Remote Sensing Symposium, Boston, Massachusetts, July 6-11, 2008
    Chen, C. and W.R. Cotton,1983:A one-dimensional simulation of the stratocumulus-capped mixed layer. Boundary-layer Meteorol.,25,289-321
    Cressman, G P. An operational objective analysis system. Mon. Weather Rev.,1959,87(10): 367-374
    Douvenot Re mi, Vincent Fabbro, Peter Gerstoft, et al. A duct mapping method using least squares support vector machines. Radio Science,2008,43, RS6005
    Dudhia, J., A multi-layer soil temperature model for MM5. Sixth Annual PSU/NCAR Mesoscale Model Users'Workshop, Boulder CO, July 1996,49-51
    Fu G, J Guo, S-P Xie, et al. Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea, Atmos. Res.,2006,81,293-303
    Fu G, J Guo, P Angeline, et al. An Analysis and modeling study of a sea fog event over the Yellow and Bohai Sea, J. Ocean univ. Chin.,2008,7,27-34
    Gao S, W Wu, and L Zhu. Detection of nighttime sea fog/stratus over the Huanghai Sea using MTSAT-1R IR Data. Acta Oceanologia Sinica,2007,28,23-35
    Gao S, H Lin, B Shen and G Fu. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling. Adv. Atmos. Sci.,2007,24,65-81
    Geernaert G L. On the Evaporation Duct for Inhomogeneous Conditions in Coastal Regions. Journal of applied meteorology and climatology,2007,46:538-543
    Godfrey J S, A C M Beljaars. On the turbulent fluxes of buoyancy, heat, and moisture at the air-sea interface at low wind speeds. J Geophys Res,1991,96(C12):22043-22048
    Haack T, S D Burk. Mesoscale modeling of summertime refractive conditions in the Southern California Bight. J Appl Meteor,1997,36:23-31
    Helvey R A. Radiosonde errors and spurious surface-based ducts. Proc. IEEE,1983,130(7): 643-648
    Hermann, J. A., A. S. Kulessa, C. Lucas, et al. Impact of elevated atmospheric structures upon radio-refractivity and propagation. Workshop on the Applications of Radio Science 2002 (WARS-02) Sydney Australia Feb 2002
    Hong, S., Y. Noh, and J. Dudhia,2006:A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev.,134,2318-2341.
    Isaakidis S A., Thmas D. Xenos, Nicholas A Dris. Tropospheric ducting phenomena over the Hellenic region. International Journal of Communication Systems,2004,17(4):337-346
    Isaakidis S A, I N Dimou, T D Xenos, et al. An artificial neural network predictor for tropospheric surface duct phenomena. Nonlin. Processes Geophys.,2007,14,569-573
    Ivanov V K, V N Shalyapin, Yu V. Determination of the Evaporation Duct Height from Standard Meteorological Data Levadnyi Atmospheric and Oceanic Physics,2007,43(1):36-44
    Jeske H. State and limits of prediction methods of radar wave propagation conditions over the sea. Modern Topics in Micro wave Propagation and Air-Sea Interaction, A Zancla Ed, D Reidel Publishing,1973,130-148
    Jeske H, The state of radar-range prediction over sea, in tropospheric radio wave propagation Part Ⅱ, NATO AGARD CP-70,1971, P50
    Kain, J. S., and J.M. Fritsch,1990:A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci.,47,2784-2802
    Katherine L. Twigg A smart climatology of evaporation duct height and surface radar propagation in the Indian ocean. Manterey, CA: Naval Postgraduate school,2007
    Leontakianakos A N. S-band clear air propagation and ducting in coastal west Africa. Microwave and optical technology letters,1997,15(2):102-106
    Lin, Y. L, R. D. Farley, and H. D. Orville,1983:Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor.,22,1065-1092
    Lopez P. A 5-yr 40-km-Resolution Global Climatology of Superrefraction for Ground-Based Weather Radars. Journal of applied meteorology and climatology,2009,48:89-110
    Lowry A R., Chris Rocken, Sergey V. Sokolovskiy, et al. Vertical profiling of atmospheric refractivity from ground-based GPS. Radio Sci.,2002,37(3):13.1-13.10
    Mlawer, E. J., S.J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough,1997:Radiative Transfer for Inhomogeneous Atmospheres:RRTM, a validated correlated-k model for the longwave. J. Geophys. Res.,102,16663-16682
    Mentes S. S. and Z. Kaymaz. Investigation of surface duct conditions over Istanbul, Turkey. Journal of applied meteorology and climatology,2007,46:318-336
    Mellor, G. L., and T. Yamada,1982:Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys.,20,851-875
    Musson-Genon L, S Gauthier, E Bruth. A simple method to determine evaporation duct height in the sea surface boundary layer. Radio Sci,1992,27:635-644
    Nuss, W. A. and D. W. Tutley. Use of multiquadric interpolation for meteorological objective analysis. Mon. Wea. Rev.,1994,122(1):611-631
    Parrish, D. F., and J. C. Derber,1992:The National Meteorological Center's Spectral Statistical-interpolation Analysis System. Mon. Wea. Rev.,120,1747-1763
    Patterson W L. Ducting climatology summary software (version 2.0,21, January 1992)[CP]. Space and Naval Warfare System Center,1993
    Paulus R A. Practical application of an evaporation duct model. Radio Sci,1985,20:887-896
    Pielke R.A., W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E. Nicholls, M.D. Moran, D.A. Wesley, T.J. Lee and J.H. Copeland, A comprehensive meteorological modeling system—RAMS. Meteorological Atmospheric Physics 49 (1992), pp.69-91.
    Robert E M, Thornton W D, Lefurjah G, et al. Modeling and Simulation of Notional Future Radar in Non-Standard Propagation Environments Facilitated by Mesoscale Numerical Weather Prediction Modeling. Naval engineers journal,2008,120(4):55-66
    Rogers, L. T., C. P. Hattan, and J. K. Stapleton, Estimating evaporation duct heights from radar sea echo, Radio Sci.,2000,35(4):955-966
    Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J.G. Powers,2008:A Description of the Advanced Research WRF Version 3. NCAR/TN-475+STR,125 pp
    Sokolovskiy S., Y. H. Kuo, C. Rocken, et al. Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode. Geophysical research letters, 2006,33, L12813:1-4
    Tabrikian J. and J. L. Krolik, "Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements," IEEE Transactions on Antennas and Propagation, vol.47, no.11, pp.1727-1734, November 1999
    TurtonJ D, Bennetts D A, Farmer S F G. An introduction to radio ducting. Meteo. Mag.,1988, 117:245-254
    von Engeln A, Teixeira J, J. Wickert, and S. A. Buehler, Using CHAMP radio occultation data to determine the top altitude of the planetary boundary layer, Geophys. Res. Lett.,2005, 32, L06815:1-5
    Walko, R. L. and Tremback, C. J.,2005:Modifications for the Transition from LEAF-2 to LEAF-3, Colorado:ATMET LLC, pp.13
    Yardim, C., P. Gerstoft, and W. S. Hodgkiss, Statistical maritime radar duct estimation using a hybrid genetic algorithm-Markov chain Monte Carlo method, Radio Sci.,2007,42, RS3014:1-15
    Yardim, C., P. Gerstoft, and W. S. Hodgkiss, Tracking refractivity from clutter using Kalman and particle filters, IEEE Trans. Antennas Propag.,2008,56(4):1058-1070
    Yardim, C., P. Gerstoft, and W. S. Hodgkiss, Sensitivity analysis and performance estimation of refractivity from clutter techniques. Radio Sci.,2009,44, RS1008:1-16
    Zhu, M.& Atkinson, B. W. Observed and modeled climatology of the land-sea breeze circulation over the Persian Gulf. Int. J. Climatol.2004,24:883-905
    ZHU M.& B. W. Atkinson. Simulated climatology of atmospheric ducts over the Persian Gulf area. Bound. Layer Meteor.,2005,115:433-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700