用户名: 密码: 验证码:
电离层F2层临界频率的短期和暴时预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依据我国近四十年电离层f0F2数据,分析了电离层的主要控制因素及电离层的长期和短期变化规律,建立了中低纬电离层短期预报、区域预报和电离层暴的预报方法。上述研究对空间天气的感知、电波环境预报、警报和效应评估能力具有重要意义。主要研究成果如下:
     1)基于F10.7指数的短期预报方法。
     依据我国中低纬地区的满洲里、长春、乌鲁木齐、北京、兰州、重庆、广州和海口8个电离层观测站1958-2006的f0F2和太阳射电流量F10.7数据,通过对电离层历史数据和F10.7的回归分析,提出单站电离层f0F2的短期预报方法,并用不同台站数据对预报性能进行了检验。分析在不同太阳活动水平、季节以及地方时条件下其预报误差的变化特性。表明,该方法能够预测未来1-3天的f0F2。
     2)基于非线性网络的电离层短期预报方法。
     分析了太阳活动和地磁活动对电离层f0F2的非线性影响,利用人工神经网络(NN)对单站电离层f0F2进行预报,分析了其预报误差在太阳活动高、低年和不同季节的变化特征。引入卡尔曼滤波和集合卡尔曼滤波方法对神经网络的预报结果做进一步修正和优化。其预报效果优于单纯的神经网络模型和IRI模型。
     建立了利用支持向量机(SVM)单站电离层f0F2预报方法,分别实现了提前1-5小时和24小时f0F2预报。SVM预报结果与观测数据符合良好,比自相关分析法和Persistence方法更具有实用性。
     3)电离层区域预报。
     根据f0F2时间和空间相关性,利用人工神经网络建立了提前1-5小时的电离层f0F2区域预报方法,结合Kriging算法,引入电离层距离、经度因子和纬度因子等参数实现了电离层区域重构。利用我国电离层f0F2的数据,对该方法的重构精度进行了评估,实现了中国地区的电离层区域预报。
     4)电离层暴的预报。
     研究中低纬电离层暴时季节、位置和地方时的扰动形态,分析了中低纬电离层在地磁暴期间的响应特性。
     利用地磁指数Dst和AE以及电离层临界频率f0F2的数据,通过分析磁扰期间成分扰动带的赤道向传播以及穿透电场引起的等离子体漂移对电离层的影响,提出一种提前1小时预报暴时低纬电离层f0F2的经验方法。通过对2004-2005年10次磁暴期间的预报结果进行检验表明,该方法能够预测低纬电离层暴的演化。
     基于地磁时间累积指数ap(τ)比瞬时地磁指数相关性好的特点,通过分析地磁时间累积指数ap(τ)与f0F2的相关性,确定了τ值的最优取值。利用支持向量机网络,建立了提前1小时预报暴时f0F2方法。对2001-2006年67次磁暴期间的预报结果的检验表明,该方法能够较好的预测中纬电离层暴的演化,其预报性能优于STORM模型和Persistence模型。
Based on the analysis of the main controlling factors of the ionosphere and its long-term and short-term variation characteristics by using the f0F2 data of spanning nearly 40 years in China, this dissertation mainly focuses on establishing the ionospheric short-term, regional, and storm-time forecasting models at low and middle latitudes. This investigate is important to the ability of the sensation of space weather, radio environmental forecast, alert and effective estimation. The main results are listed as follows:
     1) A short-term f0F2 forecasting model using the index F10.7
     Based on solar radio flux F10.7 and hourly f0F2 values that span the period 1958-2006, a short-term predicting technique of the ionosphere f0F2 is introduced by using regression analysis of the observed values f0F2 and F10.7. Eight ionosonde stations used are Manzhouli, Changchun, Wulumuqi, Beijing, Lanzhou, Chongqing, Huangzhou and Haikou stations. The data of the different stations are used to test the forecasting performance respectively, and the results are compared by giving their root-mean-square errors according to different solar activity, season and local time. The results indicate that the method can forecast the f0F2 values effectively one day and three days ahead.
     2) Short-term forecasting models of the ionospheric f0F2 using the nonlinear network
     Due to its non-linear dynamic process associated with the F2 region of the ionosphere with solar photon flux, geomagnetic activity and global thermospheric circulation, a short-term forecasting method of f0F2 at a single station is introduced by using artificial neural network (NN). Their forecasted errors are analyzed, which vary with different season and solar activity. By introducing the Kalman Filter and the Ensemble Kalman Filter, the forecasting values of the neural network were adjusted and optimized after considering the anterior forecast errors and the trend of f0F2 variations. The results show that forecasting performance of the optimizing model is superior to that of the purely neural network and IRI.
     By using Support Vector Machine (SVM), a different method for forecasting the ionosphere f0F2 at a single station one hour ahead, up to fives and 24 hours ahead is introduced, respectively. The results show that the predicted f0F2 has good agreement with observed data and the performance of the SVM model is superior to that of the autocorrelation and Persistence models. It reflects the potential application of this technique for forecasting f0F2.
     3) The ionospheric f0F2 regional forecasting
     Taken into account of the temporal and spatial correlativity of f0F2, a method for the ionospheric f0F2 regional forecasting, up to 5 hours ahead, is introduced by using the neural network. In addition, by introducing the ionospheric distance, latitude factor and longitude factor, the Kriging method has been proposed for the reconstruction of ionospheric foF2 in China region. Based on the measurements of the Chinese stations, the ionospheric reconstruction has been done, which give the estimates of the reconstruction accuracy in Chinese region.
     4) The storm-time ionospheric f0F2 predictions
     As the variation of f0F2 at storm-time depends obviously on latitude, season and local time, the responses of ionospheric f0F2 to the ionospheric storm at low and middle latitude are studied respectively.
     Using the geomagnetic indices of Dst and AE and data of ionospheric critical frequency f0F2, an empirical method in predicting storm-time ionospheric f0F2 at a single station an hour in advance is brought out by analyzing the impacts resulted from the equatorward propagation of the composition disturbance zone and the plasma drift induced by the penetration electric field, as well as the local time effect. Ten storms during 2004-2005 are employed to validate the method by studying their predicting errors. They turn out that the empirical model can capture the evolutions of the storm fairly well at low-latitude.
     As the correlation coefficient of f0F2 and the integrated geomagnetic index ap(τ) is better than that of foF2 and the instantaneous geomagnetic index ap. By analyzing the correlation coefficients of ap(τ) and f0F2, the best fit ofτis determined. Using the support vector machine (SVM), an empirical local ionospheric forecasting model has been developed to predict foF2 during disturbed geomagnetic conditions. The forecasted values foF2 are compared with that by the Persistence model and the STORM model during geomagnetic storm occurring from 2001 to 2006 at Lanzhou, which includes 67 storm events. As for the data sets used in this paper, the result shows the forecasting performance of SVM is better than the latter.
引文
[1]《电离层波理论》,王椿年,尹元昭译,科学出版社,1983.
    [2]Rishbeth H., Mendillo M., Patterns of F2-layer variability. Journal of Atmospheric and Solar-Terrestrial Physics 2001,63(15),1661-1680.
    [3]Rishbeth H., and Garriott O. K., Introduction to Ionospheric Physics, Academic Press, New York,1969.
    [4]熊年禄,唐存琛,李行健,电离层物理概论,武汉大学出版社,1999。
    [5]Wan W. X., Yuan H., Liu L. B., et al., The GPS measured SITEC caused by the very intense solar flare on July 14,2000, Adv. Space. Res.,2005,36(12),2465-2469.
    [6]张东和,萧佐,利用GPS计算TEC的方法及其对电离层扰动的观测,地球物理学报,2000,43(4),451-458。
    [7]刘瑞源,吴健,张北辰,电离层天气预报研究进展,电波科学学报,2004,19(z1),35-40。
    [8]刘经南,陈俊勇等,广域差分GPS原理和方法,测绘出版社,1999年1月。
    [9]熊皓等,无线电波传播,电子工业出版社,2000。
    [10]曹红艳,孙宪儒,新版亚大地区F2层电离层频率预测方法,空间科学学报,2009,29(5),502-507。
    [11]CCIR atlas of ionospheric characteristics, Report 340-6,1990.
    [12]曾文,张训械,胡雄等,利用人工神经网络建立我国南海地区电离层模式,地球物理学报,1999,42(5),581-589。
    [13]陈艳红,万卫星,刘立波等,利用电离层参量推断电子浓度剖面的一种简单方法.空间科学学报,2004,24(3),194-202。
    [14]雷久侯,中纬电离层的统计分析与模式化研究,博士学位论文,北京:中国科学院地质与地球物理研究所,2005。
    [15]Jones W. B. and Gallet R. M., The representation of diurnal and geographic variations of ionospheric data by numerical methods, Telecomm. J.,1965,32, 18-28.
    [16]Bent R. B., Llewellyn S. K., and Walloch M. K., Description and Evaluation of the Bent Ionospheric Model, DBA Systems, Melbourne, Florida,1972.
    [17]Chiu Y. T., An improved Phenomenological Model of Ionospheric Density, J. Atmos. Terr. Phys.,1975,37(12),1563-1570.
    [18]Leitinger R., Radicella S. and Nava B., Electron density models for assessment studies-new developments, Acta Geodet. Geophys. Hung,2002,37,183-193.
    [19]Bilitza D., International reference ionosphere 2000, Radio Sci.,36(2),261-275.
    [20]Oyeyemi E.O.O., Mckinnell L. A., Poole A. W. V, Near-real time prediction foF2 using neural networks, J. Atmos. Terr. Phys.,2006,68(16),1807-1818.
    [21]刘瑞源,权坤海,国际参考电离层用于中国地区时的修正计算方法,地球物理学报,1994,37(4),422-432。
    [22]毛田,万卫星,刘立波,用经验正交函数构造武汉地区电子浓度总含量的经验模,地球物理学报,2005,48(4),751-758。
    [23]王世凯,焦培南,柳文,改进的克里格技术实时重构区域电离层f0F2的分别,电波科学学报,2006,21(2),166-171。
    [24]刘瑞源,刘国华,吴健,中国地区电离层f0F2重构方法及其在短期预报中的应用,地球物理学报,2008,51(2),300-306。
    [25]Pi X., Wang C., Hajj G A., et al., Estimation of EB drift using a global assimilative ionospheric model:An observation system simulation experiment, J. Geophys. Res., 2003,108(A2),1075, doi:10.1029/2001JA009235.
    [26]Yue X. A., Wan W. X., Liu L. B. et al., Data assimilation of incoherent scatter radar observation into a one-dimensional midlatitude ionospheric model by applying ensemble Kalman Filter, Radio Sci.,2007,42, RS60006, doi:10.1029/2007 RS003631.
    [27]张顺荣,中纬电离层结构的时变理论模式及其在电离层形态与机制研究上的运用,博士学位论文,中科院武汉物理与数学研究所,1995。
    [28]Roble R. G., Ridley E. C., Richmond A. D., et al., A coupled thermosphere/ ionosphere general circulation model, Geophys. Res. Lett.,1988,15(12),1325-1328.
    [29]Richmond A. D., Ridley E. C., and Roble R. G. A., A.t.Thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett.,1992, 19(6),601-604.
    [30]Roble R. G. and Ridley E. C., A thermosphere-ionosphere-mesosphere electro-dynamics general circulation model:Equinox solar min simulations (30-500 km), Geophys. Res. Lett.,1994,21(6),417-420.
    [31]Wang W., Wiltberger M., Burns A. G., et al., Initial results from the coupled magnetosphere-ionosphere-thermosphere model:thermosphere-ionosphere responses, J. Atmos. Sol. Terr. Phys.,2004,66(15),1425-1441.
    [32]Millward G. H., Moffett R. J., Quegan W., et al., A coupled thermospheric-ionospheric-plasmasphere Model (CTIP), in STEP:Handbook of Ionospheric Models, edited by R. W. Schunk, Utath State Univ., Logan, Utath,1996.
    [33]Fuller-Rowell T. J., Millward G. H., Richmond A. D., et al., Storm-time changes in the upper atmosphere at low latitudes, J. Atmos. Sol. Terr. Phys.,2002,64(12), 1383-1391.
    [34]Sojka J. J. and Schunk R. W., A theoretical study of the global F region for June solstice, solar maximum, and low magnetic activity, J. Geophys. Res.,1985,90(1), 5285-5298.
    [35]Huba J. D., Joyce G. and Fedder J. A., Sami2 is another model of the ionosphere (SAMI2):A new low latitude ionospheric model, J. Geophys. Res.,2000,105(A10), 23035-23053.
    [36]Hedin A. E., MSIS-86 thermospheric model, J. Geophys. Res.,1987,92(A5), 4649-4662.
    [37]Hedin A. E., Fleming E. L., Manson A. H., et al., Empirical wind model for the upper, middle and lower atmosphere, J. Atoms. Terr. Phys.,1996,58(13),1421-1447.
    [38]高铭,肖佐,一种电离层物理模型及其在F1谷区形成讨论中的应用,空间科学学报,1992,12(4),287-297。
    [39]王劲松,肖佐,子午面内时变电离层模型及其边界条件,地球物理学报,1999,42(1),18-29。
    [40]张奇伟,郭兼善,章公亮,磁暴期间中纬度电离层剖面结构变化的数值模拟,空间科学学报,1994,14(1),39-47。
    [41]郭兼善,尚社平,张满莲等,空间天气探测数据的同化处理,中国科学A,2000,30(z1),115-118.
    [42]张北辰,刘瑞源,刘顺林,极区电子沉降对电离层影响的模拟研究,地球物理学报,2001,44(3),311-319。
    [43]Lei J., Liu L., Wan W., et al., Model results for the ionospheric lower transition height over mid-latitude, Ann. Geophys.,2004,22,2037-2045.
    [44]Lei J., Liu L., Wan W., et al., Modeling the behavior of ionosphere above Millstone Hill during the September 21-27,1998 storm, J. Atmos. Sol. Terr. Phys.,2004b, 66(12),1093-1102.
    [45]Lei J., Liu L., Wan W., et al., Modeling investigation of ionospheric storm effects over Millstone Hill during August 4-5,1992, Earth Planet Space,2004c,56(9), 903-908.
    [46]乐新安,万卫星,刘立波等,中低纬电离层理论模式的构建和一个观测系统数据同化试验,科学通报,2007,52(18),2180-2186。
    [47]乐新安,中低纬电离层模拟与数据同化研究,博士学位论文,中国科学院地质
    与地球物理研究所,2008。
    [48]Lundstedt H., Neural networks and predictions of solar-terrestrial effects, Planet. Space Sci.,1992,40(4),457-464.
    [49]Secan J. A., Wilkinson P. J., Statistical studies of an effective sunspot number, Radio Science,1997,32(4),1717-1724.
    [50]Liu R. Y., Liu S. L., Xu Z. H., et al., Application of autocorrelation method on ionospheric short-term forecasting in China, Chinese Science Bulletin,2006,51(3), 352-357.
    [51]Marin D., Miro G., Mikhailov A. V. A., method for f0F2 short-term prediction,4th COST 251 workshop proceeding, Maderia, Portugal,1999, COST251TD(99)008, 214-222.
    [52]Stanislawska I, Zbyszynski Z., Forecasting of the ionospheric quiet and disturbed f0F2 values at a single location, Radio Sci.,2001,36(5),1065-1071.
    [53]Francis N, Cannon P. S., Brown A. G, et al., Nonlinear prediction of the ionospheric parameter on hourly, daily, and monthly timescales, J. Geophys. Res., 2000,105(A6),12839-12849.
    [54]Chan A. H. Y. and Cannon P. S., Nonlinear forecasts of f0F2:variation of model predictive accuracy over time, Annales Geophysicae,2002,20(7),1031-1038.
    [55]Liu D. D., Yu. T., Wang J. S., et al., Using the radial basis function neural network to predict ionospheric critical frequency of F2 layer over Wuhan, Advances in Space Research,2009,43(11),1780-1785.
    [56]陈春,吴振森,赵振维等,基于神经网络技术的f0F2短期预报方法,电波科学学报,2008,23(4),708-712。
    [57]Koutroumbas K., Tsagouri I., Belehaki A., Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Annales Geophysicae,2008,26(2),371-386.
    [58]Tsagouri I., Koutroumbas K., Belehaki A., Ionospheric f0F2 forecast over Europe based on an autoregressive modeling technique driven by solar wind parameters, Radio Science.2009,44(5), RS0A35.
    [59]Altinay O., Tulunay E., Tununay Y., Forecasting of ionospheric critical frequency using neural network, Geophys. Res. Lett.,1997,24(12),1467-1670.
    [60]Wintoft P., Cander L. R., Short-term prediction of f0F2 using time-delay neural network, Phys. Chem. Earth,1999,24(4),343-347.
    [61]Poole A. W. V. and Mukinnellm L. A., On the predictability of f0F2 using neural networks, Radio Sci.,2000,35(1),225-234.
    [62]Oyeyemi E. A, Poole A. W. V., McKinnell L. A., On the global short-term forecasting of the ionospheric critical frequency foF2 up to five hours in advance using neural networks, Radio Sci.,2005,40, RS6012, doi:10.1029/2004RS003239.
    [63]Wintoft P., Cander L. R., Twenty-four predictions of foF2 using time delay neural networks, Radio Sci.,2000,35(2),395-408.
    [64]Oyeyemi E. A., Poole A. W. V., McKinnell L A., On the global model for foF2 using neural networks, Radio Sci.,2005,40, RS6011, doi:10.1029/2004RS003223.
    [65]Tulunay E., Senalp E. T., Radicella S. M., et al., Forecasting total electron content maps by neural network technique, Radio Sci.,2006,41, RS4016, doi:10.1029/ 2005RS003285.
    [66]Wintoft P., Cander L. R., Ionospheric foF2 storm forecasting using neutral networks, Phys. Chem. Earth(C),2000,25(4),267-273.
    [67]Fuller-Rowell T. J., Codrescu M. V. and Wilkinson P., Quantitative modeling of the ionospheric response to geomagnetic activity, Ann. Geophys.,2000,18(7),766-781.
    [68]Mikhailov A. V., Depuev V. H. and Depueva A. H., Short-term foF2 forecast:present day state of art, Space Weather:Research Towards Applications in Europe 2nd European Space Weather week, the Netherlands, Jean Lilensen,2007,169-184.
    [69]Paul M. P., Matsushita S. and Richmond A. D., Ionospheric storm of 4-5 August 1972 in the Asia-Australia-Pacific sector, J. Atmos. Terr. Phys.,1977,39(1),43-50.
    [70]Szuszezczewicz E. P., Lester M., Wilkison P., et al., A comparative study of global ionospheric response to intense magnetic storms, J. Geophys. Res.,1998,103(A6), 11665-11684.
    [71]高琴,刘立波,赵必强等,东亚扇区中低纬地区电离层暴的统计分析,地球物理学报,2008,51(3),626-634。
    [72]Kohnlein W. and Raitt W. J., Position of the midlatitude trough in the topside ionosphere as deduced from ESRO 4 observations, Planet. Space Sci.,1977,25 (6), 600-602.
    [73]Wrenn G. L., Time-weighted accumulation ap(τ) and Kp(τ), J. Geophys. Res.,1987, 92(A9),10125-10129.
    [74]Wrenn G. L. and Rodger A. S., Geomagnetic modification of the mid-latitude ionosphere:Toward a strategy for the improved forecasting of f0F2, Radio Sci., 1989,24(1),99-111.
    [75]Fuller-Rowell T. J., Codrescu M. V., Araujo-Pradere E. A., et al., Progress in developing a storm-time ionospheric model, Adv. Space Res.,1998,22(6),821-
    827.
    [76]Araujo-Pradere E. A., Fuller-Rowell T J, Codrescu M V, Storm:An empirical storm-time ionospheric correction model 1. Model description, Radio Sci.,2002, 37(5),1070, doi:10.1029/2001RS002467.
    [77]陈丹俊,吴健,王先义,电离层暴时的f0F2预报技术研究,地球物理学报,2007,50(1),18-23。
    [78]Pietrella M. and Perrone L., A local ionospheric model for forecasting the critical frequency of the F2 layer during disturbed geomagnetic and ionospheric conditions, Ann. Geophys.,2008,26,323-334.
    [79]孙树计,陈春,丁宗华等,一种暴时电离层f0F2的经验预报方法,电波科学学报,2009,24(4),637-644。
    [80]刘振兴,太空物理学,哈尔滨工业大学出版社,2005。
    [81]汪毓明,行星际磁云及其相关事件的综合研究,博士学位论文,中国科学技术大学,2003。
    [82]Kane R. P., Solar cycle variation of f0F2, J. Atmos. Terr. Phys.,1992,54(9), 1201-1205。
    [83]Rishbeth H. and Setty C. S. G. K., The F-layer at sunrise, J. Atmos. Terr. Phys., 1961,20(4),263-276.
    [84]沈长寿,台风与电离层f0F2相关性的探讨,空间科学学报,1982,2(4),335-340。
    [85]沈长寿,资民筠,关于寒潮对夜间f0F2影响的探讨.空间科学学报,1986,6(3),211-216。
    [86]Pulinets S. A., Khegai V. V., Depuev V. V., et al., Atmospheric electric field as a source of ionosphereric variability. Physics-Uspekhi,1998,41(5),515-522.
    [87]Pulinets S. A., Boyarchuk K. A., Khegai V. V., et al., Quasielectrostatic model of atmosphere-thermosphere-Ionosphere coupling, Adv. Space Res.,2000,26(8), 1209-1218.
    [88]Pulinets S. A. and Liu J. Y., Ionospheric variability unrelated to solar and geomagnetic activity, Adv. Space Res.,2004,34(9),1926-1933.
    [89]王伟,人工神经网络原理入门与应用,北京航空航天大学出版社,1995。
    [90]高隽,人工神经网络原理及仿真实例,机械工业出版社,2003。
    [91]Zhu M. L., Fujita M. and Hashimoto N., Application of neural networks to runoff prediction, Proceedings of international conference on stochastic and statistical methods in hydrology and environmental engineering, Ontario, Canada,1993, 72-82.
    [92]Lathtermacher G. and Fuller J. D., Back-propagation in hydrologicial time series
    forecasting, Proceedings of international conference on stochastic and statistical methods in hydrology and environmental engineering, Ontario, Canada.1993, 229-242.
    [93]曾文,人工神经网络的映射能力及其在空间物理中的应用,博士学位论文,中科院武汉物理与数学研究所,1999。
    [94]覃光华,人工神经网络及其应用,博士学位论文,四川大学,2003。
    [95]Weorbs P. J., Back-propagation through time:What it does and how to do it, Proceedings of the IEEE,1990,78(10),1550-1560.
    [96]Rumelhart D. E., Hinton G E. and Williams R. J., Learning representations by back-propagation errors, Nature,1986,323(9),533-536.
    [97]张立明,人工神经网络的模型及其应用,复旦大学出版社,1992。
    [98]孙功星,戴长江,戴贵亮,训练样本的选取对网络性能的影响,核电子学与探测技术,1996,16(6),401-404。
    [99]方剑,席裕庚,神经网络结构设计的准则和方法,信息与控制,1996,25(3),156-164。
    [100]张乃尧,阎平凡,神经网络与模糊控制,清华大学出版社,1998。
    [101]Dungey J. W., Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett.,1961,6,47-48。
    [102]Russell C. T., McPherron R. L., Semiannual variation of geomagnetic activity, J. Geophys. Res.,1973,78(1),92-108.
    [103]Baker D. N., Effects of the Sun on the Earth's environment, J. Atmos. Solar-Terr. Phys.,2000,62(17),1669-1681.
    [104]Davis C. J., Wild M. N., Lockwood M et al., Ionospheric and geomagnetic responses to changes in IMF Bz:a superposed epoch study, Ann. Geophysicae, 1997,15,217-230.
    [105]王劲松,魏奉思,行星际激波能量与电离层暴的相关研究,科学通报,1996,41(19),1805-1807。
    [106]Fejer B. G., Equatorial ionospheric electric fields associated with magnetospheric disturbances in solar wind-magnetosphere coupling, Edited by Kamide Y. andSlavin J. A., TERRAPUB, Tokyo,1986,519-545.
    [107]Tsurutani B. T, Mannueci A. J., lijima B. A., et al. Glohal dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res.,2004,109(A8), A08302, doi:10.1029/2003JA010342.
    [108]陈春,吴振森,孙树计等,利用神经网络提前24小时预报电离层f0F2,电波科学学报,2009,24(1),152-156。
    [109]Vapnik V. N., Estimate ion of Dependencies Based on Empirical Data, Berlin: Springer-Verlag,1982.
    [110]Vapnik V. N., The Nature of Statistical Learning Theory, Sp ringer-Verlag, 1995.
    [111]熊秋芬,顾永刚,王丽,支持向量机分类方法在天空云量预报中的应用,气象,2007,33(5),20-26。
    [112]张娜,亢军贤,王峰等,基于模糊核聚类和SVM的说话人识别,电脑知识与技术,2007,19,227-230。
    [113]肖汉关,蔡从中,袁前飞等,支持向量机在地震预测中的应用,重庆大学学报,2007,30(1),114-119。
    [114]张学工译,统计学习理论的本质,清华大学出版社,2000。
    [115]史忠值,知识发现,清华大学出版社,2002,203-207。
    [116]邓乃扬,田英杰,数据挖掘中的新方法-支持向量机,科学出版社,2004。
    [117]张国云,支持向量机算法及其应用研究,博士学位论文,湖南大学,2006。
    [118]Steve R. G., Support Vector Machines for Classification and Regression, Faculty of Engineering and Applied Science Department of Electronics and Computer Science,1998.
    [119]Smola A., Scholkopf B., A tutorial on support vector regression, Statistics and Computing, Forthcoming,2001.
    [120]Williscroft L. A. and Poole A. W. V, Neural networks, f0F2, sunspot number and magnetic activity, Geophys. Res. Lett.,1996,23(24),3659-3662.
    [121]Abdu M. A., Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions, J. Atmos. Sol-Terr. Phy.,1997,59(13),1505-1519.
    [122]Fejer B. G., Low latitude storm time ionospheric electrodynamics, J. Atmos. Sol-Terr. Phy.,2002,64(12),1401-1408.
    [123]Liu R. Y., Smith P. A. and King J. W., A New Solar index which leads to improved f0F2 predictions using the CCIR Atlas, Telecommunication Journal,1983, 50(8),408-414.
    [124]於晓,万卫星,刘立波等,欧洲地区电离层峰值电子密度逐日变化的相关距离研究,地球物理学报,2007,50(5),1283-1288。
    [125]Ezquer R. G., Mosert M., Corbella R., et al., Day-to-day variability of ionospheric characteristics in the American sector, Advance in Space Research, 2004,34(9),1887-1893.
    [126]Kouris, S. S., Fotiadis D. N., Ionospheric variability:a comparative statistical study, Advances in Space Research,2002,29(6),977-985.
    [127]Pulinets S. A., Seismic activity as a source of the ionospheric variability, Advance in Space Research,1998,22(6),903-906.
    [128]Pulinets S. A., Liu J. Y., Ionospheric variability unrelated to solar and geomagnetic activity, Advance in Space Research,2004,34(9),1926-1933.
    [129]Mendillo M., Rishbetha H., Roble R. G., et al., Modelling F2-layer seasonal trends and day-to-day variability driven by coupling with the lower atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics,2002,64(18),1911-1931.
    [130]Rishbeth H., F-region links with the lower atmosphere?, Journal of Atmospheric and Solar-Terrestrial Physics,2006,68(3),469-478.
    [131]Rush C. M. and Edwards J. W. R., An authomated mapping technique for representing the hourly behavior of the ionosphere, Radio Science,1976,11(11), 931-937.
    [132]於晓,欧洲上空电离层峰值电子浓度逐日变化的相关性研究,硕士学位论文,中国科学院地质与地球物理研究所,2007。
    [133]苏姝,林爱文,刘庆华,普通克里格法在空间内插中的运用,江南大学学报(自然科学版),2004,3(1),18-21。
    [134]朱芮芮,李兰,王浩等,降水量的空间变异性和空间插值方法的比较研究,中国农村水利水电,2004,7,25-28。
    [135]Stanislawska I., Juchnikowski G., Cander L. R., Kringing method for instantaneous mapping at low and equatorial latitudes, Adv. Space Res.,1996,18 (6),172-176.
    [136]Stanislawska I., Gulyaeva T., Hanbaba R., et al., COST 251 recommended instantaneous mapping model of ionospheric characteristics-PLES, Phys. Chem. Earth,2000,25 (4),291-294.
    [137]Kalman R. E., A new approach to linear filtering and prediction problems, Transaction of the ASME-Journal of Basic Engineering,1960,82,35-45.
    [138]Peter S. M., Stochastic models, estimation, and control. New York:Academic press, INC,1979,1,1-16.
    [139]Greg W., Gary B., An introduction to the Kalman Filter, UNC-Chapel Hill, TR 95-041,2003,1-16.
    [140]Evensen G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Montre Carlo methods to forecast erroe statistics, J. Geophys. Res., 1994,99(C5),10143-10162.
    [141]刘成思,集合卡尔曼滤波资料同化方案的设计和研究,硕士学位论文,中国
    气象科学研究院,2005。
    [142]马超,卡尔曼滤波方法在AREM模式中的应用,硕士学位论文,北京理工大学,2005。
    [143]Craig H. B., Brian J. E. And Sharanya J. M. Adaptive sampling with the ensemble transform Kalman Filter, Part Ⅰ:theoretical aspects, Mon. Wea. Rev,2001, 129(3),420-436.
    [144]Houtekamer P. L. and Herschel L. M., Data assimilation using an Ensemble Kalman Filter technique, Mon. Wea. Rev.,1998,126(3),796-811.
    [145]Jeffrey S.W. and Thomas M. H., Ensemble data assimilation without perturbed observations, Mon. Wea. Rev.,2002,130(7),1913-1924.
    [146]Barker, Southern high-latitude ensemble data assimilation in the Antarctic mesoscale prediction system, Mon. Wea. Rev.-special section,2005,133(12), 3431-3449.
    [147]Anderson J. L., An ensemble adjustment Filter for data assimilation, Mon. Wea. Rev.,2001,129(12),2884-2903.
    [148]Tippett M. K., Notes and correspondence Ensemble square root filters, Mon. Wea. Rev.,2003,131(7),1485-1490.
    [149]朱琳,集合卡尔曼滤波同化方法的研究,硕士学位论文,南京信息工程大学,2007。
    [150]庄照容,集合卡尔曼滤波资料同化系统的设计及其在集合预报中的应用,博士学位论文,中国气象科学研究院,2007。
    [151]单九生,袁正国,周建雄,利用卡尔曼滤波方法作1-5天中期温度预报,成都信息工程学院学报,2001,16(1),12-16。
    [152]徐燕,卡尔曼滤波法在西峰雷达估测降水中的应用,干旱气象,2008,26(1),78-82。
    [153]Scherliess L., Schunk R. W., Sojka J. J. et al., Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman Filter model of the ionosphere:Model description and validation, J. Geophys. Res.2006,111, Al 1315, doi:10.1029/2006JA011712.
    [154]陆如华,许传玉,张玲等,卡尔曼滤波的初值计算方法及其应用,应用气象学报,1997,8(1),34-43。
    [155]Rishbeth H., How the thermospheric circulation affects the ionospheric F2-layer, Journal of Atmospheric and Solar-Terrestrial Physics,1998,60(14),1385-1402.
    [156]Martyn D. F., The morphology of the ionospheric variations associated with magnetic disturbance.1. Variations at moderately low latitude, Proc. Rov. Soc. London,1953,218,1-18.
    [157]Matsushata S. A., A study of the morphology of ionospheric storms, J. Geophys. Res.,1959,64(3),305-321.
    [158]Thomas L. and Venables F. H., The onset of the F-region disturbance at middle latitudes during magnetic storms, J. Atmos. Terr. Phys.,1966,28(6),599-606.
    [159]Mendillo M., A study of the relationship between geomagnetic storms and ionospheric disturbance at mid-latitude, Planet Space Sci.,1973,21(3),349-358.
    [160]Balan N. and Rao P. B., Dependence of ionospheric responses on the local time of sudden commencement and the intensity of geomagnetic storms, J. Atmos. Terr. Phys.,1990,52(4),269-275.
    [161]Rodger A. S., Wrenn G. L. and Rishbeth H., Geomagnetic storms in the Antarctic F-region, Ⅱ.Physical interpretation, J. Atmos. Terr. Phys.,1989,51(11), 851-866.
    [162]Russell C. T., McPherron R. L., The magnetotail and substorms, Space Sci. Rev.,1973,15,205-266.
    [163]Gonzalez W. D. and Tsurutani B. T., Criteria of interplanetary parameters causing intense magnetic storms (Dst<-100nT), Planet Space Sci.,1987,35 (9), 1101-1109.
    [164]Gonzalez W. D., Tsurutani B. T., Conzalez A. L. C., et al., Solar wind-magnetosphere coupling intense magnetic storms (1978-1979), J. Geophys. Res., 1989,94(A7),8835-8851.
    [165]Russel C. T., Mcpherron R. L. and Burton P. K. On the cause of geomagnetic storms, J. Geophys. Res.,1974,79(7),1105-1109.
    [166]刘绍亮,李立文,南向行星际磁场时间与磁暴关系的研究,地球物理学报,2002,45(3),297-305。
    [167]Hapgood M. A., Lockwood M., Bowe G. A., et al., Variability of the interplanetary medium at 1 a.u. over 24 years:1963-1986, Planet. Space Sci.,1991, 39(3),441-423.
    [168]Scurry L. ans Russell C. T., Proxy studies of energy transfer to the magnetosphere, J. Geophys. Res.,1991,96(A6),9541-9548.
    [169]Prolss G. W., Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers, Reviews of Geophysics, 1980,18(1),183-202.
    [170]Kumar S., Sharma S., Chandra H., Interplanetary origin of magnetic storms and
    their F2-region responses at the equatorial anomaly, Adv. in Space Res.,2006, 37(9),1777-1783.
    [171]Zhao B., Wan W., Tschu K. et al., Ionosphere disturbances observed throughout Southeast Asia of the superstorm of 20-22 November 2003, J. Geophys. Res.,2008,113, doi:10.1029/2008JA013054.
    [172]尚社平,磁暴期间全球电离层扰动形态分析和理论研究,博士学位论文,中国科学院空间科学与应用研究中心,2004。
    [173]Wu J. G., Henrik L., Neural network modeling of solar wind-magnetosphere interaction, J. Geophys. Res.,1997,102(A7),14457-14462.
    [174]Jankovicova D., Dolinsky P., Valach F., et al., Neural network-based nonlinear prediction of magnetic storms, J. Atmos. Solar-terr. Phys.,2002,64(5),651-656.
    [175]薛炳森,龚建村,由太阳爆发事件特征预报地磁暴方法研究,空间科学学报,2007,27(6),453-456。
    [176]Bala R., Reiff P. H., Landivar J. E., Real-time prediction of magnetospheric activity using the Boyle Index, Space weather,2009,7, S04003.
    [177]蔡磊,马淑英,蔡红涛等,利用NARX神经网络由IMF与太阳风预测暴时SYM-H指数,中国科学(E),2010,40(1),77-84。
    [178]Fairfield D. H. Advance in magnetospheric storm and substorm research: 1989-1991, J. Geophys. Res.,1992,97(A7),10865-10874.
    [179]Sojka J. J. and Schunk R. W., A theoretical study of the high F region's response to magnetospheric storms inputs, J. Geophys. Res.,1983,88,2112-2122.
    [180]Fuller-Rowell T. J., Codrescu M. V., Moffett R. J., et al., Response of the thermosphere and ionosphere and geomagnetic storms, J. Geophys. Res.,1994, 99(A3),3893-3914.
    [181]Fuller-Rowell T. J., Codrescu M. V., Rishbeth H., et al., On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res.,1996,101,2343-2353.
    [182]Buonsanto M. J., Ionospheric storms-a review, Space Sci. Rev.,1999,88, 563-601.
    [183]Danilov A. D., F2-region response to geomagnetic disturbances, J. Atmos. Solar-Terr. Phys.,2001,63(5),441-449.
    [184]Prolss G W., On explaining the local time variation of ionospheric storm effects, Ann. Geophys.,1993,11(1),1-9.
    [185]Aranjo-Pradere E. A. and Fuller-Rowell T. J., Storm:An empirical storm-time ionospheric correlation model 2, Validation. Radio Sci.,2002,37(5),1029, doi:10.1029/2002RS002620.
    [186]Rastogi R. G. and Klobuchar J. A., Ionospheric electron content within the equatorial F2 layer anomaly belt, J. Geophys. Res.,1990,95,19045-19052.
    [187]Anderson D., Anghel A., and Yumoto K., et al., Estimating daytime vertical EXB drift velocities in the equatorial F-region using ground-based magnetometer observations, Geophys. Res. Lett.,2002,29(12),1596, doi:10.1029 /2001GL014562.
    [188]Huang C. S., Sazykin S., Chao J. et al., Penetration electric ields:Efficiency and characteristic time scale,2007, J. Atmos. Solar-Terr. Phys.,69(10),1135-1146.
    [189]Scherliess L. and Fejer B. G., Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res.1997,102(A11),24,037-24,046.
    [190]Detman T. R. and Vassiliadis D., Review of techniques for magnetic storm forecasting, in Magnetic Storms, Geophys. Monogr. Ser.,1997,98,253-266, AGU, Washington, D. C.
    [191]Kouris S. S., Fotiadis D. N. and Zolesi B., Specifications of the F-region variations for quiet and disturbed conditions, Phys. Chem. Earth,1999,24(4), 321-327.
    [192]徐彤,吴健,吴振森等,基于电离层暴时f0F2经验模型Kalman滤波短期预报,空间科学学报,2009,29(2),202-207。
    [193]Perrone L., Franceschi G., and McKinnell L. A., The time-weighted magnetic indices ap(r), PC(τ), AE(τ) and their correlation to the southern high latitude ionosphere, Phys. Chem. Earth(C),2001,26(5),331-334.
    [194]De Franceschi G., Gulyaeva T., Perrone L., et al., MAC:an oriented magnetic activity catalogue for ionospheric applications, U.R.S.I. International Reference Ionosphere News Letter,1999,6,5-6.
    [195]Gosling T. J., The solar flare myth, J. Geophys. Res.,1993,98(A11), 18937-18949.
    [196]Gonzalez W. D., Joselyn J. A., Kamide Y., et al., What is a geomagnetic storm? J. Geophys. Res.,1994,99(A4),5771-5792.
    [197]Duncan R. A., F-region seasonal and magnetic-storm behavior, J. Atmos. Solar-Terr. Phys.,1969,41(2),59-70.
    [198]Prolss G. W. Ionospheric F-region storms, Handbook of Atmospheric Electrodynamics, Boca Ration, CRC Press,1995, Vol.2.
    [199]Seherliess L., and Fjer B. G., Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res.,1997,102(A11),24037-24046.
    [200]Blank M. and Richmond A. D., The ionospheric disturbance dynamo, J. Geophys. Res.,1980,85(A4),1669-1686.
    [201]Cander L. R. Toward forecasting and mapping ionospheric space weather under the COST actions, Adv. Space Res.,2003,31 (4),957-964.
    [202]Zolesi B., Belehaki A., Tsagouri I., et al., Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Sci.,2004,39(2), RS2011, doi:10.1029/2003RS002936.
    [203]Tsagouri I., Belehaki A., Cander L R., A dynamic system to forecast ionospheric storm disturbances based on sloar wind conditions, Ann. Geophys., 2005,48(3),467-475.
    [204]魏勇,洪明华,万卫星等,行星际-赤道电场穿透效率的数值模拟研究,地球物理学报,2008,51(5),1279-1284。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700