用户名: 密码: 验证码:
基于网络编码的无线多媒体高效多播机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线宽带技术的快速发展,无线网络的容量有了很大提升。各种差错控制技术的不断改进也为无线网络的可靠传输提供了一定保障。这些技术的结合使得无线通信网络的业务承载能力大大增强,为诸如流媒体传送等新兴服务类型的出现提供了契机。尤其是可扩展视频编码技术的提出和标准化,在解决无线多播的异质终端问题的道路上迈出了一大步,它使得源端可以通过一次多播满足多个不同终端的数据接收需求,能够真正发挥多播的优势。然而,无线网络上的宽带多媒体业务的推广仍然存在着许多挑战:一方面,尽管网络的容量有所增加,其增加速度仍然无法与多媒体业务对带宽的需求增长速度相比,相对于旺盛的市场需求,带宽仍然是制约无线多媒体业务的一个重要因素;另一方面,尽管可以在传输中采取诸如自动请求重传、不等错误保护以及前向错误纠正等差错控制手段保护传送的数据,由于无线信道先天的物理特性,丢包仍然是不可避免的。重传所丢失的数据包所带来的时延会对用户的服务体验造成重大影响。与设计普通业务在无线网络中的传输机制不同的是,包时延、抖动、或者丢包率等传统服务质量(Quality of Service, QoS)参数并不能准确的刻画多媒体业务的实际传输质量,用户的主观体验质量(Quality of Experience, QoE)才是评价传输效果的重要依据。而用户的服务体验质量是多个复杂因素共同作用的结果,很难映射为具体的技术参数。因此,在设计无线多媒体业务传输机制时,需要同时考虑具体应用的传输需求和用户对传输效果的要求,利用有限的无线网络资源,为用户提供优质体验的多媒体数据传送服务。研究证实,网络编码技术能够增大多播网络容量,缩短重传时延。因此,在多媒体业务传输过程中恰当的利用网络编码技术能够提高传输效率。本文针对无线网络多媒体数据传输的具体应用场景,讨论了利用网络编码技术实现数据的高效可靠传输,为终端用户提供满意的服务体验的问题。论文首先研究了利用网络编码优化按需数据分发系统的接入时间的问题,提出一个启发式算法对所有用户的接入时间进行优化;然后,研究了可扩展视频业务的传输优化问题,对可扩展视频流的重传时延的优化是一个混合优化问题,我们也提出一个启发式算法进行求解;最后,受可扩展视频的优化问题的启发,我们对一类具有解码依赖关系的有序数据的传输优化问题进行了研究。
     主要的研究内容和创新点包括如下几个方面:
     1)研究了按需数据分发业务的用户接入时间最小化问题。通过分析多个用户所请求的数据之间存在的相关性,提出一个启发式的编码算法。该算法在每次多播前贪婪的搜索能满足最多用户的数据集合,并对该集合中的包进行线性编码后发送给用户。与直接采用随机线性编码算法进行多播相比,所提出的算法充分考虑了用户的实时收包情况,在普遍情况下具有更好的时延性能;只有当所有用户请求的数据和所接收到的数据的分布情况一致时,直接采用随机线性编码算法才具有较好的时延性能。
     2)研究了无线网络多播可扩展视频的视频重建时间最小化问题。从可扩展视频流的结构特征出发,提出了一个两阶段的可靠传输方案。
     (a)第一阶段是多播阶段,由于可扩展视频的所有增强层的解码都依赖于基层的正确解码,引入了层次化网络编码技术对视频的基层提供保护,保证在信道条件不佳的情况下,用户仍然可以有一定的概率解码基层,获得基本的重建视频质量。
     (b)第二阶段是重传阶段,根据第一阶段用户的收包情况和用户对视频重建的质量要求,重传视频包。提出一个最大化可解码用户数的编码算法,优化用户恢复视频所需要的等待时延。所提出的算法在重传过程中能够为用户提供一种“软”的视频恢复效果,视频重建的质量随着收包数的增加而提升。此外,算法还兼顾了各视频用户之间的公平性,具有低恢复质量要求的用户可以比高要求的用户更快的得到满足。
     3)研究了有序数据的渐进式重传问题。有序数据指的是一类具有优先级的数据,低优先级数据的解码依赖于高优先级的数据的解码。因此,传输此类数据时需要考虑数据在接收端的实际解码时延。
     (a)研究了理想反馈条件下有序数据的重传问题。采用包权重刻画数据间的优先级以及解码依赖关系,在此基础上,提出了两个优先级编码算法。所提算法能够为用户提供即时解码功能,使用户可以边接收包边解码,渐进的恢复原始数据。此外,用户也可以根据自己的需要制定接收结束时刻。与文献相比,所提出的算法对应特定优先级数据的解码时延更短,且系统的总接入时延也更小。
     (b)研究了非理想反馈条件下有序数据的重传问题。在已有工作的基础上,针对用户反馈丢失的情况,设计了相应的包更新策略,提出了非理想反馈的包选择编码算法。大量的实验结果表明所提出的算法能够较好的抵抗用户反馈丢失的事件,与文献相比,同等条件下具有更短的解码时延和总接入时间。
     无线网络多媒体通信方兴未艾,用户的服务体验是能否吸引订单的一个决定性因素。本论文从技术和用户需求角度出发,考虑在多种特定应用场景中优化用户的等待时延,提升用户服务体验。所提出的算法一方面能够更快的使用户接收到所要求的数据:另一方面还为用户提供了一个功能,使用户可以根据自己情况,“定制”服务,当用户主观上已经满意时,可以主动中断数据传输。这一功能贴合了无线用户的异质性要求,在信道带宽有限时也可以为系统节省一定资源。
With the rapid development of wireless broadband technology, the vol-ume of wireless network has been greatly improved. Meanwhile, the error control meth-ods provide good support for robust wireless communications. The combining of large capacity and efficient error control methods enhances the wireless network's ability to provide appealing applications, for example, the wireless streaming services. Moreover, the scalable video codec has been proposed and standardized to meet the requirements of heterogeneous wireless users. The scalable video coding standard enables the source to satisfy all users through one multicast and thus makes the best use of wireless multicast. However, the exploiting and spread of wireless broadband applications still face many challenges:On one hand, although the network capacity is growing, it is not fast enough to meet the expanding need of market. The bandwidth limit still hold the whole market back. On the other hand, owing to the physic nature of wireless channels, the packets erasure is inevitable no matter what error control method we adopt. The retransmission delay can be a great factor for the quality of experience (QoE). Differ from the design of wireless transmission strategies for common applications, the old metrics of Quality of Service (QoS), such as packet delay, jitter and packet loss ratio, are no longer accurate to evaluate the transmission of multimedia data, and the QoE becomes a much powerful tool to score the multimedia transmission. However, QoE is a result of multiple factors that is difficult to map to specific parameters. When designing the wireless transmission strategy for multimedia applications, the transmission requirements posed by particular application as well as clients should be considered at the same time. A good strategy shall is able to provide transmission service with high QoE with limited resources. Net-work coding has been proved to be an efficient way to improve the capacity of wireless multicast and to reduce the retransmission delay. Thus, it is beneficial to apply network coding appropriately in the transmission process for multimedia applications. This thesis considers the problems that applying network coding to transmit multimedia data effi-ciently and to provide good QoE for end users in wireless network. First, we studied the optimization of access time in on-demand data dissemination system based on network coding, and proposed a heuristic algorithm to minimize the total access time. Second, we studied the optimization of scalable video transmission. The problem is a combinatorial optimization problem and we designed a heuristic algorithm to resolve it. Last but not least, inspired by the second optimization problem, we studied the optimization problem of progressive transmission for in-order data.
     The main research innovations are as follows:
     1) Studied the problem of minimizing the total access time in on-demand data dis-semination system. Analyzed the relevance between multiple users' requested data items and proposed a heuristic algorithm. The proposed algorithm searches the best data items set that can meet the most users' requirements, and conducts linear com-bination on the found data items before multicast. Comparing to the random linear network coding method, our algorithm considers the users' instant reception status when searching the coding set, and thus achieves better delay performance in most cases, only when the reception status of all users are the same and they request the same data items that the random linear network coding method works better.
     2) Studied the minimization of video reconstruction time for scalable video in wireless network. Based on the structure characteristics of scalable video, proposed a two-stage transmission scheme.
     (a) The first stage is the multicast stage. All the enhancement layers of scalable video cannot be decoded until the base layer is decoded successfully, hence, the original video packets are encoded by hierarchical network coding method in order to provide some protection for the base layer, and to guarantee the base layer decodable probability.
     (b) The second stage is the retransmission stage, the sender retransmit packets based on receivers' requirements for video reconstructed quality and the pack-ets reception status in the first stage. Proposed a maximizing decoding users algorithm to optimize the waiting time receivers experience to get enough packets to reconstruct the video. The proposed algorithm provides receivers a "soft" video recover process that the quality of reconstructed video improves with the receiving of video packets. Further, the proposed algorithm exhibits a "fairness" among receivers that low-demanding receivers wait shorter than high-demanding receivers.
     3) Studied the progressive retransmission of in-order data. The in-order data represent that data with priority that the decoding of low priority data depends on the decod-ing of high priority data. Thus, it is important to consider the practical decoding delay on the receiver side for the transmission of in-order data.
     (a) Studied the progressive retransmission of in-order data under assumption of perfect feedback. The packet's priority and the decoding dependency of in-order data are addressed via weighting in the coded packets in the construction process to maximize a utility function. Proposed algorithms enable receivers to decode the retransmission packets instantly and progressively recover the original data, such that receivers can terminate the retransmission process at any point. Compared with the algorithm proposed in reference, our algorithms have shorter completion time and total access time.
     (b) Studied the progressive retransmission of in-order data under assumption of imperfect feedback. Based on the accomplished work, designed appropri-ate packets updating schemes and proposed corresponding coding algorithm-s. Extensive simulation results justify that the proposed algorithms achieve shorter completion time and total access time and thus fit for the imperfect feedback scenarios.
     The multimedia communications over wireless networks is rising, and the quality of experience of users is the key to its success. This thesis aims at optimizing delay and providing good QoE in multiple practical scenarios. The proposed algorithms not only serve users with better data transmission characteristics, but also provide an option that users can "customize" the service and cut off the transmission as long as the received data are enough for supporting their expecting QoE. These properties of proposed algorithms fit in with the heterogeneous property of wireless networks, and network resources can be saved when bandwidth is competed.
引文
[1]Collier R. The Law Of The Higher Potential 1947. Kessinger Publishing,2004.
    [2]Hanzo L, Haas H, Imre S, et al. Wireless Myths, Realities, and Futures:From 3G/4G to Optical and Quantum Wireless. Proceedings of the IEEE,2012,100(Special Centennial Issue):1853-1888.
    [3]L Hanzo J B, Ni S.3G,HSPA and FDD Versus TDD Networking:Smart Antennas and Adaptive Modulation. Wiley/IEEE Press,2008.
    [4]L Hanzo L W, Jiang M. MIMO-OFDM for LTE, WIFI and WIMAX:Coherent Versus non-Coherent and Cooperative Turbo-Transceivers. Wiley/IEEE Press,2010.
    [5]Han T, Ansari N, Wu M, et al. On Accelerating Content Delivery in Mobile Networks.
    [6]Butt L. Self-Concatenated Code Design and its Application in Power-Efficient Cooperative Communications, Third Quarter,2012.
    [7]Wang L, Hanzo L. Dispensing with Channel Estimation:Differentially Modulated Cooperative Wireless Communications. Communications Surveys Tutorials, IEEE,2012,14(3):836-857.
    [8]Nazir S, Stankovic V, Attar H, et al. Relay-Assisted Rateless Layered Multiple Description Video Delivery. Selected Areas in Communications, IEEE Journal on,2012, PP(99):1-9.
    [9]Philipp F, Klytta C, Glesner M, et al. Hardware acceleration of combined cipher and for-ward error correction for low-power wireless applications. Proceedings of Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC),2012 7th International Workshop on, 2012.1-7.
    [10]Nasraminallah N, Hanzo L. Near-Capacity H.264 Multimedia Communications Using Iterative Joint Source-Channel Decoding. Communications Surveys Tutorials, IEEE,2012,14(2):538-564.
    [11]Gho G H, Kahn J. Rate-Adaptive Modulation and Coding for Optical Fiber Transmission Systems. Lightwave Technology, Journal of,2012,30(12):1818-1828.
    [12]S Chia D R C S, Steele R. Propagation studies for a point-to-point 60 GHz micro-cellular system for urban environments. Proc. IEE Communi.,Birmingham, U.K.,1986.28-32.
    [13]Ahlswede R, Cai N, Li S Y, et al. Network information flow. Information Theory, IEEE Transactions on,2000,46(4):1204-1216.
    [14]Parag J F. Queueing Analysis of a Butterfly Network for Comparing Network Coding to Clas-sical Routing. Information Theory, IEEE Transactions on,2010,56(4):1890-1908.
    [15]Sagduyu Y, Guo D, Berry R. On the delay and throughput of digital and analog network coding for wireless broadcast. Proceedings of Information Sciences and Systems,2008. CISS 2008. 42nd Annual Conference on,2008.534-539.
    [16]Eryilmaz A, Ozdaglar A, Medard M, et al. On the Delay and Throughput Gains of Coding in Unreliable Networks. Information Theory, IEEE Transactions on,2008,54(12):5511-5524.
    [17]Zeng W, Ng C, Medard M. Joint coding and scheduling optimization in wireless systems with varying delay sensitivities. Proceedings of Sensor, Mesh and Ad Hoc Communications and Networks (SECON),2012 9th Annual IEEE Communications Society Conference on,2012. 416-424.
    [18]Sagduyu Y, Ephremides A. On Broadcast Stability of Queue-Based Dynamic Network Coding Over Erasure Channels. Information Theory, IEEE Transactions on,2009,55(12):5463-5478.
    [19]Li S Y, Yeung R, Cai N. Linear network coding. Information Theory, IEEE Transactions on, 2003,49(2):371-381.
    [20]Koetter R, Medard M. An algebraic approach to network coding. Networking, IEEE/ACM Transactions on,2003,11(5):782-795.
    [21]Ho T, Medard M, Koetter R, et al. A Random Linear Network Coding Approach to Multicast. Information Theory, IEEE Transactions on,2006,52(10):4413-4430.
    [22]Huang J, Wang L, Cheng W, et al. Polynomial Time Construction Algorithm of BCNC for Network Coding in Cyclic Networks. Proceedings of Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on,2009.228-233.
    [23]Jaggi S, Sanders P, Chou P, et al. Polynomial time algorithms for multicast network code construction. Information Theory, IEEE Transactions on,2005,51(6):1973-1982.
    [24]Jayakumar K K S S A. Network Coding for Routability Improvement in VLSI. Proceedings of Computer-Aided Design,2006. ICCAD'06. IEEE/ACM International Conference on,2006. 820-823.
    [25]Zeng R, Jiang Y, Lin C, et al. A Distributed Fault/Intrusion-Tolerant Sensor Data Storage Scheme Based on Network Coding and Homomorphic Fingerprinting. Parallel and Distributed Systems, IEEE Transactions on,2012,23(10):1819-1830.
    [26]Martalo M, Picone M, Bussandri R, et al. A Practical Network Coding Approach for Peer-to-Peer Distributed Storage. Proceedings of Network Coding (NetCod),2010 IEEE International Symposium on,2010.1-6.
    [27]Jafari M, Mohajer S, Fragouli C, et al. On the capacity of non-coherent network coding. Proceedings of Information Theory,2009. ISIT 2009. IEEE International Symposium on,2009. 273-277.
    [28]Maric I, Goldsmith A, Medard M. Multihop Analog Network Coding via Amplify-and-Forward:The High SNR Regime. Information Theory, IEEE Transactions on,2012,58(2):793-803.
    [29]Cui T, Ho T, Kliewer J. Achievable strategies for general secure network coding. Proceedings of Information Theory and Applications Workshop (ITA),2010,2010.1-6.
    [30]Oliveira P, Barros J. A Network Coding Approach to Secret Key Distribution. Information Forensics and Security, IEEE Transactions on,2008,3(3):414-423.
    [31]Lima L, Gheorghiu S, Barros J, et al. Secure network coding for multi-resolution wireless video streaming. Selected Areas in Communications, IEEE Journal on,2010,28(3):377-388.
    [32]Zhang J, Xu W, Wang X. Distributed Online Optimization of Wireless Optical Networks With Network Coding. Lightwave Technology, Journal of,2012,30(14):2246-2255.
    [33]Fouli K, Maier M, Medard M. Network coding in next-generation passive optical networks. Communications Magazine, IEEE,2011,49(9):38-46.
    [34]Iiu X, Fouli K, Kang R, et al. Network-Coding-Based Energy Management for Next-Generation Passive Optical Networks. Lightwave Technology, Journal of,2012,30(6):864-875.
    [35]Le A, Markopoulou A. TESLA-Based Defense against Pollution Attacks in P2P Systems with Network Coding. Proceedings of Network Coding (NetCod),2011 International Symposium on,2011.1-7.
    [36]Zhang X, Li B. On the Market Power of Network Coding in P2P Content Distribution Systems. Parallel and Distributed Systems, IEEE Transactions on,2011,22(12):2063-2070.
    [37]Niu D, Li B. Analyzing the Resilience-Complexity Tradeoff of Network Coding in Dynamic P2P Networks. Parallel and Distributed Systems, IEEE Transactions on,2011,22(11):1842-1850.
    [38]Bui H C, Meric H, Lacan J, et al. A Cooperative Network Coding Strategy for the Interference Relay Channel. Wireless Communications Letters, IEEE,2012,1(5):456-459.
    [39]Shrader B, Babikyan A, Jones N, et al. Rate Control for Network-Coded Multipath Relaying with Time-Varying Connectivity. Selected Areas in Communications, IEEE Journal on,2011, 29(5):1106-1117.
    [40]Zhang X, Su H. Network-coding-based scheduling and routing schemes for service-oriented wireless mesh networks. Wireless Communications, IEEE,2009,16(4):40-46.
    [41]Su H, Zhang X. Modeling throughput gain of network coding in multi-channel multi-radio wireless ad hoc networks. Selected Areas in Communications, IEEE Journal on,2009, 27(5):593-605.
    [42]Fan Y, Jiang Y, Zhu H, et al. PIE:cooperative peer-to-peer information exchange in network coding enabled wireless networks. Wireless Communications, IEEE Transactions on,2010, 9(3):945-950.
    [43]Li G, Cano A, Gomez-Vilardebo J, et al. High-Throughput Multi-Source Cooperation via Complex-Field Network Coding. Wireless Communications, IEEE Transactions on,2011, 10(5):1606-1617.
    [44]Zhang P, Lin C, Jiang Y, et al. ANOC:Anonymous Network-Coding-Based Communica-tion with Efficient Cooperation. Selected Areas in Communications, IEEE Journal on,2012, 30(9):1738-1745.
    [45]Khreishah A, Khali! I, Ostovari P, et al. Flow-based XOR Network Coding for Lossy Wireless Networks. Wireless Communications, IEEE Transactions on,2012,11(6):2321-2329.
    [46]Lin H T, Lin Y Y, Kang H J. Adaptive Network Coding for Broadband Wireless Access Networks. Parallel and Distributed Systems, IEEE Transactions on,2013,24(1):4-18.
    [47]Zhang X, Shin K G. Delay-Optimal Broadcast for Multihop Wireless Networks Using Self-Interference Cancellation. Mobile Computing, IEEE Transactions on,2013,12(1):7-20.
    [48]Chieochan S, Hossain E. Channel Assignment for Throughput Optimization in Multichan-nel Multiradio Wireless Mesh Networks Using Network Coding. Mobile Computing, IEEE Transactions on,2013,12(1):118-135.
    [49]Badia L. On the Effect of Feedback Errors in Markov Models for SR ARQ Packet Delays. Pro-ceedings of Global Telecommunications Conference,2009. GLOBECOM 2009. IEEE,2009. 1-6.
    [50]Schier M, Welzl M. Optimizing Selective ARQ for H.264 Live Streaming:A Novel Method for Predicting Loss-Impact in Real Time. Multimedia, IEEE Transactions on,2012,14(2):415-430.
    [51]Lin J, Feng K, Huang Y, et al. Novel Design and Analysis of Aggregated ARQ Protocols for IEEE 802.1 In Networks. Mobile Computing, IEEE Transactions on,2012, PP(99):1.
    [52]Annamalai A, Vaman D, Matyjas J, et al. Joint-design of multiresolution modulation and ARQ protocol for prioritized packet transmission in wireless ad-hoc networks. Proceedings of Military Communications Conference,2008. MILCOM 2008. IEEE,2008.1-7.
    [53]Wu M W, Kam P Y. ARQ with Channel Gain Monitoring. Communications, IEEE Transactions on,2012,60(11):3342-3352.
    [54]Wu M, Kam P Y. ARQ with Packet-Error-Outage-Probability QoS Measure. Proceedings of Communications (ICC),2011 IEEE International Conference on,2011.1-5.
    [55]Ausavapattanakun K, Nosratinia A. Analysis of Selective-Repeat ARQ via Matrix Signal-Flow Graphs. Communications, IEEE Transactions on,2007,55(1):198-204.
    [56]Neckebroek J, Bruneel H, Moeneclaey M. Application layer ARQ for protecting video packets over an indoor MIMO-OFDM link with correlated block fading. Selected Areas in Communi-cations, IEEE Journal on,2010,28(3):467-475.
    [57]Fujii S, Kaneko T, Hayashida Y. Effectiveness of copy-transmission in Go-Back-N ARQ sys-tem with selective repeat in intra-block and with limited retransmissions. Proceedings of Com-munication Systems and Networks (COMSNETS),2010 Second International Conference on, 2010.1-6.
    [58]Larsson P. Multicast Multiuser ARQ. Proceedings of Wireless Communications and Network-ing Conference,2008. WCNC 2008. IEEE,2008.1985-1990.
    [59]Wang W, Guo Z, Shen X, et al. Dynamic Bandwidth Allocation for QoS Provisioning in IEEE 802.16 Networks with ARQ-SA. Wireless Communications, IEEE Transactions on,2008, 7(9):3477-3487.
    [60]Kim C, Rhee S, Kim J, et al. Product Reed-Solomon Codes for Implementing NAND Flash Controller on FPGA Chip. Proceedings of Computer Engineering and Applications (ICCEA), 2010 Second International Conference on, volume 1,2010.281-285.
    [61]Chang C Y, Li Y, Hirata J. New 64-QAM Golay Complementary Sequences. Information Theory, IEEE Transactions on,2010,56(5):2479-2485.
    [62]Grigorescu E, Kaufman T. Explicit Low-Weight Bases for BCH Codes. Information Theory, IEEE Transactions on,2012,58(1):78-81.
    [63]Ma R, Cheng S. The Universality of Generalized Hamming Code for Multiple Sources. Com-munications, IEEE Transactions on,2011,59(10):2641-2647.
    [64]Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error-correcting coding and de-coding:Turbo-codes.1. Proceedings of Communications,1993. ICC'93 Geneva. Technical Program, Conference Record, IEEE International Conference on, volume 2,1993.1064-1070 vol.2.
    [65]Rui W, Lau V. Combined cross-layer design and HARQ for multiuser systems with outdated channel state information at transmitter (CSIT) in slow fading channels. Wireless Communi-cations, IEEE Transactions on,2008,7(7):2771-2777.
    [66]Boujemaa H. Delay Analysis of Cooperative Truncated HARQ With Opportunistic Relaying. Vehicular Technology, IEEE Transactions on,2009,58(9):4795-4804.
    [67]Choi J. On Large Deviations of HARQ with Incremental Redundancy over Fading Channels. Communications Letters, IEEE,2012,16(6):913-916.
    [68]Andriyanova I, Soljanin E. Optimized IR-HARQ Schemes Based on Punctured LDPC Codes Over the BEC. Information Theory, IEEE Transactions on,2012,58(10):6433-6445.
    [69]Marcille S, Ciblat P, Le Martret C J. Resource Allocation for Type-I HARQ Based Wireless Ad Hoc Networks. Wireless Communications Letters, IEEE,2012,1(6):597-600.
    [70]Aoun M, Lagrange X, Le Bidan R, et al. Throughput analysis of hybrid single-packet and multiple-packet truncated type-II HARQ strategies with unreliable feedback channel. Proceed-ings of Wireless Communications and Networking Conference (WCNC),2012 IEEE,2012.86-91.
    [71]Shi F, Yuan D. Cross-Layer Performance Analysis of TCP over Wireless Link with AMC and Type-Ⅲ HARQ. Proceedings of Spread Spectrum Techniques and Applications,2008. ISSSTA '08. IEEE 10th International Symposium on,2008.490-495.
    [72]Fricke J, Hoeher P. Reliability-based retransmission criteria for hybrid ARQ. Communications, IEEE Transactions on,2009,57(8):2181-2184.
    [73]Albanese A, Blomer J, Edmonds J, et al. Priority encoding transmission. Information Theory, IEEE Transactions on,1996,42(6):1737-1744.
    [74]Zhang S, Lau V. A novel unequal error protection (UEP) scheme using D-STTD for multicast service. Wireless Communications, IEEE Transactions on,2009,8(2):978-984.
    [75]Yao C, Zao J, Wang C H, et al. On Separation Vectors of Static Linear Network Codes with UEP Capability. Proceedings of Network Coding (NetCod),2011 International Symposium on,2011.1-6.
    [76]Alajel K, Xiang W, Wang Y. Unequal error protection scheme based hierarchical 16-QAM for 3-D video transmission. Consumer Electronics, IEEE Transactions on,2012,58(3):731-738.
    [77]Ni C, Hou C. Xiang W. A novel UEP scheme based upon rateless codes. Proceedings of Wireless Communications and Networking Conference (WCNC).2012 IEEE,2012.592-596.
    [78]Park J S, Park K H, Song H Y. Rate allocation for component codes of Plotkin-type UEP codes. Proceedings of Information Theory Proceedings (ISIT),2012 IEEE International Symposium on,2012.1578-1582.
    [79]Chou P A, Wu Y, Jain K. Practical Network Coding,2003.
    [80]Nguyen D, Tran T, Nguyen T, et al. Wireless Broadcast Using Network Coding. Vehicular Technology, IEEE Transactions on,2009,58(2):914-925.
    [81]Sadeghi P, Traskov D, Koetter R. Adaptive network coding for broadcast channels. Proceedings of Network Coding, Theory, and Applications,2009. NetCod'09. Workshop on,2009.80-85.
    [82]Wang Z, Hassan M. Blind xor:Low-Overhead Loss Recovery for Vehicular Safety Communi-cations. Vehicular Technology, IEEE Transactions on,2012,61(1):35-45.
    [83]Tournoux P, Lochin E, Lacan J, et al. On-the-Fly Erasure Coding for Real-Time Video Appli-cations. Multimedia, IEEE Transactions on,2011,13(4):797-812.
    [84]Lu L, Xiao M, Rasmussen L. Relay-Aided Broadcasting with Instantaneously Decodable Bina-ry Network Codes. Proceedings of Computer Communications and Networks (ICCCN),2011 Proceedings of 20th International Conference on,2011.1-5.
    [85]Zhang Z, Lv T, Su X, et al. Dual XOR in the Air:A Network Coding Based Retransmis-sion Scheme for Wireless Broadcasting. Proceedings of Communications (ICC),2011 IEEE International Conference on,2011.1-6.
    [86]Rezaee A, Pin Cahnon F, Zeger L, et al. Speeding Multicast by Acknowledgment Reduction Technique (SMART) Enabling Robustness of QoE to the Number of Users. Selected Areas in Communications, IEEE Journal on,2012,30(7):1270-1280.
    [87]Yang Z, Li M, Lou W. CodePlay:Live Multimedia Streaming in VANETs Using Symbol-Level Network Coding. Wireless Communications, IEEE Transactions on,2012,11(8):3006-3013.
    [88]Tang B, Ye B, Lu S, et al. Coding-Aware Proportional-Fair Scheduling in OFDMA Relay Networks. Parallel and Distributed Systems, IEEE Transactions on,2012, PP(99):1.
    [89]H264 I T R. Advanced video coding for generic audiovisual services. http://www.itu.int/ITU-T/ipr/, Nov.,2007.
    [90]H262 I T R, ISO/EC 13818-2(MPEG-2 Video) IT, JTC I. Generic Coding of Moving Pictures and Associated Audio Information-Part 2:Video,1, Nov.,1994.
    [91]H263 I T R. Video Coding for Low Bit Rate communication, Nov.,2000.
    [92]Visual) I M. Coding of audio-visual-Part 2:Visual, May,2004.
    [93]Schwarz H, Marpe D, Wiegand T. Overview of the Scalable Video Coding Extension of the H.264/AVC Standard. Circuits and Systems for Video Technology, IEEE Transactions on, 2007,17(9):1103-1120.
    [94]Pu W, Luo C, Wu F, et al. QoS-driven network coded wireless multicast. Wireless Communi-cations, IEEE Transactions on,2009,8(11):5662-5670.
    [95]Saeed B, Rengaraju P, Lung C, et al. QoS and Protection of Wireless Relay Nodes Failure Using Network Coding. Proceedings of Network Coding (NetCod),2011 International Sym-posium on,2011.1-5.
    [96]Tanigawa Y, Kim J O, Tode H. QoS-Aware Retransmission with Network Coding Based on Adaptive Cooperation with IEEE 802.11 e EDCA. Proceedings of Global Telecommunications Conference (GLOBECOM 2011),2011 IEEE,2011.1-5.
    [97]Chen W, Letaief K, Cao Z. Buffer-Aware Network Coding for Wireless Networks. Networking, IEEE/ACM Transactions on,2012,20(5):1389-1401.
    [98]Rani R, Papayee M. An efficient data dissemination method for wireless devices. Proceedings of Emerging Trends in Electrical and Computer Technology (ICETECT),2011 International Conference on,2011.897-900.
    [99]Li M, Yang Z, Lou W. CodeOn:Cooperative Popular Content Distribution for Vehicular Net-works using Symbol Level Network Coding. Selected Areas in Communications, IEEE Journal on,2011,29(1):223-235.
    [100]Yang D, Chen M. Data broadcast with adaptive network coding in heterogeneous wireless networks. Mobile Computing, IEEE Transactions on,2009,8(1):109-125.
    [101]Xu J, Tang X, Lee W C. Time-critical on-demand data broadcast:algorithms, analysis, and performance evaluation. Parallel and Distributed Systems, IEEE Transactions on,2006,17(1):3-14.
    [102]Koutsonikolas D, Wang C C, Hu Y. Efficient Network-Coding-Based Opportunistic Routing Through Cumulative Coded Acknowledgments. Networking, IEEE/ACM Transactions on, 2011,19(5):1368-1381.
    [103]Chu C H, Hung H P, Chen M S. A General Framework of Time-Variant Bandwidth Allocation in the Data Broadcasting Environment. Knowledge and Data Engineering, IEEE Transactions on,2010,22(3):318-333.
    [104]Chen L J, Yu C H, Tseng C L, et al. A content-centric framework for effective data dissemi-nation in opportunistic networks. Selected Areas in Communications, IEEE Journal on, June, 2008,26(5):761-772.
    [105]Park S, Lee E, Yu F, et al. Scalable and robust data dissemination for large-scale wireless sensor networks. Consumer Electronics, IEEE Transactions on, Aug.2010,56(3):1616-1624.
    [106]Liu K, Lee V C S. On-demand broadcast for multiple-item requests in a multiple-channel environment. INFORMATION SCIENCES,2010,180(22):4336-4352.
    [107]Lun D S, Medard M, Koetter R, et al. On coding for reliable communication over packet networks. Physical Communication,2008,1(1):3-20.
    [108]Khalek A, Caramanis C, Heath R. A Cross-Layer Design for Perceptual Optimization Of H.264/SVC with Unequal Error Protection. Selected Areas in Communications, IEEE Journal on, August 2012,30(7):1157-1171.
    [109]Wang Y, Chau L P, Yap K H. Bit-Rate Allocation for Broadcasting of Scalable Video Over Wireless Networks. Broadcasting, IEEE Transactions on, Sept.2010,56(3):288-295.
    [110]Nejati N, Yousefi"zadeh H, Jafarkhani H. Distortion optimal transmission of multi-layered FGS video over wireless channels. Selected Areas in Communications, IEEE Journal on, April 2010,28(3):510-519.
    [111]Chuah S P, Chen Z, Tan Y P. Energy-Efficient Resource Allocation and Scheduling for Mul-ticast of Scalable Video Over Wireless Networks. Multimedia, IEEE Transactions on, Aug. 2012,14(4):1324-1336.
    [112]Li P, Zhang H, Zhao B, et al. Scalable Video Multicast With Adaptive Modulation and Coding in Broadband Wireless Data Systems. Networking, IEEE/ACM Transactions on, Feb.2012, 20(1):57-68.
    [113]Li C, Xiong H, Zou J, et al. Distributed Robust Optimization for Scalable Video Multirate Mul-ticast Over Wireless Networks. Circuits and Systems for Video Technology, IEEE Transactions on, June 2012,22(6):943-957.
    [114]Lim W S, Kim D W, Suh Y J. Design of Efficient Multicast Protocol for IEEE 802.1 In WLANs and Cross-Layer Optimization for Scalable Video Streaming. Mobile Computing, IEEE Trans-actions on, May 2012, 11(5):780-792.
    [115]Zhu X, Schierl T, Wiegand T, et al. Distributed Media-Aware Rate Allocation for Video Multi-cast Over Wireless Networks. Circuits and Systems for Video Technology, IEEE Transactions on, Sept.2011,21(9):1181-1192.
    [116]Nguyen K, Nguyen T, Cheung S C. Video Streaming with Network Coding. Journal of Signal Processing Systems,2010,59:319-333.10.1007/s11265-009-0342-7.
    [117]JM85. http://iphome.hhi.de/suehring/tml/.
    [118]Liu L, Cheung G, Chuah C N. Rate-Distortion Optimized Joint Source/Channel Coding of WWAN Multicast Video for a Cooperative Peer-to-Peer Collective. Circuits and Systems for Video Technology, IEEE Transactions on,2011,21(1):39-52.
    [119]Li Z, Luo Q, Featherstone W. N-in-1 Retransmission with Network Coding. Wireless Com-munications, IEEE Transactions on,2010,9(9):2689-2694.
    [120]Munari A, Rossetto F, Zorzi M. Phoenix:making cooperation more efficient through net-work coding in wireless networks. Wireless Communications, IEEE Transactions on,2009, 8(10):5248-5258.
    [121]Swapna B, Eryilmaz A, Shroff N. Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting. Proceedings of Network Coding (NetCod),2010 IEEE International Symposium on,2010.1-6.
    [122]Sundararajan J, Sadeghi P, Medard M. A feedback-based adaptive broadcast coding scheme for reducing in-order delivery delay. Proceedings of Network Coding, Theory, and Applications, 2009. NetCod'09. Workshop on,2009.1-6.
    [123]Sorour S, Valaee S. On densifying coding opportunities in instantly decodable network cod-ing graphs. Proceedings of Information Theory Proceedings (ISIT),2012 IEEE International Symposium on,2012.2456-2460.
    [124]Wang S, Gong C, Wang X, et al. An Efficient Retransmission Strategy for Wireless Scalable Video Multicast. Wireless Communications Letters, IEEE,2012,1(6):581-584.
    [125]Sorour S, Valaee S. On Minimizing Broadcast Completion Delay for Instantly Decodable Network Coding. Proceedings of Communications (ICC),2010 IEEE International Conference on,2010.1-5.
    [126]Sorour S, Valaee S. An Adaptive Network Coded Retransmission Scheme for Single-Hop Wireless Multicast Broadcast Services. Networking, IEEE/ACM Transactions on,2011, 19(3):869-878.
    [127]Sorour S, Valaee S. Minimum Broadcast Decoding Delay for Generalized Instantly Decod-able Network Coding. Proceedings of Global Telecommunications Conference (GLOBECOM 2010),2010 IEEE,2010.1-5.
    [128]Sorour S, Valaee S. An Adaptive Network Coded Retransmission Scheme for Single-Hop Wireless Multicast Broadcast Services. IEEE/ACM Transactions on Networking,2011, 19(3):869-878.
    [129]Zhan C, Lee V, Wang J, et al. Coding-Based Data Broadcast Scheduling in On-Demand Broad-cast. IEEE Transactions on Wireless Communications,2011,10(11):3774-3783.
    [130]Cohen A, Biton E, Kampeas J, et al. Coded unicast downstream traffic in a wireless network: analysis and wifi implementation. EURASIP Journal on Advances in Signal Processing,2013, 2013(1):25.
    [131]Liu K, Lee V. On-demand broadcast for multiple-item requests in a multiple-channel environ-ment. Information Sciences,2010,180(22):4336-4352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700