用户名: 密码: 验证码:
高级量测体系中电能质量监测与通信调度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分布式能源的大量引入和需求侧用电管理技术的不断进步,作为智能电网重要组成部分的高级量测体系(AMI)因其在系统运行、资产管理和负荷响应等方面所体现出的显著优势而成为电力领域的研究热点之一。实现配用电环节实时在线准确监测和保证双向通信质量是高级量测体系的核心目标,而对其实质性研究却尚处于起步阶段。高级量测体系中的配用电环节电能质量监测较传统电能质量监测有更高的要求,主要体现在准确性、实时性和可实现性等方面,因此要求相应电能质量检测算法要有更高的精度、更快的速度并易于实现;合理的通信调度策略是保证AMI中信息及时、有效、可靠传输以及改善网络通信性能的有效手段。因此,本文的研究面向高级量测体系中的“监测”和“通信”两大方面,其中“监测”研究针对电压暂降、闪变、谐波和间谐波等电能质量核心指标的检测方法;“通信”研究针对优化调度策略和算法。
     电压暂降的3个特征量为暂降持续时间、暂降深度和相位跳变。为解决现有电压暂降检测方法在判断暂降起止时刻时因过于依赖暂降深度检测而存在的实时性差的问题,同时为提高电压暂降幅值与相位的检测实时性和准确性,提出了基于图像边缘检测与改进单相dq变换的电压暂降检测方法。首先根据数学形态运算构造图像边缘检测算子,并用其判断暂降发生的起止时刻,进而确定暂降持续时间;该方法基于暂降波形的几何特性进行检测,检测速度快且不依赖于暂降深度。然后,对单相dq变换进行改进,利用延时角度将单相系统构造为虚拟三相系统,进而将三相电压变换到dq旋转坐标系下,计算得到相应的电压暂降深度和相位跳变;检测过程和结果较传统方法更为快速、准确。
     为快速、准确地提取出电压闪变信号中的波动成分,在深入研究能量算子检波原理的基础上,提出了一种基于改进型Teager能量算子(ITEO)的电压闪变检波方法;该方法简洁、快速,能实时跟踪电压闪变波形变化。对单一频率波动源闪变信号和多频率波动源闪变信号分别进行了仿真分析,并与Hilbert检波法和能量算子检波法的检测结果进行了对比分析。为准确地获得电压闪变指标,在所提检波方法的基础上,提出了一种基于ITEO与FFT的闪变值测量方法,优化了闪变值测量过程,利用调制频率的相对电压波动值计算出闪变值,有效降低了瞬时闪变视感度在低频端的测量误差。
     针对常规小波包变换在谐波与间谐波检测时出现的频域混叠问题,提出了一种基于小波包遍历滤波的谐波与间谐波检测方法。首先通过小波包变换对原始信号进行分解重构得到各频段谐波与间谐波含量,进而对出现频域混叠的频段利用递归滤波器进行遍历滤波,分离该频段频率相近的谐波与间谐波。这种方法不仅具有较高的检测精度和良好的抗噪性能,而且与全频带滤波相比大大减少了计算量。
     为改善AMI的通信效率,从系统和特定网络两个层面研究了AMI信息传输调度策略。在系统层面,针对常规信息传输调度策略存在的缺陷,提出了基于用户重要性及设备和信息重要性的信息传输优化调度策略,并通过网络仿真软件OPNET进行了仿真验证。该调度策略在广域上,保证了重要电力用户的信息能够得到实时处理;在局域上,保证了用户的重要用电设备信息和一般用电设备重要信息能够得到实时处理。在特定网络层面,分析了AMI网络常规调度算法,在此基础上提出了一种基于初始优先级可调(IPR)的动态调度算法,该方法解决了静态调度灵活性差以及动态调度耗费资源大的问题,提高了网络资源利用率。
     针对高级量测体系对电能质量监测的实时性、准确性和网络化需求,开发了一种基于DSP与ARM双处理器架构的在线电能质量监测装置。阐述了主要单元电路结构和本文所提出的电能质量监测算法在DSP平台的实现方法。开发了具备多种网络通信接口的数据集中器和量测数据管理软件,与底层电能质量监测装置和其他智能设备共同组成了一个高级量测体系通信系统。通过该系统对所提出的电能质量监测算法和通信调度算法进行了实验验证,证明了所提出算法的可行性和有效性。
With the wide spread of DER (Distributed Energy Resource) and thecontinuous development of power management techniques at the demand side, AMI(Advanced Metering Infrastructure), as an important part of smart grid, is becomingone of the most popular research hotpots in power fields due to its significantadvantages in system operation, assets management and load response. The coreobjectives of AMI are to realize accurate online real-time monitoring and to ensurethe quality of two-way communication. However, the substantive research of AMIis still in its infancy. The power quality monitoring in AMI has higher requirementsthan traditional power quality monitoring, which mainly reflects in terms ofaccuracy, real-time performance and realizability. Thus, the power quality detectionalgorithm is suppposed to possess higher accuracy, faster speed and easierimplementation. Reasonable communication scheduling strategy is an effectivemeans to ensure timely, effective, and reliable information transmission as well asto improve the performance of network communication in AMI system. Therefore,the research in this dissertation can be divided into two major aspects: the“monitoring” and “communication” in the AMI system. The research of“monitoring” focuses on the detection methods of the core power quality ind icators,such as voltage sag, flicker, harmonic and inter-harmonic. The research of“communication” focuses on the optimal scheduling strategy and algorithms.
     The three characteristics of voltage sag are duration time, sag depth and phasejump. In order to solve the problem that the existing voltage sag detection methodis poor in real-time detection due to overly reliance on the sag depth detection whenjudging sag start-stop time, and to improve the real-time and accuracy of the phaseand amplitude detection of voltage sag, a voltage sag detection method based ongray image edge detection and improved single-phase dq transformation isproposed. First, the image edge detection operator is constructed on the basis ofmathematical morphological operations and used to judge the start and stop time ofvoltage sag. This method has a high detection speed. Meanwhile, it is independenton the sag depth because the detection is based on the geometric characteristics ofsag waveform. Second, the single-phase dq transformation is improved. The virtualthree-phase system was constructed using the delay angle of the single-phasevoltage, and then the three-phase voltage is transformed to dq rotatating coordinatesystem to compute the corresponding sag depth and phase jump. The detectionprocess and results are faster and more accurate than the traditional methods.
     In order to extract the fluctuant component from voltage flicker signa l quicklyand accurately, an improved Teager energy operator (ITEO) demodulation methodis proposed on the basis of the in-depth study of energy operator detection princ iple.The proposed method is simple, fast and can track the change of flicker waveform.Simulation analysis of both single frequency fluctuation source and multi-frequency fluctuation source flicker signal is carried out and compared with Hilbertdemodulation method and energy operator demodulation method. In order to obtainthe voltage flicker indicators accurately, a flicker value measurement method basedon ITEO and FFT is proposed based on the proposed demodulation method, whichoptimizes the measurement process. The flicker value is calculated using therelative voltage fluctuation value of the modulation frequency, which effectivelyreduces the measurement error of instantaneous flicker sensitivity in the low-frequency band.
     To resolve the frequency aliasing problem of conventional wavelet packettransform in harmonic and inter-harmonic detection, a novel detection methodbased on wavelet packet-traversal filtering is proposed. First, the origina l signal isdecomposed and reconstructed through the wavelet packet transform to get theharmonic and inter-harmonic components of each frequency band. Then, thealiasing bands are traversal filtered through a recursive filter to separate theharmonics and inter-harmonic components with adjacent ones. This approach notonly possesses high detection precision and good anti-noise performance, but alsogreatly reduces the computation amount compared with the full-band filter.
     In order to improve the communication efficiency of AMI system, theinformation transmission scheduling strategy is studied from two aspects: systemand specific network. At the system level, aim at the defects of conventionalinformation transmission scheduling strategy, an optimized strategy based on userimportance and device and information importance is proposed and validatedthrough network simulation software OPNET. In the wide area, the proposedscheduling strategy ensures timely processing of importance power users’information. In the local area, it ensures timely processing of information fromimportant device and important information from common device. At the specificnetwork level, the normal scheduling strategy of AMI network is analyzed, and thenan dynamic scheduling algorithm based on IPR (Initiative Priority Regulable) isproposed. This algorithm can solve the problems of inflexibility in static schedulingand large resource consumption in dynamic scheduling. It can also improve theutilization of network resources.
     Aim at the real-time, accuracy and network requirements for power quality monitoring in AMI, a device based on dual-processor (DSP and ARM) architectureis developed. The main unit circuit structure and the implementation of proposedpower quality detection algorithm on the DSP platform are illustrated. A dataconcentrator with various network interfaces and the measurement datamanagement software are developed, which togerther constitute an AMIcommunication system with the power quality monitoring device and otherintelligent devices. Experimental validation of the proposed power quality detectionalgorithms and communication scheduling strategies are carried out in this system.The results verify the feasibility and effectiveness of the proposed algorithms andstrategies.
引文
[1]余贻鑫,栾文鹏.智能电网述评[J].中国电机工程学报,2009,(34):1-8.
    [2]林宇锋,钟金,吴复立.智能电网技术体系探讨[J].电网技术,2009,33(12):8-14.
    [3] EPRI. Profiling and Mapping of Intelligent Grid R&D Programs,1014600[R].Palo Alto, CAClamart, France: EPRI and EDF R&D,2006:35-40.
    [4] Paul Haase. IntelliGrid: A Smart Network of Power[J]. EPRI Journal,2005:17-25.
    [5]韩丰,尹明,李隽等.我国智能电网发展相关问题探讨[J].电网技术,2009,33(15):47-53.
    [6]余贻鑫.智能电网的技术组成和实现顺序[J].南方电网技术,2009(2):1-5.
    [7]栾文鹏.高级量测体系[J].南方电网技术,2009(2):6-10.
    [8] Geert Deconinck. An evaluation of two-way communication means foradvanced metering in Flanders (Belgium)[C]//I2MTC2008-IEEEInternational Instrumentation and Measurement Technology Conference,Victoria, Vancouver Island, Canada, May12-15,2008:900-905.
    [9] Anon. Advanced Metering Infrastructure[R]. Research Reports International,2007:20-26.
    [10] U.S. Department of Energy Office of Electricity Delivery and EnergyReliability. National Energy Technology Laboratory[R]. Advanced meteringinfrastructure,2008:45-51.
    [11]肖湘宁,徐永海.电能质量问题剖析[J].电网技术,2001,25(3):66-69.
    [12] M. McGranaghan. Trends in Power Quality Monitoring[J]. IEEE PowerEngineering Review.2001,121(10):3-9.
    [13] S. Chen. Open Design of Networked Power Quality Monitoring Systems[J].IEEE Transactions on Instrumentation and Measurement.2004,53(2):597-601.
    [14] B. W. Kennedy. Power Quality Primer. McGraw-Hill Professional,2000:24-48.
    [15] A. K. Khan. Monitoring Power for the Future[J]. IEEE Power EngineeringJournal,2001,15(2):81-85.
    [16]徐永海,肖湘宁.电力市场环境下的电能质量问题[J].电网技术,2004,28(22):48-52.
    [17] J. Arrillaga, M. H. J. Bollen, N. R. Watson. Power Quality FollowingDeregulation[J]. Proceedings of the IEEE,2000,88(2):246-261.
    [18] F. M. Cleveland. Cyber Security Issues for Advanced MeteringInfrastructure(AMI)[C]//2008IEEE Power and Energy Society GeneralMeeting-Conversion and Delivery of Electrical Energy in the21st Century,2008:1-5.
    [19] Enrico VALLGI, Eugenion DI MARINO. Networks Optimization withAdvanced Meter Infrastructure and Smart Meters[C]//20th InternationalConference on Electricity Distribution,2009:8-11.
    [20] Sioe T. Mark. A Synergistic Approach to Implement Demand Response, AssetManagement and Service Reliability Using Smart Metering, AMI and MDMsystems[C]//The2009IEEE PES General Meeting Advance Program ofTechnical Sessions and Committee Meetings,2009:1-4.
    [21] Shang-Wen Luan, Jen-Hao Teng, Shun-Yu Chan, et. Development of a SmartPower Meter for AMI Based on ZigBee Communication[C]//InternationalConference on Power Electronics and Drive Systems,2009:661-665.
    [22] N. Pavlidou, A. J. Han Vinck, J. Yazdani, and B. Honary. Power LineCommunications: State of the Art and Future Trends[J]. IEEECommunications Magazine,2003,41:34-40.
    [23]肖世杰.构建中国智能电网技术思考[J].电力系统自动化,2009,33(9):1-4.
    [24]张景超,陈卓娅. AMI对未来电力系统的影响[J].电力系统自动化,2010,34(2):20-23.
    [25]苗新,张恺,田世明,等.支撑智能电网的信息通信体系[J].电网技术,2009,33(17):8-13.
    [26] Shang-Wen Luan, Jen-Hao Teng, Shun-Yu Chan, et. Development of a SmartPower Meter for AMI Based on ZigBee Communication[C]//InternationalConference on Power Electronics and Drive Systems,2009:661-665.
    [27]刘念,张建华.互动用电方式下的信息安全风险与安全需求分析[J].电力系统自动化,2011,35(02):79-81.
    [28] Nielsen J G, Newman M. Control and testing of a dynamic voltage restorer(DVR) at medium voltage level[J]. IEEE Trans on Power Electronics,2004,19(3):806-813.
    [29]赵静.电能质量扰动信号检测与识别算法研究[D].成都:西南交通大学学位论文,2010:3-5.
    [30]范峥,田效伍,马俊龙.基于递归复小波变换的电压暂降检测虚拟仪器的设计[J].电力自动化设备,2008,06:100-102.
    [31]郑鹏飞,刘献成.电能质量标准体系简述[J].电测与仪表,2010,47(563):123-126.
    [32]佟为明,宋雪雷,时文东.电能质量相关标准及分析[J].低压电器,2007(21):60-63.
    [33]林海雪,徐静.电能质量国家标准介绍[J].上海电力,2005(3):221-227.
    [34] Lu Ganyun, Wang Xiaodong. Voltage sags detection and identification basedon Phase-shiftand RBF neural network fuzzy system sand knowledgediscovery[C]//The4th International Conference on Fuzzy Systems andKnowledge Discovery, Haikou, China,2007:27-30.
    [35] Gomez J C, Morcos M M. Voltage Sag and Recovery Time in RepetitiveEvents[J]. IEEE Transactions on Power Delivery,2002,17(4):1037-1043.
    [36] Wei Kong, Xinzhou Dong, Zhe Chen.Voltage sag source location based oninstantaneous energy detection[C]//IEEE Power Engineering Conference,2007:90-94.
    [37]肖湘宁,徐永海,刘昊.电压凹陷特征量检测算法研究[J].电力自动化设备,2002,22(1):19-22.
    [38] Prudenzi A, Quaia S, Zaninelli D. Surveying PQ aspects in Italian industrialcustomers[C]//Transmission and Distribution Conference and Exposition,Dallas, USA, IEEE PES,2003(1):211-216.
    [39] Moschakis M N, Hatziargyriou N D. Analytical calculation and stochasticassessment of voltage sags[J]. IEEE Trans Power Del,2006,21(3):1727-1734.
    [40] Martinon J, Poisson O, Dechateauvieux F. A project about voltage dips andshort interruptions to meet customers’ requirements[J]. Power Supply,2001,18(2):7-10.
    [41]周林,吴红春,孟蜻,等.电压暂降分析方法研究[J].高电压技术,2008,34(5):1010-1016.
    [42]吕干云,孙维蒙,汪晓东,等.利用三点法的电压暂降源定位方法[J].中国电机工程学报,2011(7):25-26.
    [43] Saninta P. Assessment and prediction of voltage sag in transmission system innorthern area of Thailand [C]//Harmonics and Quality of Power13thInternational Conference,2008:1-6.
    [44] Bollen M H J. Understanding power quality problems voltage sags andinterruptions [J]. IEEE PRESS,2000:26-28.
    [45] Alves M, Fonseca V. A dedicated software for voltage sag stochasticestimate[C]//10th International Conference on Harmonics and Quality ofPower,2002:99-1042.
    [46] Tayjasanant T, Li C, Xu W. A resistance sign-based method for voltagesagsource detection[J]. IEEE Transactions on Power Delivery,2005,20(4):2544-2551.
    [47] Aung M T, Milanovic J V, Gupta C P. Propagation of asymmetrical sags andthe influence of boundary crossing lines on voltage sag predietion[J]. IEEETransactions on Power Delivery,2004,19(4):1819-1827.
    [48]肖先勇,马超,杨洪耕,等.用电压暂降严重程度和最大嫡评估负荷电压暂降敏感度[J].中国电机工程学报,2009,29(31):31-34.
    [49] Bollen M H J. Voltage Sags and Interruptions[M]. IEEE Press New York,2002:1-55.
    [50]张亚飞,颜湘武,娄尧林.一种新的电压骤降特征量检测方法[J].电力系统自动化,2004,28(2):41-44.
    [51]张庆超,肖玉龙.一种改进的电压暂降检测方法[J].电工技术学报,2006,21(2):123-126.
    [52] C. Fitzer, M. Barnes, P. Green. Voltage Sag Detection Technique for aDynamic Voltage Restorer[C]//Proceedings of Industry ApplicationsConference. Pittsburgh,2002:917-924.
    [53]刘连光,贾文双,肖湘宁,等.用小波变换和有效值算法实现电压凹陷的准确测量[J].电力系统自动化.2003,27(11):30-33.
    [54]李智勇,吴为麟.基于分形测度的电压暂降持续时间检测[J].电工技术学报,2007,22(9):148-153.
    [55]赵凤展,杨仁刚.基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报.2007,27(10):28-34
    [56] E. Perez, J. Barros. An Extended Kalman Filtering Approach for Detectionand Analys is of Voltage Dips in Power Systems[J]. Electric Power SystemsResearch,2008,78(1):618-625.
    [57]刘应梅,白晓民,王文平,等.基于Dyn测度的电压暂降检测方法[J].电力系统自动化,2004,28(2):45-49.
    [58] M. T. Chen. Digital Algorithm for Measurement of Voltage Flicker[J]. IEEEProceedings-Generation, Transmission and Distribution,1997,144(2):175-179.
    [59] Flickermeter-Functional and Design Specifications[R]. IEC Publication868,1986:20-26.
    [60] L. Peretto, A. E. Emanuel. A Theoretical Study of the Incandescent FilamentLamp Performance under Voltage Flicker[J]. IEEE Transactions on PowerDelivery,1997,12(1):279-288.
    [61]马玉龙,刘连光,张建华,等. IEC闪变测量原理的数字化实现方法[J].中国电机工程学报,2001,21(11):92-95.
    [62] S. Nuccio. A Digital Instrument for Measurement of Voltage Flicker[C]//Proceedings of IEEE Instrumentation and Measurement TechnologyConference. Ottawa,1997:281-284.
    [63]贾秀芳,赵成勇,胥国毅,等. IEC闪变仪误差分析及改进设计[J].电工技术学报,2006,21(11):121-126.
    [64] J. Jatskevich, O. Wasynczuk, L. Conrad. A Method of Evaluating Flicker andFlicker-Reduction Strategies in Power Systems. IEEE Transactions on PowerDelivery,1998,13(4):1481-1487.
    [65] W. Kang, X. W. Yan, L. X. Zhang. A Modified Digital Measuring Method onFlickering[C]//Proceedings of Conference on Environmental Electromagnetic.Hangzhou,2003:621-625.
    [66] S. M. Halpin, R. Bergeron, T. M. Blooming, et al. Voltage and Lamp FlickerIssues: Should the IEEE Adopt the IEC Approach[J]. IEEE Transactions onPower Delivery,2003,18(3):1088-1097.
    [67]周林,徐会亮,孟婧.电压波动检测方法的研究进展[J].电气应用,2007,26(7):6-10.
    [68]张宇辉,陈晓东,刘思革.采用小波包分析和拟同步检波的电压闪变信号检测方法[J].继电器,2004,32(3):6-9.
    [69] S. Huang, C. T. Hsien. Application of Continues Wavelet Transform for Studyof Voltage Flicker-Generated Signals[J]. IEEE Transactions on Aerospace andElectric Systems,2000,36(3):925-932.
    [70]堵俊,邵振国,郭晓丽,等.用小波分析提取电压闪变的幅值调制信号[J].电力系统及其自动化学报,2006,18(3):34-37.
    [71] S. J. Huang, C. W. Lu. Enhancement of Digital Equivalent Voltage FlickerMeasurement Via Continuous Wavelet Transforms[J]. IEEE Transactions onPower Delivery,2004,19(2):663-670.
    [72] M. T. Chen, A. P. S. Meliopulos. Wavelet-Based Algorithm for Voltage FlickerAnalysis[C]//Proceedings of the Ninth International Conference on Harmonicsand Quality of Power. Orlando,2000:732-738.
    [73]王志群,朱守真,周双喜. Hilbert变换求取电压闪变有关参数[J].电力系统自动化,2004,28(5):34-38.
    [74] E. A. Feilat. Detection of Voltage Envelope Using Prony Analysis-HilbertTransform Method[J]. IEEE Transactions on Power Delivery,2006,21(4):2091-2093.
    [75] T. K. Abdel-Galil, E. F. EI-Saadany, M. M. A. Salama. Online Tracking ofVoltage Flicker Utilizing Energy Operator and Hilbert Transform[J]. IEEETransactions on Power Delivery,2004,12(2):861-867.
    [76]舒泓,王毅.基于数学形态滤波和Hilbert变换的电压闪变测量[J].中国电机工程学报,2008,28(1):111-114.
    [77]李天云,赵妍,韩永强. Hilbert-Huang变换方法在谐波和电压闪变检测中的应用[J].电网技术,2005,29(2):73-77.
    [78]张萍,余健明,魏磊.用瞬时无功功率理论求闪变电压参数[J].高电压技术,2007,33(4):134-137.
    [79]刘阳,杨洪耕.基于独立分量分析的电压闪变检测方法[J].电力自动化设备,2007,27(11):34-37.
    [80]陈雪松,杨洪耕.递归最小二乘法追踪电压闪变包络线[J].电力自动化设备,2006,26(6):30-32.
    [81]刘阳,杨洪耕.盲信号分离在电压闪变分析中的应用[J].电工技术学报,2007,22(3):138-142.
    [82]肖雁鸿,毛筱,周靖林,等.电力系统谐波测量方法综述[J].电网技术,2002,26(6):61-64.
    [83]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社.1998:50-59.
    [84] G. T. Heydt, P. S. Fjeld, C. C. Liu, et al. Applications of the Windowed FFT toElectric Power Quality Assessment[J]. IEEE Transactions on Power Delivery,1999,14(4):1411-1416.
    [85] F. S. Zhang, Z. X. Geng. The Algorithm of Interpolating Windowed FFT forHarmonic Analys is of Electric Power System[J]. IEEE Transactions on PowerDelivery,2001,16(2):160-164.
    [86] H. Xue, R. Yang. Optimal Interpolating Windowed Discrete FourierTransform Algorithms for Harmonic Analysis in Power Systems[J]. IEEEProceedings-Generation, Transmission and Distribution,2003,150(5):583-587.
    [87] Z. P. Fang, J. S. Lai. Generalized Instantaneous Reactive Power Theory forThree-Phase Power Systems[J]. IEEE Transactions on Instrumentation andMeasurement,1996,45(1):293-297.
    [88] M. Ucar, E. Ozdemir, M. Kale. An Analysis of Three-Phase Four-Wire PowerFilter for harmonic Elimination Reactive Power Compensation and LoadBalancing Under Nonideal Mains Voltage[C]//Proceedings of IEEE PowerElectronics Specialists.2004,4(4):3089-3094.
    [89] V. Soares, P. Verdelho, G. Marques. Active Power Filter Control Circuit Basedon the Instantaneous Active and Reactive Current Id-iq Method[C]//Proceedings of IEEE28th Annual Power Electronics Specialists Conference,St. Louis,1997:1096-1101.
    [90]张波,易颂文,何晓敏.基于广义d-q旋转坐标变换的谐波电流检测方法[J].电力系统及其自动化学报,2001,(3):5-29.
    [91] L. L. Lai, W. L. Chan, C. T. Tse, et al. Real-Time Frequency and HarmonicEvaluation Using Artificial Neural Networks[J]. IEEE Transactions on PowerDelivery,1999,14(1):52-59.
    [92] H. C. Lin. Dynamic Power System Harmonic Detection Using NeuralNetwork[C]//Proceedings of IEEE Cybernetics and Intelligent Systems.Singapore,2004:757-762.
    [93]王小华,何怡刚.基于神经网络的电力系统高精度频率谐波分析[J].中国电机工程学报,2007,27(34):102-106.
    [94] I. E. Amin, I. Arafah. Artific ial Neural Network for Power Systems HarmonicEstimation[C]//Proceedings of the8th International Conference on Harmonicsand Quality of Power. Athens,1998,2(2):999-1009.
    [95] L. W. Zhou, Z. C. Li. A Novel Active Power Filter Based on the LeastCompensation Current Control Method[J]. IEEE Transactions on PowerElectronics,2000,15(4):655-659.
    [96]周林,夏雪,万蕴杰,等.基于小波变换的谐波测量方法综述[J].电工技术学报,2006,21(9):67-74.
    [97] L. L. Lai, W. L. Chan, C. T. Tse, et al. Real-Time Frequency and HarmonicEvaluation Using Artificial Neural Networks[J]. IEEE Transactions on PowerDelivery,1999,14(1):52-59.
    [98] H. Qian, R. X. Zhao, T. Chen. Interharmonics Analysis based on InterpolatingWindowed FFT Algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2):1064-1069.
    [99] V. L. Pham, K. P. Wong. Antidistortion Method for Wavelet Transform FilterBanks and Nonstationary Power System Waveform Harmonic Analys is[J].IEEE Proceedings-Generation, Transmission and Distribution,2001,148(2):117-122.
    [100] T. Tarasiuk. Hybrid Wavelet-Fourier Method for Harmonics and HarmonicSubgroups Measurement-Case Study[J]. IEEE Transactions on PowerDelivery,2007,22(1):4-17.
    [101] J. Barros, R. I. Diego. Analysis of Harmonics in Power Systems Using theWavelet-Packet Transform[J]. IEEE Transactions on Instrumentation andMeasurement,2008,57(1):63-69.
    [102]薛惠,杨仁刚.基于连续小波变换的非整数次谐波测量方法[J].电力系统自动化,2003,27(5):49-53.
    [103] S. Santoso, W. M. Grady, E. J. Powers. Characterization of Distribution PowerQuality Events with Fourier and Wavelet Transform[J]. IEEE Transactions onPower Delivery,2000,15(1):247-254.
    [104] Z. L. Gaing. Wavelet-Based Neural Network for Power DisturbanceRecognition and Classification[J]. IEEE Transactions on Power Delivery,2004,19(4):1560-1568.
    [105] M. A. Livani, J. Kaiser, W. J. Jia. Scheduling Hard and Soft Real-timeCommunication in the Controller Area Network[J]. Control EngineeringPractice,1999,(7):1515-1523.
    [106] S. Fuster, F. Guez, A. Bonastre. Software-based EDF Message Scheduling onCAN Networks[C]//Proceedings of the Second International Conference onEmbedded Software and Systems. Washington DC, USA,2005:450-455.
    [107]莫徐良.多级控制网络数据传输的实时性研究[D].安徽:合肥工业大学学位论文,2011:26-28.
    [108]张奇智,曹春生,张卫东. EDF调度方法在交换式工业以太网中的实现[J].化工自动化及仪表,2004,31(6):41-43
    [109] K. M. Zuberl, K. G. Shin. Design and Implement of Efficient MessageScheduling for Controller Area Network[J]. IEEE Transactions on Computer,2000,49(2):182-188.
    [110] Heine P, Pohjanheimo P, Lehtonen Metal. A method for estimating thefrequency and cost of voltage sags[J]. IEEE Trans. on Power Systems,2002,17(2):290-296.
    [111] Bollen M H J. Understanding Power Quality Problems Voltage Sag andInteriuptions [M]. IEEE Press New York,2000:35-37.
    [112]陈铁敏,杨洪耕.基于改进故障点法的电压凹陷评估[J].电力自动化设备,2008,28(6):66-70.
    [113]严居斌,刘晓川,杨洪耕,等.基于小波变换模极大值原理和能量分布曲线的电力系统短期扰动分析[J].电网技术,2002,26(4):16-19.
    [114] I. Juan A M,Jacinto M A. Voltage sag stochastic prediction using an electro-magnetic transients program[J]. IEEE Trans on Power Delivery,2004,19(4):1975-1982.
    [115] Gupta P,Milanovic J V. Probabilistic assessment of equipment trips due tovoltage sags[J]. IEEE Trans on Power Delivery,2006,21(2):711-718.
    [116] Gomez J C, Morcos M M. Voltage Sag and Recovery Time in RepetitiveEvents[J]. IEEE Transactions on Power Delivery,2002,17(4):1037-1043.
    [117] Chaiyant Boonmee, Yuttana Kumsuwa, Suttichai Premrudeepchacharm.Imple-mentation of real time three phase balanced voltage sag generator1kVA: using microcontroller and PC control[C]//ICROS-SICE InternationalJoint Conference,2009:903-907.
    [118]冯小明,杨仁刚.动态电压恢复器的形态学-dq变换综合检测算法[J].中国电机工程学报,2004,24(11):193-198.
    [119]郭跃霞.数学形态学在电力系统中的应用研究[D].吉林:东北电力大学学位论文,2008:1-9.
    [120]陈平,李庆民.基于数学形态学的数字滤波器设计与分析[J].中国电机工程学报,2005,25(11):60-65.
    [121]欧阳森,王建华,宋政湘,等.基于数学形态学的电力系统采样数据处理方法[J].电网技术,2003,27(9):61-65.
    [122] Dugan R C. Electrical Power Systems Quality[J]. McGraw Hill,2005:23-78.
    [123]黄文清,戴瑜兴.基于Teager能量算子的电能质量扰动实时检测方法[J].电工技术学报,2007,22(6):153-158.
    [124] M. I. Marei, E. F. El-Saadany, M. M. A. Salama. Envelope TrackingTechniques for Flicker Mitigation and Voltage Regulation[J]. IEEETransactions on Power Delivery,2004,19(4):1854-1861
    [125] M. Ucar, E. Ozdemir, M. Kale. An Analysis of Three-Phase Four-Wire PowerFilter for harmonic Elimination Reactive Power Compensation and LoadBalancing Under Nonideal Mains Voltage[C]//Proceedings of IEEE PowerElectronics Specialists,2004,4(4):3089-3094
    [126] Qian H, Zhao R X, Chen T. Interharmonics Analysis Based on InterpolatingWindowed FFT Algorithm[J]. IEEE Transactions on Power Delivery,2007,22(2):1064-1069.
    [127] TIAN Shiming, XU Renwu. Key technology research of China advancedmetering infrastructure[C]//2010International Conference on Power SystemTechnology, October24-28,2010, Hangzhou, China.2010:1-7.
    [128] MEHDI A,VAHID S, BEHZAD A. Advanced metering infrastructure systemarchitecture[C]//2011Asia-Pacific Power and Energy Engineering Conference,March25-28,2011,Wuhan, China.2011:1140-1146.
    [130]李馨,叶明. OPNET Modeler网络建模与仿真[M].西安:西安电子科技大学出版社,2006.
    [131] C. L. Liu, J. W. Layland. Scheduling Algorithms for Multiprogramming in aHard Real-time Environment[J]. JACM.1973,20(1):46-61.
    [132] N. C. Audsley, A. Burns, M. F. Richardson. Hard Real-time Scheduling: theDeadline Monotonic Approach[C]//Proceedings8th IEEE Workshop on Real-time Operating Systems and Software,1997,(5):15-17.
    [133]邢群科,郝红卫,温天江.两种经典实时调度算法的研究与实现[J].计算机工程与设计,2006,27(1):117-119.
    [134] P. Predreiras, L. Almedia. EDF Message Scheduling on Controller AreaNetwork[J]. Computing and Control Engineering Journal,2002,(8):163-170.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700