用户名: 密码: 验证码:
高精度Sigma-Delta调制器研究及ASIC实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过采样求和-增量(Sigma-Delta or ΣΔ) A/D转换器(ADC)是目前高精度ADC领域中最为流行的一种结构。集成电路制造工艺的飞速发展使得ΣΔADC以速度换精度的想法得以很好的实现。在音频,数字电视以及无线通信和石油勘探领域,ΣΔADC都有着广泛的应用。ΣΔADC结构在上世纪60年代早期被提出,限于当时集成电路工艺水平的限制,在开始提出后,并不被重视,直到70年代后期,随着集成电路工艺水平的进步,其速度换取精度的想法才逐渐被重视,整个80年代ΣΔADC经历了飞速发展,出现了很多的理论模型和研究论文。从原理上讲,ΣΔADC前端模拟调制器的阶数越高,其噪声调制性能就越好,然而高阶调制器具有一个严重问题,即稳定性差,信号输入范围小。通常在设计中,都是通过仿真来确定高阶调制器的稳定输入范围。虽然自结构提出以来,ΣΔADC结构模型和研究论文层出不穷,但直到目前,尚未提出一套理论体系来指导如何设计出宽输入动态范围,稳定性高的高阶调制器。如何设计高精度,高阶稳定的ΣΔADC依然是研究的热点和难点。
     ΣΔADC总体结构上可分为两个部分:前端模拟调制器和后端数字滤波器。对于数字滤波器,无论是结构模型,还是实现技术都较为成熟,且只涉及到数字电路设计,相对前端模拟调制电路较为简单。在ΣΔADC中,后端数字滤波器通常分为两级,第一级滤波器主要实现数字抽取,降低采样率,通常使用较多的通过移位链实现的梳状(Comb)滤波器;第二级通常为有限冲击响应(FIR)滤波器,在完成降频的同时用以防混叠。对Σ-Δ ADC精度起着决定影响是前端模拟调制器部分,这是ΣΔDC的主要研究内容和方向。模拟调制器完成噪声调制作用,本质上是一个模拟滤波网络,通过多级级联结构,将基带噪声挤压到高频处,而后通过后端数字滤波器将这些被挤压到高频处的噪声滤除,从而实现高精度的AD变换。模拟调制器单环结构中的级联级数也被称为阶数,阶数越高,噪声调制性能越好,然而稳定性越差,稳定输入信号范围越小。目前采用较多的是单环4阶调制结构。1阶,2阶调制器是绝对稳定的,于是产生了使用1阶或2阶单环结构叠加的调制器,这被称为MASH结构,MASH结构从根本上解决了稳定性问题,但是其自身的问题是要求各单环结构之间匹配性精确,这对实际的电路制造工艺提出了极高的要求,以目前的制造工艺而言,MASH结构的噪声调制性能仍然无法匹敌单环高阶结构。研究单环高阶高稳定性的∑△模拟调制器依然是目前较为流行的一个方向。本文研究内容也集中在前端模拟调制器,主要包括如下几个方面:一是采用根轨迹图的方法分析模拟调制器稳定性问题,采用此方法,只要给出调制器噪声传递函数,即可给出调制器的稳定输入信号范围。二是在前人研究的基础上,分析提出设计高阶模拟调制器的统一方法。利用此方法可快速完成一个基本满足设计指标的调制器的噪声传递函数。三是对当前比较流行的模拟调制器结构进行了分析,在此基础上,结合具体实例,给出了如何根据设计所需的噪声性能选择结构完成具体设计。四是在所选择结构的基础上,给出了一个单环4阶∑△模拟调制器的ASIC电路具体设计和实现过程。
     本文结构安排如下:
     第一章为论文绪论部分,介绍了论文研究背景,ΣΔADC发展历史,论文研究内容,创新点等。
     第二章着重分析∑△调制器的主要常见结构,提出结构模型,利用根轨迹图方法对高阶调制器稳定性进行了详细的分析。本章最后对部分MASH结构也进行了介绍。
     第三章在前文分析的基础上,完成了一个单环4阶∑△调制器原理图设计,并对构成调制器各模块的非线性,非理想性因素进行了讨论和模型提取,使用Matlab进行了模型仿真,对原理图设计的正确性进行了验证。
     第四章在第三章设计得到的原理图的基础上详细的讨论了晶体管级电路实现,给出了前仿真结果,进一步验证原理图设计的正确性。
     第五章则给出了∑△调制器主要模块的版图设计以及各模块的后仿真结果,最后给出了整个∑△调制器版图设计后的后仿真结果,对整个调制器设计的正确性进行最后的确认和验证。
     第六章构建测试平台对流片芯片进行了实际测试和功能验证,给出了基本测试结果。
     第七章为本论文的总结和展望,给出了调制器设计中可以进行改进的方面,并提出了下一步的研究方向。
The oversampling ΣΔ (sigma-Delta) analog to digital convertors (ADCs) are currently one of the most prevailing architectures for high-resolution ADCs. The fast development of integrated circuit's manufacture process makes the thought of exchanging resolution with speed nicely implementable. ΣΔ ADCs have now widely applied to audio, digital TV, wireless communication and oil exploration. The fundamental structure of ΣΔ ADC was firstly proposed at the beginning of60s of last century, however, with the restriction of the manufacture process of integrated circuit, it was not paied much attention to. Until in later70s, with the fast improvement of the manufacture process, the idea of exchanging resolution with speed was gradually recognized. Many theory models and papers turned up in80s and ΣΔ ADC experienced a fast developing period. Principly speaking, as the order of analog modulator in ΣΔ ADC increases, the noise performance of ΣΔ ADC would be better and the structure stability would be worse. Normally, the stability characteristic is confirmed by post-simulation of modulator circuit and there is no theory system that could direct to design a high-order stability-free ΣΔ ADC. How to design a high-resolution, high-stability ΣΔ ADC is still a research hot spot and a diffcult issue.
     ΣΔ ADC is divided into two parts structurely:a front-end analog modulator and a back-end digital filter. Digital filter, whether from structure or from implementation, is mature, and as it only covers ditigal circuit process, it is relatively simple compared with analog modulator. The digital filter in ΣΔ ADC is usually comprised of two stages:the first stage mainly functions as a decimator to reduce the sampling rate. Comb filter is a prevailing structure in this stage, which is usually implemented by cascaded carry chains. The second stage is normally a FIR filter, which functions mainly as an anti-aliasing filter and at the same time also a decimator against the first stage. The performance of front-end analog modulator plays a decisive influence on the whole ΣΔ ADCs, so most of the researchs on ΣΔ ADCs mainly concentrate on the front-end analog modulator. In essence, the analog modulator is also a filter, which prepells the noise of base-band to high-frequence area. These high-frequency noises will eventually be removed by back-end digital filters to achieve high-resolution then. As said above, the higher order of analog modulator, the better will be the performance, however, the worse stability of modulator. Currently, single-loop fourth-order modulator is used often. One-order and two-order modulator is unconditionally stable, thus a structure named MASH is created, which constitutes several one-order or two-order single-loops. However, MASH structure proposes a high standard for circuit matching, which under current manufacture process, is hard to achieve. Single-loop modulators are still a mainstream of researches nowadays. This dissertation thus concentrates on studies of high-order modulators and mainly includes the following issues, firstly, analyzing the stability of high-order modulators using root locus plot. With this plot, the stable signal input range will be given as long as the noise transfer function (NTF) is provided. Secondly, based on the previous researchs, the dissertation advances a standard method of designing high-order analog modulators. Based on this method, the NTF can be quickly calculated according to the required noise performance. Thirdly, a comparative analysis is made on currently prevailing modulator structures and with a concrete example; the design process is given on how to choose modulator structure based on the calculated NTF. Fourthly, based on the chosen modulator structure, the concrete ASIC circuit implementation of a single-loop fourth-order analog modulator is provided.
     The structure of this dissertation is as follows:
     The first chapter is the introduction of the dissertation. In this chapter, the research background is firstly given. After that, it introduces the development roadmap of EA ADCs. Then, it presents the content and the purpose of this dissertation.
     The second chapter concentrates on the structure of ΣΔ modulators. It firstly proposes a structure model for ΣΔ modulators, and based on it, it then gives a deep analysis on the stability of the structures using root locus plot. At last, an introduction to the MASH structure is also presented.
     The third chapter designs a single-loop fourth-order EA modulator based on the methods presented in chapter2. Non-idealities of the designed ΣΔ modulator are analyzed and simulated using Matlab.
     The fourth chapter discusses the circuit implementation of the designed ΣΔ modulator. The pre-simulation results are given for each sub-module and the whole modulator.
     The fifth chapter describes the layout design of each sub-module in the modulator, and simulation results are also presented. At last, the whole modulator is simulated after evaluating the parasitic parameters. Non-idealities such as voltage variation are also simulated. The simulated resultes verify that the implemented modulator is functional and achieves the required SNR.
     The sixth chapter gives the test scheme and test bench for the modulator chip. Test results are obtained.
     The seventh chapter summarizes the main ideas and the innovations of this dissertation, and then points out the direction of future work.
引文
[1]冯军,“一种16位Σ△音频ADC中调制器的设计与实现”,硕士论文,电子科技大学(成都),2006。
    [2]陈雷,“高精度ΣΔADC的研究”,博士论文,西北工业大学,2006.
    [3]陈建球等,“一个用于GSM的80dB动态范围Σ△调制器”,半导体学报,vol.28, no.2, pp.294-301, Feb.2007.
    [4]曹楹等,"A 16bit 96kHz Chopper-Stabilized Sigma-Delta ADC", Chinese Journal of Semiconductor, vol.28, no.8, pp.1204-1210, Aug.2007.
    [5]马绍宇,“高性能,低功耗Σ△模数转换器的研究与实现”,博士论文,浙江大学,2008.
    [6]袁小龙,“高性能Σ△调制器,模数转换器的研究”,博士论文,浙江大学,2009.
    [7]张洲洋等,“一种高速连续时间Sigma-Delta ADC设计”,现代电子技术,vol.20,2010.
    [8]李迪等,'Improved low-distortion sigma-delta ADC with DWA for WLAN standards", Journal of Semiconductors, vol.31, no.2, Feb.2010.
    [9]刘志明,“16比特低功耗音频应用Sigma-Delta ADC研究”,硕士论文,中国科技大学,2010.
    [10]袁俊等,"Continuous time sigma delta ADC design and non-idealities analysis", Journal of Semiconductors, vol.32, no.12, Dec.2011.
    [11]李冉等,"A 18-mW,20-MHz bandwidth,12-bit continuous-time ΣΔ modulator using a power-efficient multi-stage amplifier", Journal of Semiconductors, vol.33, no.1, Jan.2012.
    [12]H.Inose, Y.Yasuda and J.Murakami, "A telemetering system by code modulation-ΣΔ modulation," IRE Trans. Space Electron. Telemetry, vol.8, pp.204-209, Sep.1962.
    [13]G.R.Ritchie, J.C.Candy and W.H.Ninke, "Interpolative digital to analog converters," IEEE Transanctions on Communications, vol.22, pp.1797-1806, Nov.1974.
    [14]S.R.Norsworthy, R.Schreier and G.C.Temes, "Delta-Sigma Data Converters:Theory, Design and Implementation," IEEE Press,1997.
    [15]J.C.Candy, "A use of limit cycle oscillations to obtain robust analog-to-digital converters,' IEEE Transactions on Communications, vol.22, no.3, pp.298-305, Mar.1974.
    [16]J.C.Candy, B.A.Wooley and O.J.Benjamin, "A voiceband codec with digital filtering," IEEE Transactions on Communications, vol.29, no.6, pp.815-830, Jun.1981.
    [17]J.C.Candy and O.J.Benjamin, "The structure of quantization noise from sigma-delta modulation," IEEE Transanctions on Communications, vol.29, no.9, pp.1316-1323, Sep.1981.
    [18]J.C.Candy, "A use of double integration in sigma-delta modulations," IEEE Transactions on Communications, vol.33, no.3, pp.249-258, Mar.1985.
    [19]J.C.Candy, "Decimation for sigma-delta modulations," IEEE Transactions on Communications, vol.34, no.1, pp.72-76, Jan.1986.
    [20]J.C.Candy and A.Huynh, "Double Interpolation for digital-to-analog conversion," IEEE Transactions on Communications, vol.34, no.1, pp.77-81, Jan.1986.
    [21]T.Hayashi, Y.Inabe, K.Uchimura and A.Iwata, "A multistage delta-sigma modulator without double integration loop," ISSCC Digest of Technical Papers, pp.182-183, Feb.1986.
    [22]L.E.Larson, T.Cataltepe and G.C.Temes, "Multi-bit over-sampled ΣΔ A/D converter with digital error correction," Electronics Letters, vol.24, pp.1051-1052, Aug.1988.
    [23]T.H.Pearce and A.C.Baker, "Analogue to digital conversion requirements for HF radio receivers," Proceedings of the IEE Colloquium on system aspects and applications of ADCs for radar, sonar and communications, London, Nov.1987, Digest No 1987/92.
    [24]P.H.Gailus, W.J.Turney and F.R.Yester, "Method and arrangement for a sigma delta converter for bandpass signals," US Patent number 4857928, Aug.1989.
    [25]R.Schreier and W.M.Snelgrove, "Bandpass sigma-delta modulation," Electronics Letters, vol.25, no.23, pp.1560-1561, Nov.1989.
    [26]X.Wang, U.Moon, M.Liu and G.C.Temes, "Digital correlation technique for the estimation and correction of DAC errors in multibit MASH ΣΔ ADCs," 2002 IEEE International Symposium on Circuits and Systems, vol.4, pp.691-694, May.2002.
    [27]T.C.Caldwell and D.A.Johns, "An 8-th order MASH delta-sigma with an OSR of 3," ESSCIRC, pp.476-479, Sep.2009.
    [28]J.Silva, U.K.Moon and G.C.Temes, "Low-distortion delta-sigma topologies for MASH architectures," International Symposium on Proceedings of the Circuits and Systems, vol.1, pp.I-1144-1147, May.2004.
    [29]J.S.Chiang, H.L.Chen and P.C.Chou, "A 2.5-V 14-bit MASH Sigma-Delta Modulator for ADSL," IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pp.24-27, Aug. 2004.
    [30]Libin Yao, Michiel Steyaert and Willy Sansen, "Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS," Published by Springer, Netherlands,2006.
    [1]H.Inose, Y.Yasuda and J.Murakami, "A telemetering system by code modulation-ΔΣ modulation," IRE Trans. Space Electron. Telemetry, vol.8, pp.204-209, Sep.1962.
    [2]G.R.Ritchie, J.C.Candy and W.H.Ninke, "Interpolative digital to analog converters," IEEE Transanctions on Communications, vol.22, pp.1797-1806, Nov.1974.
    [3]S.R.Norsworthy, R.Schreier and G.C.Temes, "Delta-Sigma Data Converters:Theory, Design and Implementation," IEEE Press,1997.
    [4]J.C.Candy, "A use of limit cycle oscillations to obtain robust analog-to-digital converters," IEEE Transactions on Communications, vol.22, no.3, pp.298-305, Mar.1974.
    [5]J.C.Candy, B.A.Wooley and O.J.Benjamin, "A voiceband codec with digital filtering," IEEE Transactions on Communications, vol.29, no.6, pp.815-830, Jun.1981.
    [6]J.C.Candy and O.J.Benjamin, "The structure of quantization noise from sigma-delta modulation," IEEE Transanctions on Communications, vol.29, no.9, pp.1316-1323, Sep.1981.
    [7]J.C.Candy, "A use of double integration in sigma-delta modulations," IEEE Transactions on Communications, vol.33, no.3, pp.249-258, Mar.1985.
    [8]J.C.Candy, "Decimation for sigma-delta modulations," IEEE Transactions on Communications, vol.34, no.1, pp.72-76, Jan.1986.
    [9]J.C.Candy and A.Huynh, "Double Interpolation for digital-to-analog conversion," IEEE Transactions on Communications, vol.34, no.1, pp.77-81, Jan.1986.
    [10]T.Hayashi, Y.Inabe, K.Uchimura and A.Iwata, "A multistage delta-sigma modulator without double integration loop," ISSCC Digest of Technical Papers, pp.182-183, Feb.1986.
    [11]L.E.Larson, T.Cataltepe and G.C.Temes, "Multi-bit over-sampled ΣΔ A/D converter with digital error correction," Electronics Letters, vol.24, pp.1051-1052, Aug.1988.
    [12]T.H.Pearce and A.C.Baker, "Analogue to digital conversion requirements for HF radio receivers," Proceedings of the IEE Colloquium on system aspects and applications of ADCs for radar, sonar and communications, London, Nov.1987, Digest No1987/92.
    [13]P.H.Gailus, W.J.Turney and F.R.Yester, "Method and arrangement for a sigma delta converter for bandpass signals," US Patent number 4857928, Aug.1989.
    [14]R.Schreier and W.M.Snelgrove, "Bandpass sigma-delta modulation," Electronics Letters, vol.25, no.23, pp.1560-1561, Nov.1989.
    [15]X.Wang, U.Moon, M.Liu and G.C.Temes, "Digital correlation technique for the estimation and correction of DAC errors in multibit MASH ΣΔ ADCs," 2002 IEEE International Symposium on Circuits and Systems, vol.4, pp.691-694, May.2002.
    [16]Zhimin Li and T.S.Fiez, "A 14 Bit Continuous-Time Delta-Sigma A/D Modulator With 2.5 MHz Signal Bandwidth," IEEE Journal of Solid-State Circuits, vol.42, no.9, pp.1873-1883, Sep. 2007.
    [17]Xiaran Gao, "A Survey on Continuous-Time ΣΔ Modulators-Theory, Design and Implementation," Master Thesis, Oregon State University, Jun.2008.
    [18]Libin Yao, Michiel Steyaert and Willy Sansen, "Low-Power Low-Voltage Sigma-Delta Modulators in Nanometer CMOS," Published by Springer, Netherlands,2006.
    [19]J.C.Candy and O.J.Benjamin, "The Structure of Quantization Noise from Sigma-Delta Modulation," IEEE Transactions on Communications, vol. com-29, no.9, pp.1316-1323, Sep. 1981.
    [20]B.E.Boser and B.A.Wooley, "The Design of Sigma-Delta Modulation Analog-to-Digital Converters," ISSC, vol.23, no.6, pp.1298-1307, Dec.1988.
    [21]J.Silva, U.Moon, J.Steensgaard and G.C.Temes, "Wideband low-distortion delta-sigma ADC topology," Electronics Letters, vol.37, no.12, pp.737-738, Jun.2001.
    [22]J.Steensgaard, "High Performance data converters," Ph.D Thesis, Technical University Denmark, Department of Information Technology, Mar.1999.
    [23]T.Ritoniemi, T.Karema and H.Tenhunen, "Design of Stable High Order 1-Bit Sigma-Delta Modulators", Circuits and Systems, IEEE International Symposium. Vol.4, pp.3267-3270, May. 1990.
    [24]K.C.H.Chao, S.Nadeem, W.L.Lee and C.G.Sodini, "A Higher Order Topology for interpolative Modulators for Oversampling A/D Converters," IEEE Transanctions on Circuits and Systems, vol.37, no.3, pp.309-318, Mar.1990.
    [25]B.P.Brandt, D.W.Wingrad, B.A.Wooley, "Second-order Sigma-Delta Modulation for Digital-Audio Signal Acquisition," ISSC, vol.26, no.4, pp.618-625, April.1991.
    [26]A.Marques, V.Peluso, M.S.Steyaert,W.M.Sansen, "Optimal Parameters for ΔΣModulator Topologies," IEEE Transanctions on Circuits and Systems-II:Analog and Digital Processing, vol.45, no.9, pp.1232-1241, Sep.1998.
    [27]S.R.Norsworthy, "Effective dithering of sigma-delta modulators," IEEE International Symposium on Circuits and Systems, vol.3, pp.1304-1307, May 1992.
    [28]R.T.Baird and T.S.Fiez, "Stability Analysis of High-Order Delta-Sigma Modulation for ADC's," IEEE Transanctions on Circuits ans Systems-II:Analog and Digital Signal Processing, vol.41, no.1, Jan.1994.
    [29]R.Schreier, "The Delta Sigma Toolbox Version 7.3," Jul.2009.
    [30]T.Ritoniemi, T.Karema and H.Tenhunen, "A Fifth order Sigma Delta Modulator for Audio A/D Converter," International Conference on Analogue to Digital and Digital to Analogue Conversion, pp.153-158,1991.
    [31]D.B.kasha, W.L.Lee and A.Thomsen, "A 16-mW,120dB Linear Switched-Capacitor Delta-Sigma Modulator with Dynamic Biasing," ISSC, vol.34, no.7, pp.921-926, Jul.1999.
    [32]D.B.Ribner, "A Comparison of Modulator Networks for High-Order Oversampled ΣΔ Analog-to-Digital Converters," IEEE Transanctions on Circuits and Systems, vol.38, no.2, pp.145-156, Feb.1991.
    [33]R.Schreier, "An Empirical Study of High-Order Single-Bit Delta-Sigma Modulators," IEEE Transanctions on Circuits and Systems-II:Analog and Digital Signal Processing, vol.40, no.8, pp.461-466, Aug.1993.
    [34]H.Tang and A.Doboli, "High-Level Synthesis of ΔΣModulator Topologies Optimized for Complexity,Sensitivity,and Power Consumption," IEEE Transactions on Computer-Aided Design of Intergrated Circuits and Systems, vol.25, no.3, pp.597-607, Mar.2006.
    [35]Y.Matsuya, K.Uchimura, A.Iwata,T.Kobayashi, M.Ishikawa and T.Yoshitome, "A 16-bit Oversampling A-to-D Conversion Technology Using Triple-Integration Noise Shaping," ISSC, vol.sc-22, no.6, pp.921-928, Dec.1987.
    [36]S.Park, "Principles of Sigma-Delta Modulation for Analog-to-Digital Converters," Motorola.
    [37]M.Yavari, "MASH sigma-delta modulators with Reduced Sensitivity to the Circuit Non-Idealities," IEEE International Symposium on Circuits and Systems, pp.3126-3129, May.2009.
    [38]J.S.Chiang, H.L.Chen and P.C.Chou, "A 2.5-V 14-bit MASH Sigma-Delta Modulator for ADSL," IEEE Asia-Pacific Conference on Advanced System Integrated Circuits, pp.24-27, Aug. 2004.
    [39]X.Tao and M.Condon, "Comparative study of the MASH digital delta-sigma modulators," Research in Microelectronics and Electronics, pp.196-199, Jul.2009.
    [40]T.C.Caldwell and D.A.Johns, "An 8-th order MASH delta-sigma with an OSR of 3," ESSCIRC, pp.476-479, Sep.2009.
    [41]J.Silva, U.K.Moon and G.C.Temes, "Low-distortion delta-sigma topologies for MASH architectures," International Symposium on Proceedings of the Circuits and Systems, vol.1, pp.I-1144-1147, May.2004.
    [42]S.A.Jantzi. et al, "A Fourth-Order Bandpass Sigma-Delta Modulator", IEEE J. of Solid-State Circuits, vol.28, pp.282-291, Mar.1993.
    [1]L. Yao, M.S.J.Steyaert, W.Sansen, "A 1V 140uW 88dB Audio Sigma-Delta Modulator in 90nm CMOS," IEEE Journal of Solid-State Circuits, vol.39, no.11, pp.1809-1818, Nov.2004.
    [2]S.R.Norsworthy, I.G.Post, H.S.Fetterman, "A 14-bit 80-kHz Sigma-Delta A/D Converter: Modeling, Design, and Performance Eavluation," IEEE Journal of Solid-State Circuits, vol.24, no.2, pp.256-266, Apr.1989.
    [3]S.A.Jantzi, W.M.Snelgrove, P.F.Ferguson, "A Fourth-Order Bandpass Sigma-Delta Modulator," IEEE Journal of Solid-State Circuits, vol.28, no.3, pp.282-291, Mar.1993.
    [4]S.R.Norsworthy, R.Schreier and G.C.Temes, "Delta-Sigma Data Converters:Theory, Design and Implementation," IEEE Press,1997.
    [5]B.E.Boser, B.A.Wooley, "The design of Sigma-Delta Modulation Analog-to-Digital Converters," IEEE J. of Solid-State Circuits, vol.23, no.6, pp.1298-1307, Dec.1988.
    [6]B. Razavi, "Design of Analog CMOS Integrated Circuits," Xian Jiaotong University Press, Jul.2009.
    [7]S.Rabii, B.A.Wooley, "A 1.8-V Digital-Audio Sigma-Delta Modulator in 0.8-um CMOS,' IEEE J. of Solid-State Circuits, vol.32, no.6, pp.783-796, Jun.1997.
    [8]H.Z.Hoseini, I.Kale, O.Shoaei, "Modeling of Switched-Capacitor Delta-Sigma Modulators in SIMULINK,"IEEE Trans. on Instrumentation and Measurement, vol.54, no.4, pp.1646-1653, Aug.2005.
    [9]P.Malcovati et al, "Behavioral Modeling of Switched-Capacitor Sigma-Delta Modulators,' IEEE Trans. on Circuits and Systems-I:Fundamental theory and applications, vol.50, no.3, pp.364, Mar.2003.
    [10]S.M.Kashmiri, H.Hedayati, "Behavioral Modeling of Circuit Design steps of a 3-V digital audio Sigma-Delta Modulator in 0.35-um CMOS," Canadian Conference on Electrical and Computer Engineering, vol.1, pp.89-92, May.2003.
    [11]A.Dendouga et al, "Modeling of a Second Order Non-Ideal Sigma-Delta Modulator,' Internatinal Journal of Eletrical and Information Engineering, pp.196-201, Apr.2010.
    [12]F.Medeiro et al, "Modeling opamp-induced harmonic distortion for switched-capacitor sigma-delta modulator design," International Symposium on Circuits and Systems, vol.5, pp.445-448,1994.
    [1]B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, International Edition 2001.
    [2]M.Banu, J.M.Khoury, Y.Tsividis, "Fully differential Operational Amplifiers with Accurate Output Balancing", IJSSC, vol.23, no.6, pp.1410-1414, Dec.1988.
    [3]W.C.Black, D.J.Allstot, R.A.Reed, "A High Performance Low Power CMOS Channel Filter". IJSSC, vol.sc-15, no.6, pp.929-938, Dec.1980.
    [4]P.R.Gray, R.G.Meyer, "Mos Operational Amplifier Design-A Tutorial Overview", IJSSC, vol.sc-17, no.6, pp.969-982, Dec.1982.
    [5]K. R. Laker and W. M. Sansen, Design of Analog Integrated Circuits and Systems. New York: McGraw-Hill,1994.
    [6]Libin Yao, S.J.Steyaert, W.Sansen, "A 1-V 140-uW 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS", IJSSC, vol.39, no.11, pp.1809-1818, Nov.2004.
    [7]B.Murmann, "Analog Integrated Circuit Design", EE214, Stanford University, http://eeclass.stanford.edu/ee214/.
    [8]P.R.Gray, et.al, "Analysis and Design of Analog Integrated Circuits",4th Edition, John Wiley&Sons, Inc.2001.
    [9]F.Silveira, et.al, "A gm/Id Based Methodology for the Design of CMOS Analog Circuits and Its Application to the Synthesis of a Silicon-On-Insulator Micropower OTA", IJSSC, vol.31, no.9, pp.1314-1319, Sep.1996.
    [10]B.Y.Kamath el al. "Relationship Between Frequency Response and Settling Time of Operational Amplifiers", IEEE J. of Solid-State Circuits, vol.sc-9, pp.347-352,Dec 1974.
    [11]H.C.Yang, D.J.Allstot, "Considerations for Fast Settling Operational Amplifiers", IEEE J. of Solid-State Circuits, vol.37, pp.326-334, Mar 1990.
    [12]Libin Yao, el al. "Low-Power Low-Voltage Sigma-Delta Modulators In Nanometer CMOS", Springer.2006.
    [13]S.Rabii, B.A.Wooley, "A 1.8-V Digital-Audio Sigma-Delta Modulator in 0.8-um CMOS", IEEE J. of Solid-State Circuits, vol.32, pp.783-796, Jun.1997.
    [14]J.Roh, et al. "A 0.9-V 60-uW 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range", IEEE J. of Solid-State Circuits, vol.43, pp.361-370, Feb.2008.
    [15]K.N.Leung and P.K.T.Mok, "A Sub-1-V 15-ppm/℃ CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device", IEEE J. of Solid-State Circuits, vol.37, pp.526-530, Apr.2002.
    [16]K.N.Leung and P.K.T.Mok, "A 2-V 23-uA 5.3--ppm/℃ Curvature-Compensated CMOS Bandgap Voltage Reference", IEEE J. of Solid-State Circuits, vol.38, pp.561-564, Mar.2003.
    [17]I. M. Filanovsky and A. Allam, "Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits," IEEE Trans. Circuits Syst. I, vol.48, pp. 876-884, July 2001.
    [18]G.Giustolisi el al. "A Low-Voltage Low-Power Voltage Reference based on Subthreshold MOSFETs", IEEE J. of Solid-State Circuits, vol.38, pp.151-154, Jan 2003.
    [19]P.K.T.Mok and K.N.Leung, "Design Considerations of Recent Advanced Low-Voltage Low-Temperature-Coefficient CMOS Bandgap Voltage Reference", IEEE 2004 Custom International Circuits Conference, pp.635-642,2004.
    [20]T.L Brooks and A.L.Westwick, "A Low-Power Differential CMOS Bandgap Reference", ISSCC 94, Session 14, pp.248-249.
    [21]B.S.Song and P.R.Gray, "A Precision Curvature-Compensated CMOS Bandgap Reference", IEEE J. of Solid-State Circuits, vol.sc-18, pp.634-643, Dec 1983.
    [22]A.Boni, "Op-Amps and Startup Circuits for CMOS Bandgap References With Near 1-V Supply", IEEE J. of Solid-State Circuits, vo.37, pp.1339-1343, Oct 2002.
    [23]M.Ferro el al, "A Floating CMOS Bandgap Voltage Reference for Differential Applications", IEEE J. of Solid-State Circuits, vol.24, pp.690-697, Jun 1989.
    [24]K.M.Tham and K.Nagaraj, "A Low Supply Voltage High PSRR Voltage Reference in CMOS Process", IEEE J. of Solid-State Circuits, vol.30, pp.586-590, May 1995.
    [25]Y.P.Tsividis and R.W.Ulmer, "A CMOS Voltage Reference", IEEE J. of Solid-State Circuits, vol.sc-13, pp.774-778, Dec 1978.
    [26]M.A.T.Sanduleanu et al. "Accurate low power bandgap voltage reference in 0.5um CMOS technology", Electronics Letters, vol.34, May 1998.
    [27]H.Banba et al. "A CMOS Bandgap Reference Circuit with Sub-1-V Operation", IEEE J. of Solid-State Circuits, vol.34, pp.670-674, May.1999.
    [28]E.Vittoz and J.Fellrath, "CMOS Analog Integrated Circuits Based on Inversion Operation", IEEE J. of Solid-State Circuits, vol.sc-12, pp.224-231, Jun.1977.
    [29]H.Oguey and D.Aebischer, "CMOS Current Reference without Resistance", IEEE J. of Solid-State Circuits, vol.32, pp.1132-1135, Jul.1997.
    [30]R.Stair et al, "A Current Mode CMOS Voltage Reference", Southwest Symposium on Mixed-Signal Design, pp.23-26, Feb.2000.
    [31]K.N.Leung, P.K.T.Mok and K.C.Kwok, "CMOS Voltage Reference", US Patent 6441680, Aug,27,2002.
    [32]C.Y.Leung et al. "Design of a 1.5-V High-Order Curvature-compensated CMOS Bandgap Reference",2004.
    [33]M.Ferro, "A Floating CMOS Bandgap Voltage Reference for Differential Applications", IEEE J. of Solid-State Circuits, vol.24, pp.690-697, Jun.1989.
    [34]S.K.Hoon et al. "An Improved Bandgap Reference With High Power Supply Rejection", 2002.
    [35]F.You et al. "An Improved Tail Current Source for Low-Voltage Applications", IEEE J. of Solid-State Circuits, vol.32, pp.1173-1179, Aug.1997.
    [36]T.B.Cho and P.R.Gray, "A 10 b,20 Msample/s,35 mW pipeline A/D converter", IEEE J. of Solid-State Circuits, vol.30, pp.166-172, Mar.1995.
    [37]Y.Nakagome et al. "An Experimental 1.5-V 64-Mb DRAM", IEEE J. of Solid-State Circuits, vol.26, pp.465-472, Apr.1991.
    [38]F.Wang, R.Harjani, "Power Analysis and Optimal Design of Opamps for Oversampled Converters", IEEE Trans. on Circuits and Systems-II:Analog and Digital Signal Processing, vol.46, pp.359-369,Apr.1999.
    [39]J.Grilo. et al. "A 1.8V 94dB Dynamic Range Delta Sigma Modulator for Voice Applications", International Solid-State Circuits Conference, pp230-231,1996.
    [40]R.Castello and P.R.Gray, "A High-Performance Micropower Switched-Capacitor Filter", IEEE J. of Solid-State Circuits, vo.sc-20,pp.1122-1132, Dec.1985.
    [41]S.Baswa. et al, "Low-Voltage Micropower super class AB CMOS OTA", Electronics Letters, vol.40, no.4, Feb.2004.
    [42]V.Peluso. et al, "A 900-mV Low-Power Delta Sigma A/D Converter with 77-dB Dynamic Range", IEEE J. of Solid-State Circuits, vol.33, pp.1887-1897, Dec.1998.
    [43]G.Blakiewicz, "Frequency Compensation for two-stage operational amplifiers with improved power supply rejection ratio characteristic", IET Circuits Devices System, vol.4,pp.458-467,2010.
    [44]R.Klinke. et al, "A Very-High Slew-Rate CMOS Operational Amplifier", IEEE J. of Solid-State Circuits, vol.24, pp.744-746, Jun.1989.
    [45]K.Nakamura and L.R.Carley, "An Enhanced Fully Differential Folded-Cascode Op Amp", IEEE J. of Solid-State Circuits, vol.27, pp.563-568, Apr.1992.
    [46]B.K.Ahuja, "An Improved Frequency Compensation Technique for CMOS Operational Amplifers", IEEE J. of Solid-State Circuits, vol.sc-18, pp.629-632, Dec.1983.
    [47]C.T Chuang, "Analysis of the Settling Bahavior of an Operational Amplifier", IEEE J. of Solid-State Circuits, vol. sc-17, pp.74-80, Feb.1982.
    [48]S.M.Mallya and J.H.Nevin, "Design Procedures for a Fully Differential Folded-Cascode CMOS Operational Amplifier", IEEE J. of Solid-State Circuits, vol.24, pp.1737-1740, Dec.1989.
    [49]D.B.Ribner and M.A.Copeland, Design Techniques for Cascoded CMOS Op Amps with Improved PSRR and Common-Mode Input Range", IEEE J. of Solid-State Circuits, vol.sc-19, pp.919-925, Dec.1984.
    [50]J.H.Huijsing and D.Linebarger, "Low-Voltage Operatinal Amplifier with Rail-to-Rail Input and Output Ranges", IEEE J. of Solid-State Circuits, vol.sc-20, pp.1144-1150, Dec.1985.
    [51]P.K.Chan. et al, "A Low-Offset Class-AB CMOS Operational Amplifer", IEEE International Symposium on Circuits and Systems, pp.Ⅲ455-Ⅲ458, May.2000.
    [52]K.Koli and K.Halonen, "A Fully Differential Class-AB Switched-Current Integrator for Signal Processing", IEEE J. of Solid-State Circuits, vol.32, pp.238-244, Feb.1997.
    [53]R.D.Jolly and R.H.Mccharles, "A Low-Noise Amplifier for Switched Capacitor Filters", IEEE J. of Solid-State Circuits, vol.sc-17, pp.1192-1194, Dec.1982.
    [54]T.Stockstad and H.Yoshizawa, "A 0.9-V 0.5-uA Rail-to-Rail CMOS Operational Amplifier" IEEE J. of Solid-State Circuits, vol.37, pp.286-292, Mar.2002.
    [55]P.Godoy and J.L.Dawson, "Chopper Stabilization of Analog Multipliers, Variable Gain Amplifiers, and Mixers", IEEE J. of Solid-State Circuits, vol.43, pp.2311-2321, Oct.2008.
    [56]C.B.Wang, "A 20bit 25kHz delta sigma A/D Converter utilizing frequency-shaped chopper stabilization scheme", Proceedings of the IEEE CICC, pp.9-12, May.2000.
    [57]L.Zhang et al. "System Design of a low noise, low offset instrumentation amplifier with chopper stabilization",7th International Conference on ASIC, pp.627-630,2007.
    [58]L.Toth and Y.P.Ysividis, "Generalization of the principle of chopper stabilization", IEEE trans. on Circuits and Systems I:Fundamental Theory and Applications, vol.50, pp.975-983 Aug.2003.
    [59]M.C.W.Coln, "Chopper Stabilization of MOS Operational Amplifiers Using Feed-Forward Techniques", IEEE J. of Solid-State Circuits, vol.sc-16, pp.745-748, Dec.1981.
    [60]O.Oliaei, "Noise analysis of correlated double sampling SC-integrators", IEEE international symposium on Circuits and Systems, vol.4, pp.445-448,2002.
    [61]O.Oliaei, "Noise analysis of correlated double sampling SC-integrators with a hold capacitor", IEEE Trans. on Circuits and Systems I:Fundamental Theory and Applications, vol50, pp.1198-1202, Sept.2003.
    [62]M.Hasan et al. "A 15-bit CMOS cyclic A/D converter with correlated double sampling", IEEE International Symposium on Circuits and Systems, vol.1, pp.497-500,2002.
    [63]J.M.Pimbley and G.J.Michon, "The output power spectrum produced by correlated double sampling", vol.38, pp.1086-1090, Sept.1991.
    [64]C.C.Enz and G.C.Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections:Autozeroing, Correlated Double Sampling, and Chopper Stabilization", Proc. IEEE, vol.84, pp.1584-1614, Nov.1996.
    [65]S.R.Norsworthy, R.Schreier and C.C.Temes, "Delta-Sigma Data Converters:Theory, Design and Implementation," IEEE Press,1997.
    [66]Roubik Gregorian, "Introduction to CMOS op-amp and comparators", Wiley-Interscience, Feb.1999.
    [67]B.P.Brandt, et al. "Second-Order Sigma-Delta Modulation for Digital-Audio Signal Acquisition", IEEE J. of Solid-State Circuits, vol.26, pp.618-627, Apr.1991.
    [68]C.C.Enz, G.C.Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization", Proceedings of The IEEE, vol.84, pp.1584-1614, Nov.1996.
    [69]W.Lee, "A 4-channel,18b sigma delta Modulator IC with Chopped-Offset Stabilization" IEEE International Solid-State Circuits Conference, pp.238-240,1996.
    [70]A.Bakker et al. "A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset" IEEE J. of Solid-State Circuits, vol.35, pp.1877-1883, Dec 2000.
    [71]K.C.Hsieh et al, "A Low-Noise Chopper-Stabilization Differential Switched-Capacitor Filtering Technique", IEEE J. of Solid-State Circuits, vol.sc-16, pp.708-715, Dec 1981.
    [72]T.Kajita et al, "Correlated Double Sampling integrator insensitive to parasitic capacitance", Electronics Letters, vol.37, pp.151-153, Feb 2001.
    [73]O.Oliaei, "Noise Analysis of Correlated Double Sampling SC Integrators with a Hold Capacitor", IEEE Trans. on Circuits and Systems-I:Fundamental theory and Applications, vol.50, pp.1198-1204, Sep 2003.
    [74]H.M.Wey and W.Guggenbuhl, "Noise Transfer Characteristics of a Correlated Double Sampling Circuit", IEEE Trans. on Circuits and Systems, vol.cas-33, pp.1028-1030, Oct.1986.
    [75]魏微,基JWilkinson ADC的多通道模数变换ASIC的设计与实现.博士学位论文,中国科学院研究生院,2010。
    [1]B.P.Brandt et al. "Sencond-Order Sigma-Delta Modulation for Digital-Audio Signal Acquisition", IEEE J. of Solid-State Circuits, vol.26, pp.618-627, Apr.1991.
    [2]F.Maloberti, "Layout of Analog CMOS Integrated Circuits", Lecture Notes, Texas A&M University.
    [3]B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill, International Edition 2001.
    [4]C.Saint and J.Saint, "IC Mask Design:Essential Layout Techniques", McGraw-Hill Company, 2006.
    [5]R.J.Baker, "CMOS Circuit Design, Layout and Simulation",2nd Edition, John Wiley&Sons, Inc.2005.
    [6]Libin Yao, S.J.Steyaert, W.Sansen, "A 1-V 140-uW 88-dB Audio Sigma-Delta Modulator in 90-nm CMOS", IJSSC, vol.39, no.11, pp.1809-1818, Nov.2004.
    [7]C.C.Enz, G.C.Temes, "Circuit Techniques for Reducing the Effects of Op-Amp Imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization", Proceedings of The IEEE, vol.84, pp.1584-1614, Nov.1996.
    [8]W.Lee, "A 4-channel,18b sigma delta Modulator IC with Chopped-Offset Stabilization", IEEE International Solid-State Circuits Conference, pp.238-240,1996.
    [9]A.Bakker et al. "A CMOS Nested-Chopper Instrumentation Amplifier with 100-nV Offset", IEEE J. of Solid-State Circuits, vol.35, pp.1877-1883, Dec 2000.
    [10]K.C.Hsieh et al, "A Low-Noise Chopper-Stabilization Differential Switched-Capacitor Filtering Technique", IEEE J. of Solid-State Circuits, vol.sc-16, pp.708-715, Dec 1981.
    [11]T.Kajita et al, "Correlated Double Sampling integrator insensitive to parasitic capacitance", Electronics Letters, vol.37, pp.151-153, Feb 2001.
    [12]O.Oliaei, "Noise Analysis of Correlated Double Sampling SC Integrators with a Hold Capacitor", IEEE Trans. on Circuits and Systems-I:Fundamental theory and Applications, vol.50, pp.1198-1204, Sep2003.
    [13]H.M.Wey and W.Guggenbuhl, "Noise Transfer Characteristics of a Correlated Double Sampling Circuit", IEEE Trans. on Circuits and Systems, vol.cas-33, pp.1028-1030, Oct.1986.
    [14]魏微,基于Wilkinson ADC的多通道模数变换ASIC的设计与实现.博士学位论文,中国科学院研究生院,2010。
    [1]F. Medeiro, B. Perez-Verdu and J. Manuel, "Fourth-order Cascade SC Sigma Delta Modulator:A Comparative Study", IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, vol.45, no.10. Pp.1041-1051, Oct.1998.
    [2]M. Nance Ericson, "High-Temperature, High-Resolution A/D Conversion Using 2nd and 4th-order Sigma Delta Modulation in 3.3V 0.5um SOS-CMOS", Ph.D Thesis, the university of Tennessee, Aug.2002.
    [3]F.Medeiro et al. "Top-Down Design of High-Performance Sigma Delta Modulator", Kluwer Academic Pulishers, London,1999.
    [4]Y.Geets, M.Steyaert and W.Sansen, "A 2.5MSample/s Multi-Bit Sigma Delta CMOS ADC with 95dB SNR", Digest of Technical Papers, pp.336-337,468, Solid-State Circuits Conference,2000.
    [5]P. Balmelli, Q. Huang, "A 25MS/s 14b 200mW ΣΔ Modulator in 0.18μmCMOS,' ISSCC Dig. Tech. Papers, pp.74-75, Feb.,2005.
    [6]S.Brigati, F.Francesconi and P.Malcovati, "A Fourth-order singla-bit Switched capacitor sigma delta modulator for distributed sensor applications", IEEE Transactions on Instrumentation and Measurement, vol.53, no.2 pp.266-270, Apr. 2004.
    [7]A.Gerosa and A.Neviani, "A 1.8uW Sigma Delta Modulator for 8-bit Digitization of Cardiac Signals in Implantable Pacemakers operating Down to 1.8V", IEEE Transactions on Circuits and Systems-II, vol.52, no.2, pp.71-76, Feb.2005.
    [8]Libin Yao, M. Steyaert and Willy Sansen, "A 1-V, 1MS/s,88-dB Sigma Delta Modulator in 0.13-um Digital CMOS Technology", Symposium on VLSI Circuits Digest of Technical, pp.180-183,2005.
    [9]陈雷,“高精度ΣΔADC的研究”,博士论文,西北工业大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700