用户名: 密码: 验证码:
交流伺服系统无时滞反馈高响应驱动控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能交流伺服系统作为高速高精密数控机床、高速数字化机械、集成电路制造和封装设备等的重要驱动装置,在现代化机电设备中得到广泛的应用。随着产品加工质量的要求越来越高,对交流伺服系统的性能要求也越来越苛刻。要获得高性能的交流伺服系统,必须研究先进的控制策略与控制方法。本文旨在研究高速、高响应、高精度和鲁棒性好的伺服驱动系统,为先进的机电一体装备提供高性能的驱动装置。
     永磁同步电机需要精确度高、实时性好的电流及位置反馈支持它的闭环矢量控制。本文首先建立永磁同步电机的数学模型,研究存在反馈滞后的交流伺服系统离散控制模型,从理论上证明了反馈滞后严重影响系统的动态响应特性和稳态运行精度。然后,针对交流伺服系统的动态响应特性进行理论分析,为后续的研究工作奠定理论基础。
     为了获得精确的、实时的系统状态变量,本文提出新型的无时滞位置和电流检测方法。针对位置反馈滞后问题,设计了传感器内嵌式位置检测方案,并研究新型的位置检测细分技术,实现了伺服系统的无滞后位置检测;基于此技术,构建了传感器内嵌式交流伺服硬件系统,从而实现了永磁同步电机、磁性传感器和驱动器的一体化设计。针对电流反馈滞后问题,引入电流状态观测器,并分析了离散化状态观测器的工作时序,通过仿真实验验证了电流状态观测器能够很好地实现无滞后电流检测。
     在永磁同步电机矢量控制中,高精度高响应的电流控制可以降低系统阶数,使得外环控制器(速度控制或位置控制)设计无需考虑转子的动态,从而使设计得以简化。为了实现高精度高响应的电流控制,本文对数字化交流伺服系统的电流环控制进行了研究:分析数字电压滞后对电流响应的影响及数字电压控制的工作时序,得出脉宽调制的滞后相位并进行了超前补偿;采用改进型的脉宽调制控制技术,使得由传统脉宽调制技术引起的母线电压利用率低的问题得到改善,进一步提高了电流响应性能。
     在实现电流高精度高响应控制的基础上,本文对数字化交流伺服系统的机械环控制进行了研究:分析传统速度环PI和IP的控制特性,综合两者的各自优缺点提出并设计了速度环PI-IP复合控制器,用以提高速度环的响应性能和抗干扰能力;基于指令前馈进行位置控制,并仿真验证了指令前馈对提高交流伺服系统响应跟踪性能的有效性;设计模型参考二自由度控制器,有效地保证系统的干扰抑制特性和目标值跟踪特性,最大程度减小外部干扰对闭环系统动静态性能的影响,实现了系统的高响应和稳定运行。
     为了实现脱离硬件的控制参数优化,本文提出一种基于离散化电机模型的交流伺服仿真方案,并构建了数字化闭环仿真平台。基于该平台,结合参数优化算法实现了控制参数的优化。由于该闭环仿真平台的运行机理与实际系统严格一致,使得优化所得的控制参数与实际系统所需参数非常接近,从而大大缩短软件开发周期,同时也为后续的实验验证提供了有效依据。
     最后,基于无时滞位置检测技术研制了传感器内嵌式交流伺服系统,并进行了实验研究。对文中提出的控制策略进行实验验证,同时对交流伺服系统的性能指标进行测试。结果表明,本文研制的交流伺服系统具备高速、高精度和高响应性能,可以满足各种先进机电设备的驱动性能指标要求。
High performance AC servo system, as an important drive part of high-speed and high-precision CNC machine tools, high-speed digital machines, integrated circuit IC manufacturing and packaging equipment, has been widely used in modern industry. With the higher standards of product, the performance demand of the AC servo is raised too. To obtain high-performance AC servo, it is necessary to do research on the advanced control strategy and control methods. The dissertation aims to do research on high-speed, high-response, high-precision and good-robustness AC servo system, and provide high performance servo drive system for advanced mechanical-electrical equipment.
     It is necessary to obtain high-precision, real-time current and position feedback to the closed-loop control of PMSM. Firstly, mathematics model of PMSM is established, discrete control model of AC servo with feedback delay is studied based on it, and it is proved that feedback delay affects the performance of AC servo and impairs dynamic characteristics and stable state precision in theory, which has laid foundations for the next study.
     To obtain the precise and real-time state variables of the PMSM control system position and current detection without delay are proposed. To the position feedback without delay, the detection plan with embedded sensor is designed, the new position subdivision technology is proposed and position detection without delay is realized; an integration of permanent magnet synchronous motor, combination hall magnetic ring and controller is realized based on the technology. To the current feedback without delay, current state observer is introduced; then its work timing is analyzed and the current detection without delay can be realized with experiment.
     In the PMSM vector control system with precision and high-response current, the order of system is degraded, which simplifies the plan of outer loop controller(speed control or position control) because it is not thinking about rotor’s dynamic. To realize high-response and high-precision current control, the current loop of digital ac servo is studied: analyzing the influence of numeric voltage delay on current response and its control timing, calculating delay phase of PWM and compensating; introducing improved PWM, which improves the bus voltage utilization and current response performance.
     In order to realize high-speed and high-response velocity and position control, the mechanical loop of permanent magnet synchronous motors research is expanded. By analyzing the traditional velocity loop PI and IP control features, and summarizing their advantages and disadvantages, a PI-IP complex control with weighting factor is proposed, and the responsiveness and anti-jamming capability of the velocity loop is improved. Instruction feed forward control had been taken detailed research, simulation and analysis had been taken to testify the validity of command feed forward controller, which improved the tracking response performance for AC servo system; but the problem of poor anti-interference ability are still existed. Basing on this point, two-degree-of-freedom control method basing on the model is introduced, so the disturbance rejection characteristics and target tracking performance of the system effectively are improved, the influences of external interference on closed-loop system dynamic and static properties are reduced and rapid response and stable operation is realized.
     In order to realize the control parameter selection and optimization which completely disengage from hardware, a closed-loop simulation scheme which based on discrete motor model for AC servo system to be proposed and the digital closed-loop simulation platform is also realized. Based on the platform, combined with parameter optimization algorithm, the selection and optimization of control parameters is realized. Since the operation principle of closed-loop simulation platform is consistent with the actual system, it made simulation optimization control parameters closer to the actual value of the system. It could manifest shorten the software develop period.
     Finally, the integration permanent magnet AC servo system is developed, and the control strategy proposed in this dissertation is also tested by experiment, and the performance index for permanent magnet synchronous motor servo system is obtained at the same time. The experiment result illustrated that the high speed integration permanent magnet AC servo system possess the performance of high speed, high response and high reliability, it establishes a stability foundation for supplying high performance AC servo drive system to mechanical-electrical equipment.
引文
1骆再飞,蒋静坪.交流伺服系统及其先进控制策略综述.机床与液压. 2002(6): 7~10
    2 G. W. Youkin. Industrial Servo Control System Fundamentals and Applications. Wisconsin MARCEL DEKKER. 2003: 78~82
    3节德刚.宏_微驱动高速高精度定位系统研究.哈尔滨工业大学博士论文. 2006:1~3
    4 Z. Dongliang, A. Xing. DSP-based Software AC Servo Systems with PM Synchronous Motors. Electrical Machines and Systems. 2001: 755~758
    5袁丽卿,陈永校,钟德刚.数字化永磁交流伺服系统.微电机. 2005, 38(1): 64~66
    6张志燕,李斌,朱国力,等.基于PC+NC的开放式数控系统平台的研究与应用.机械与电子. 2005, (5): 6~8
    7王大中.交流伺服调速理论.浙江大学出版社. 1991:1~7
    8赵光宙,刘栋梁.交流伺服系统及其控制策略综述.电气时代. 2006(2): 38~41
    9 A. Damiano. An Adaptive Speed Sensorless Observer for Induction Motor Drives. In IECON 98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. New York, NY, USA. 1998, 3: 592~600
    10 C. Cavallaro, A. O. D. Tommaso, R. Miceli. Efficiency Enhancement of Permanent-Magnet Synchronous Motor Drives by Online Loss Minimization Approaches. IEEE Transactions on Industrial Electronic. 2005, 52(4): 1153~1160
    11 (日)武藤一夫.机电一体化.科学出版社. 2007: 2
    12吴文君,顾琳,徐笠云,等.基于ARM及嵌入式Linux的线切割数控系统开发.制造业自动化. 2009, 31(2): 75~78
    13牟文杰.机械手在注塑生产中的应用.中国塑料. 2000, 14(10): 86~89
    14彭斐.注塑机专用机械手控制器设计.机电工程. 2006, 23(2): 16~18
    15吴智恒,徐旋波.数控机床技术发展趋势.机电工程技术. 2004, 33(9): 7~9
    16 G. Pritschow, Y. Altintas, F. Jovane. Open Controller Architecture-past Present and Future. CIRP Annals-Manufacturing Technology. 2001, 50(2): 463~470
    17李佳特.数控技术的现状、发展趋势.世界制造技术与装备市场. 2001,1: 34~37
    18 L. Xiao, Y. J. Zhou, J. Huang. The High Efficiency AC Servo Control System for a Missile. Electrical Machines and Systems. 2005. ICEMS 2005. Proceedings of the Eighth International Conference. 2005, 1: 699~702
    19 K.J. Astrom, J. J. Anton, K. E. Arzen. Expert Control. Automation. 1986, 22(3): 277~286
    20刘日宝,陈荣.正弦波永磁交流伺服系统控制策略的研究.中小型电机. 2004(5): 39~42
    21唐任远.现代永磁电机理论与设计.机械工业出版社. 2006:1~9
    22 N. Tounsi, T. Bailey, M. A. Elbestawi. Sensorless Control of Salient PMSM Drives in the Transition Region. International Journal of Machine Tool & Manufacture. 2003, 43: 441~451
    23 R. M. Flex. A Direct Torque-Controlled Interior Permanent-Magnet Synchronous Motor Drive without a Speed Sensor. IEEE Transactions on Energy Conversion. 2003. 18(1): 17~22
    24 L. Takahashi, T. Noguchi. A New Quick-response and High-efficiency Control Strategy of an Induction Motor. IEEE Transactions on Industry Applications. 1986, 22(5): 820~827
    25 S. Devasia. Should Model-based Inverse Inputs be Used as Feedforward Under Plant Uncertainty. IEEE. Trans. Automat. Control, Nov.2002, 47 (11): 1865~1870
    26 L. Yi, M. Tomizuka. Two-degree-of-freedom Control with Robust Feedback Control for Hard Disk Servo Systems. IEEE/ASME Transcations on Mechatronics. 1999, 4(1): 17~24
    27 C .Baik, K. H. Kim, M. J. Youn. Robust Nonlinear Speed Control of PM Synchronous Motor Using Adaptive and Sliding Mode Control Techniques, IEEE Transactions on Power Applications. 1998, 145(4): 369~376
    28郭庆鼎,孙宜标,王丽梅.现代永磁同步电动机交流伺服系统.中国电力出版社. 2006: 5~9
    29 C. J. Kwon, W. Y. Han, C. G. Lee. Speed Control of PMSM Using a Robust Adaptive Controller. SICE. 2001: 12~15
    30李华德.交流调速控制系统.电子工业出版社. 2003: 1~21
    31曾玉金,庞文尧,蒋静坪.复合智能控制在交流伺服系统中的应用.电工技术杂志. 2004, (1): 56~58
    32黄祯祥,邓怀雄,郭延文.数控机床交流伺服系统的复合控制研究.中国制造业信息化. 2005, 34(2): 124~126
    33 E.M.Petriu. Absolute–type Position Transducers Using a Pseudo-random Encoding. IEEE Transactions on Instrumentation and Measurement. 1987, Boston: 290~295
    34 E.M.Petriu. Scanning Method for Absolute Pseudorandom Position Encoders. Electron. Letter. 1988, 24(19): 1236~1237
    35 E.M.Petriu. Absolute-type Pseudo-random Shaft Encoder with Any Desired Resolution. Electron. Letter. 1985, 21(5): 215~216
    36 Luigi Rovati, Matteo Bonaiuti, Paolo Pavan. Design of a High-Performance Optical System for Angular Position Measurement: Optical and Electronic Strategies for Uncertainty Reduction. IEEE Transactions on Instrumentation and Measurement. 2005, 54(5): 2075~2081
    37 S. H. Nam, M. Y. Yang. A Study on Generalized Parametric Interpolator with Real-time Jerk-limited Acceleration. Computer-Aided Design. 2004, 36: 27~36
    38 Kai Engelhardt, Peter Seitz. High-resolution Optical Position Encoder with Large Mounting Tolerances. Applied Optics. 1997, 36(13): 2912~2916
    39陈赘.单圈绝对式光电轴角编码器原理的研究.中国科学院长春光学精密机械与物理研究所博士论文. 2006: 12~14
    40 Yuji Matsuzoe, Nobuhiko Tsuji, Tomoharu Nakayama, et al. High Performance Absolute Rotary Encoder Using Multitrack and M-Code. Optical Engineering. 2003, 42(1): 124~131
    41 Yuji Matsuzoe, Kazuhiro Koizumi, Tetsuya Saitoh, et al. Optimizing design of High-Resolution Optical Encoder Using a Point-Source Light-Emitting Diode with Slits. Optical Engineering. 2005, 44(1): 1~7
    42廖红伟,杨晓非.磁旋转编码器的发展及其应用.信息记录材料. 2002, (1) : 40~44
    43崔军,温旭辉,张立伟.新型永磁同步电机控制用旋转变压器/数字转换器及其应用.电气传动. 2005, 35(11): 11~14
    44魏慧林.单周期编码器及其误差实时校正技术.电子科技大学工程硕士论文. 2007: 4~9
    45 I.Alejandre, M.Artes.Method for the Evaluation of Optical Encoders Performance under Vibration. Precision Engineering. 2007, 31(2): 114~121
    46 I.Alejandre, M.Artes. Thermal non-linear Behaviour in Optical Linear Encoders. International Journal of Machine International Journal of Tools and Manufacture. 2006, 46(12-13): 1319~1325
    47王先逵,钱磊.高频响大行程微位移机构的研究.中国机械工程. 1999, 10(9): 1005~1007
    48 E.D.Tung, M.Tomizuka. Feedforward Traeking Controller Design Based on Identifieation of Flow Frequeney Dynamics. ASME, J.Dynam. Syst. Meas. Control. 1993, 115(9): 348~356
    49 B. H. Bae S. K. Sul. A Compensation Method for Time Delay of Full Digital Synchronous Frame Current Regulator of PWM AC Drives. IEEE Transactions on Industry Applications. 2003, 39(3): 802~810
    50 Guney, Y. Oguz, F. Serteller. Dynamic Behavior Model of Permanent Magnet Synchronous Motor Fed by PWM Inverter and Fuzzy Logic Controller for Stator Phase Current. Flux and Torque Control of PMSM. IEMDC. 2001: 479~485
    51王思敏,王先逵.全数字反馈高性能直线电机伺服电机的机电系统设计.中国机械工程. 2002, 13(11): 967~970
    52张代林.永磁同步直线电机伺服系统的控制策略和实验研究.华中科技大学博士论文. 2007: 1~18
    53 H. T. Moon, H. S. Kim, M. J. Youn. A Discrete-Time Predictive Current Control for PMSM. IEEE Transactions on Power Electronics. 2003, 18(1): 464~472
    54 Y. Z. Mohammed, A. Panahi. A review of three PWM Techniques. PACC 1997, (11): 257~261
    55 H. W. Breock, H. C. Skudelny, G. V. Stanck. Analysis and Realization of a Pulsewidth Modulator Based on Voltage Space Vectors. IEEE Transactions on Industry Applications. 1988, 24(1): 142~150
    56 D. G. Holmes. The Significance of Zero Space Vector Placement for Carrier-Based PWM Schemes. IEEE Transactions on Industry Applications. 1996, 32(5): 1122~1129
    57 K. L. Zhou, D. W. Wang. Relationship between Space-Vector Modulation and Three-Phase Carrier-Based PWM: A Comprehensive Analysis. IEEETransactions on Industry Electronics. 2002, 49(1): 186~196
    58杨贵杰,孙力.空间矢量脉宽调制方法的研究.中国电机工程学报. 2001, (5): 79~83
    59 J. X. Xu, S. K. Panda, Y.J. Pan, T. H. Lee, B. H. Lam. A Modular Control Scheme for PMSM Speed Control with Pulsating Torque Minimization. IEEE Transactions on Industry Electronics. 2004, 51(3): 526~536
    60张永澜.状态观测器在伺服系统中的应用研究.哈尔滨工业大学硕士论文. 2007:34~38
    61 Y. I. Mohamed, T. K. Lee. A daptive Self-Tuning MTPA Vector Controller for IPMSM Drive System. IEEE Transactions on Energy Conversion. 2006, 21(3): 636~644
    62 N. Urasaki, T. Senjyu, K. Uezato, T. Funabashi. An Adaptive Dead-Time Compensation Strategy for Voltage Source Inverter Fed Motor Drives. IEEE Transactions on Power Electronics. 2005, 20(5): 1150~1160
    63 B. B. Li. The Analysis and Compensation of Dead-time Effects in Three Phase PWM Inverter. IEEE Transactions on Power Electronics. 2005, 20(5): 1142~1150
    64 S. T. Funabashi. Fully Digital Vetor-controlled PWM VSI-fed AC Drives with an Inverter Dead-time Compensation Strategy. IEEE Transactions on Power Electronics. 1991, 27(3): 552~559
    65吴茂刚.矢量控制永磁同步电机交流伺服系统的研究.浙江大学博士论文. 2006:1~17
    66王艾萌,孙鹏纬,付超.基于SVPWM的永磁同步电机交流调速系统的实验研究.华北电力大学学报. 2005, 32(2): 15~17
    67于飞,张晓峰,王素华.空间矢量PWM的比较分析.武汉理工大学学报. 2006, 30(1): 52~55
    68 N. Matsui, H. Ohash. DSP-based Adaptive Control of a Brushless Motor. IEEE Transactions on Industry Applications. 1992, 28(2): 375~380
    69 R. D. Lorenz, M. R. Buhl, D. M. Divan. Design and Implementation of Neural Networks for Digital Current Regulation for Inverter Drives. IEEE IAS Annu. Meet. Rec. 1991, 1: 415~421
    70 Y. S. Kim, Y. K. Choi, J. H. Lee. Speed-sensorless Vector Control for Permanent-magnet Synchronous Motors Based on Instantaneous ReactivePower in the Wide-speed Region. IEE Proceeding-Electronic Power Applications. 2005, 152(5): 1343~1349
    71 K. H. Kim, I. C. Baik, M. J. Youn. Simple and Robust Digital Current Control Scheme of Permanent Magnet Synchronous Motor Using Time Delay Control Approach. Electrical Letters. 1999, 35(12): 1027~1028
    72 K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin. PWM Modeling and Application to Disturbance Observer-Based Precision Motion Control. IEEE Trans. Magnetics. 2007,8:1669~1674
    73 F. Blaschke. Principle of Field Orientation as Used in the New Transvektor Control System for Induction Machines. Siemens-Z. 1971, 45(10): 757~760
    74 Guglielmi, P. Pastorelli, M. Pellegrino. A Position-Sensorless Control of Permanent Magnet Assisted Synchronous Reluctance Motor. IEEE Transactions on Industry Applications. 2004, 40(2): 615~622
    75 B. M. Tryzynadlowski, S. Legowski. Application of Neural Networks to the Optimal Control of 3-Ph. Voltage-controlled Power Inverter. Proc. IECON, 1992: 524~529
    76王传忠,杨霞,李强.专家—模糊滑模变结构控制伺服系统的研究.河北工业大学学报. 2001, 30(5): 52~55
    77韩京清.自抗扰控制器及其应用.控制与决策. 1998, 13(1): 19~23
    78孙凯,许镇琳,邹积勇.基于自抗扰控制器的永磁同步电机速度估计.系统仿真学报. 2007, 19(3): 582~584
    79 E. Cerruo, A. Consoli, A. Raciti, A. Testa. Adaptive Fuzzy Control of High Performance Motion Systems. Proc. IEEE Transactions on Industry Electronics. 1992, 1: 88~94
    80 S. Mir, M. E. Elbuluk, D. S. Zinger. PI and Fuzzy Estimators for Tuning the Stator Resistance in Direct Torque Control of Induction Machines, IEEE Transactions on Power Electronics. 1998, 13(2): 279~287
    81 A. Consoli, A. Raciti, A. Testa. Experimental Low-chattering Sliding-mode Control of a PM Motor Drive. Proc. EPE Conf. 1991, (1): 13~18
    82 T. C. Tsao, M. Tomzuka. Adaptive Zero Phase Error Tracking Algorithm for Digital Control.ASME Transactions. Journal of Dynamic Systems Measurement and Control. 1987, 109: 349~354
    83 M. Depenbrock. Direct Self-control (DSC) of Inverter Fed Induction Machine.PESC 87 Record: 18th Annual IEEE Power Electronics Specialists Conference (Cat. No.87CH2459-6). IEEE. 1987, 6: 32~41
    84赵希梅,郭庆鼎,孙宜标.永磁直线同步伺服电机的零相位二自由度H∞鲁棒跟踪控制.电工技术学报. 2004, 19(10): 32~37
    85 K. K. Tan. S. Y. Lim, S. N. Huang. Two-degree-of-freedom Controller Incorporation RBF Adaptation for Preeision Motione Control Application. IEEE/ASME Intemational Conferenee on Advaneed Intelligent Mechatronics. 1999 Atianta, USA, 848~853
    86 L. Yi, M. Tomizuka. Two-degree-of-freedom Control with Robust Feedback Control for Hard Disk Servo Systems. IEEE/ASME Transcations on Mechatronics. 1999, 4(1): 17~24
    87 F. J. Lin, C. H. Lin, C. M. Hong. Robust Control of Linear Synchronous Motor Servo Drive Using Disturbance Observer and Recurrent Neural Network Compensator. IEE Proceedings Electric Power Application. 2000, 147(4): 263~272
    88 S. B. Lee. Closed-Loop Estimation of Permanent Magnet Synchronous Motor Parameters by PI Controller Gain Tuning. IEEE Transactions on Energy Conversion. 2006, 21(4): 863~870
    89 Doyle J., Glover K, Khargonekar P and Francis B A. State-space Solutions to Standard H2 and H∞Control Problems. IEEE Transactions on Automation control. 1989, 34: 831~842
    90 F. Brahamsen. On the Energy Optimized Control of Standard and High-Efficiency Induction Motors in CT and HVAC Applications. IEEE Trans actions on Industry Applications. 2002, 34(4): 822~831
    91刘金馄.先进PID控制及其MATLAB仿真.电子工业出版社. 2008: 3~17
    92王爱祥.基于Matlab/Simulink的交流伺服系统的仿真.计算机与自动化. 1999, 32(2): 47~52
    93 J. H. Horng. Hybrid Matlab and LabView with Neural Network to Implement a SCADA System of AC Servo Motor. Advances in Engineering Software. 2007(1): 112~117
    94 H. L. Huy, K. Slimani, P. Viarouge. A Predictive Current Controller for Synchronous Motor Drive. Proc. EPE Conf. 1991, 2: 114~119
    95 S. Shinnaka. New“D-State-Observer”-Based Vector Control for SensorlessDrive of Permanent-Magnet Synchronous Motors. IEEE Transactions on Industry Applications. 2005, 41(3): 825~833
    96 J. David Powell.自动控制原理与设计.人民邮电出版社. 2007:458~462
    97 M. Boussak. Implementation and Experimental Investigation of Sensorless Speed Control with Initial Rotor Position Estimation for Interior Permanent Magnet Synchronous Motor Drive. IEEE Transactions on Power Electronics. 2005, 20(6): 1413~1422
    98王秀芝.高性能BLDCM伺服系统发展趋势及研究现状.电气自动化. 1996, (2): 15~19
    99 M. E. Hague, L. Zhong, M. F. Rahman. A Sensorless Speed Estimator for Application in a Direct Torque Controller of an Interior Permanent Magnet Synchronous Motor Drive, Incorporating Compensation of Offset Error. In 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289). NJ. USA. 2002, 1: 76~81
    100 M. F. Rahman. A Direct Torque-controlled Interior Permanent-magnet Synchronous Motor Drive without a Speed Sensor. IEEE Transactions on Energy Conversion. 2003, 18(1): 17~22
    101 X. G. Shi, B. G. Xu, W. Xie. Design and Implementation of S-shape Acceleration/Deceleration Algorithm based on Rounding Error Compensation Tactic. Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, China. 2008: 7912~7916
    102 L. A. Cabrera, M. E. Elbuluk, I. Husain. Tuning the Stator Resistance of Induction Motors Using Artificial Neural Network, IEEE Transactions on Power Electronics. 1997, 12(5): 779~787
    103 L. Saleh, M. A. Badr, A. S. Elwer. Analysis of Controlled Permanent Magnet Synchronous Motor Using Artificial Neural Network, ICEMS 2001. 2001, 2: 791~795
    104 R. Krishnan, R. Monajemy, N. Tripathi. Neural Control of High Performance Drives: an Application to the PM Synchronous Motor Drive. IECON '95. 1995, 1: 38~43
    105郭庆鼎,王丽梅.神经网络在伺服系统中的应用.电气传动. 1997, (1): 17~20
    106李艳,邵日祥,邵世煌,等.带有神经网络估计器的模糊直接转矩控制.电气传动. 1997, (1): 11~16
    107 M. G. Simoes, B. K. Bose. Neural Network Based Estimation of Feedback Signals for Vector Controlled Induction Motor Drive. IEEE Transactions on Industry Application. 1995, 31(3): 620~629
    108王小东,陈伯时,夏承光.基于单神经元的自适应PID控制器直流调速系统的研究.电气传动. 1996, (4): 29~32
    109 Solsona, M.L. Valla, C.A. Muravchik. Nonlinear Reduced Order Observerfor Permanent Magnet Synchronous Motors. IEEE Transactions on Industry Electronics. 1996, 43(4): 492~497
    110 V. Petrovic, R. Ortega, A.M. Stankovic, G. Tadmor. Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM Synchronous Motors. IEEE Transactions on Power Electronics. 2000,15(5): 871~880
    111 A. Rahman, M. A. Hoque. On-line Adaptive Artificial Neural Network Based Vector Control of Permanent Magnet Synchronous Motors. IEEE Transactions on Energy Conversion. 1998, 13(4): 311~318
    112 K. D. Oldknow, I. Yellowley. Design Implementation and Validation of a System for the Dynamic Reconfiguration of Open Architecture Machine Tool Controls. International Journal of Machine Tools & Manufacture. 2001, 41(6): 795~808
    113 B. H. Bae, S. K. Sul, J. H. Kwon, J. S. Shin. Impleme Ntation of Sensorless Vector Control for Super-High Speed PMSM of Turbo-Compressor. IEEE Transactions on Industry Applications. 2003, 39(3): 811~818
    114 D. G. Luenberger. Observers for Multivariable Systems, IEEE Transactions on Automatic Control. 1996, 11: 190~197
    115 Solsona, M.L. Valla, C.A. Muravchik. Nonlinear Reduced Order Observerfor Permanent Magnet Synchronous Motors. IEEE Transactions on Industry Electronics. 1996, 43(4): 492~497
    116 V. Petrovic, R. Ortega, A.M. Stankovic, G. Tadmor. Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM Synchronous Motors. IEEE Transactions on Power Electronics. 2000,15(5): 871~880
    117 K.J. Astrom, J. J. Anton, K. E. Arzen. Expert Control. Automation. 1986, 22(3): 277~286
    118 A. Rahman, M. A. Hoque. On-line Adaptive Artificial Neural Network BasedVector Control of Permanent Magnet Synchronous Motors. IEEE Transactions on Energy Conversion. 1998, 13(4): 311~318
    119徐永向.单霍尔传感器高速永磁同步电机的控制与转子损耗研究.哈尔滨工业大学博士论文. 2005: 1~18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700