用户名: 密码: 验证码:
花纹结构对轮胎花纹沟噪声和滑水性能影响规律及协同提升方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
欧盟标签法对轮胎安全和环保性能提出明确的要求,协同提升轮胎性能的瓶颈问题是轮胎性能之间的矛盾。由于花纹结构对轮胎诸多性能具有决定性影响,研究轮胎花纹设计理论和方法具有重要的理论意义和工程应用价值。本文以205/55R16乘用车轮胎为研究对象,在不改变胎体结构和胶料配方的前提下,研究轮胎花纹沟噪声和滑水产生时流体运动及流场分布特征,探索轮胎使用因素和花纹结构设计对轮胎花纹沟噪声和滑水性能影响规律。引入管道声学理论和仿生学减阻降噪方法,通过纵向花纹沟开设旁支管和花纹沟壁面仿生改形设计两种方法,实现协同提升轮胎花纹沟噪声性能和滑水性能的目的。
     本文提出一套混合花纹沟噪声和滑水性能的仿真分析方法。通过ABAQUS软件建立轮胎有限元模型,获取不同结构的胎面花纹在不同工况下花纹沟体积变化信息和胎肩等外轮廓变形特征,并将其作为轮胎花纹沟噪声模型和滑水模型分析的边界条件;利用计算流体力学进行轮胎花纹沟内部流场分析,通过涡声理论和FW-H(Ffowcs Williams Hawkings)方程识别声源位置和预测花纹沟远场噪声;以气-液二相流数值模型对轮胎滑水进行分析,采用VOF (Volume of Fluid)方法捕获水流自由液面运动特征,并通过胎面动水压力预测轮胎的滑水速度。
     以某公司生产的205/55R16轮胎SteeringAce AU01花纹结构为研究对象,分别建立花纹沟噪声模型和滑水模型,并进行数值试验研究;利用室内转鼓法进行该轮胎噪声测试,结果表明,花纹沟噪声仿真结果与轮胎噪声测试结果在中高频频带内的频谱特性一致;通过花纹沟内部非定常湍流流场微观特性分析,进行花纹沟噪声声源位置辨识。考虑轮胎稳态滚动状态下花纹沟变形,利用CFD (Computational Fluid Dynamic)建立滑水分析模型,研究滑水现象发生时水流运动特征、胎面动水压力分布和花纹沟内水流速度分布等特征,并对滑水速度进行预测。
     研究使用因素对轮胎噪声和滑水性能的影响。为探究花纹结构设计对花纹沟噪声和滑水性能的影响规律,分别以胎面纵向花纹沟宽度、深度和间距以及接地区内横向花纹沟宽度、与纵沟夹角和花纹沟数目为设计变量,利用正交试验和回归分析的方法,获得了胎面花纹沟结构参数对轮胎花纹沟噪声和滑水性能的影响规律。结果表明,花纹沟结构参数对花纹沟噪声和滑水性能均具有显著的影响,且在一定程度上存在矛盾关系。
     为化解由于花纹沟结构引起的轮胎花纹沟噪声和滑水性能之间的矛盾,提出在纵向花纹沟侧壁增设旁支管的方法,研究结果表明,增设旁支管能够协同提升花纹沟噪声和滑水性能;借鉴流体工程领域减阻降噪研究成果,提出纵向花纹沟底部布置V形沟槽仿生改形设计方法,建立仿生花纹模型。数值试验研究V形沟槽夹角、高度对花纹沟排水能力和花纹沟噪声的影响,并进行V形沟槽结构优选。应用计算气动声学和有限体积方法对优选后的V形沟槽仿生改形花纹进行花纹沟噪声和滑水性能预测,结果表明,花纹沟底部V形沟槽仿生改形设计方法能够协同提升轮胎花纹沟噪声和滑水性能。
The tire labeling regulation has set requirements of tire safety and environmental protection, the bottle-neck problem of synchronously improving tire quality is contradictory in tire performances. Tire tread pattern performs a decisive function on tire comprehensive properties. It is of great significance to study tread pattern design, to analyze influence law on tire performances. This work is based on the tread pattern of Radial tire205/55R16, the influence of tread pattern structures on tire pattern groove noise and hydroplaning performance is analyzed from numerical simulation, computational fluid dynamics and bionic design. The contradiction between tire pattern noise and hydroplaning performance is verified through the tread design and flow field analysis. Exploring the methods for the reduction of fluid drag force and noise by using bypass structure and the bionic tread groove and realize synchronously improvement of tire properties. The main contents of this work are as follows:
     Provided an idea on analyzing tire mixed tread pattern noise and hydroplaning performances:extracting the tread groove deformed displacements through ABAQUS and implement it on tread pattern noise and hydro-planning model as the boundary condition, mean while considering the vortex theory and FW-H (Ffowcs Williams Hawkings) equation, and combing it with the computational dynamics to set up the tread pattern groove noise control equation and acoustic field equation. By virtual of Gas-liquid two-phase flow model, tire hydrolplaning is simulated. Based on the VOF (Volume of Fluid) model built up tire hydro-planning and free-field control equation and predict hydroplaning velocity.
     According to the205/55R16SteeringAce AU01tire pattern groove design, the tread pattern groove noise and hydroplaning model are built up, and then the numerical simulation on tire tread pump noise is done. Tire noise is tested by laboratory drum test. Comparing the simulation results with the experiment results to validate the reliability of the simulated results; this work lays up the foundation for exploring the influence of tread groove on tire pump noise; Combing the deformed character of tread pattern grooves under rolling condition, the tire hydroplanning simulation model is set up and used to predict hydroplaning velocity. To further analysis the water fluid distribution character, the hydrodynamic pressure distribution of tread surface, tire tread groove hydrodynamic pressure as well as the water distribution is visually presented.
     Tire velocity and water depth for hydroplaning performance are simulated by CFD (Computational Fluid Dynamic), and inflation pressure, load and velocity for tire noise are test for tire rolling noise, all the results show velocity is important factor for tire performance. In order to get the influence law of tread pattern structure on tire pattern noise and hydroplaning performance, with the help of orthogonal test, the width, the depth and the space of circumferential pattern grooves as design factors are analyzed for the two performances. The width, the angle with circumferential pattern grooves and the number of transverse pattern grooves are also analyzed for the two performances. Influence of Tire tread pattern on noise and hydroplaning is obtained. The results show that the structural parameters of tire tread pattern design have importance on tire noise and hydroplaning performance. In other words, tire tread pattern groove noise and hydroplaning performance are conflict in a large extent.
     In order to settle the integral contradiction of tire noise and hydro-planning performance, the bypass structure and bionic non-smooth structure are separated used. By numerical analysis to study the influence of different bypass structure on tire noise and hydroplanning performance. The results show tire longitude groove with bypass can improve pattern noise and hydroplanning performance; then, the non-smooth tire groove is set up by using the great achievement in tire fluid drag reduction mechanism. The same V-riblet structure of flying animal and aqua animal are chosen as the research object to study how the angle, height affect tire groove water displacement and tread pattern groove noise, in order to explore the best tire groove design method and build multi-performance bionic tire tread groove. Finally, the computational aerodynamic and finite volume method is used to predict and evaluate the tire noise and hydroplanning performance. The result shows that the tread groove with optimized V-riblet structure can reduce tire noise and improve hydro-planning performance synchronously.
引文
[1]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.
    [2]Sandberg U., Ejsmont J. A. Tyre/road noise reference book [M]. Kisa, Sweden:Informex,2002.
    [3]纪玉荣.高速公路交通噪声对环境的影响和危害[J].中国科技纵横,2010(17):128.
    [4]何渝生.汽车噪声控制[M].北京:机械工业出版社,1995.
    [5]陈宇炼,郭兆伟,吴振宇.交通噪声对住宅区影响的研究[J].中国卫生工程学,2012,11(1):11-13.
    [6]庄继德.汽车轮胎学[M].北京:北京理工大学出版社,1997.
    [7]Choi J.H., Cho J.R., Woo J.S., et al. Numerical investigation of snow traction characteristics of 3-D patterned tire[J]. Journal of Terramechanics,2012,49:81-93.
    [8]Zheng D. Prediction of tire tread wear with FEM steady state rolling contact simulation[J]. Tire Science and Technology,2003,31(3):189-202.
    [9]Cho J.R., Lee H.W., Jeong W.B., et al. Numerical estimation of rolling resistance and temperature distribution 3D periodic patterned tire[J]. International Journal of Solids and Structures,2013, 50:86-96.
    [10]Wies B., Roeger B., Mundl R. Influence of Pattern Void on Hydroplaning and Related Target Conflicts[J]. Tire Science and Technology,2009,37(3):187-206.
    [11]Heckl M. Tyre noise generation[J]. Wear,1986,113(1):157-170.
    [12]Kindt P., Berckmans D., De Coninck F., et al. Experimental analysis of the structure-borne tyre/road noise due to road discontinuities[J]. Mechanical Systems and Signal Processing,2009,23(8): 2557-2574.
    [13]Ejsmont J.A., Sandberg U. Influence of tread pattern tire/road noise[J]. SAE Paper:1984-84-1238.
    [14]Beckenbauer T., Klein P., Hamet J.F., et al. Tyre-road noise prediction:A comparison between the SPERoN and HyRoNE models-Part 1[J]. Journal of the Acoustical Society of America,2008,123(5): 3388-3393.
    [15]风神江大车轮研究所.轮胎噪声测试分析研讨报告[R].镇江:江苏大学,2012.
    [16]Hayden. Roadside Noise from the Interaction of a Rolling Tire with the Road Surface[J]. Acoustical Society of America,1971,50(1):113-113.
    [17]Samuels S. E., Alfredson R. J. The effect of tread pattern on tyre noise[A]. Shock & Vibration Conference.1974.
    [18]Plotkin, K., Montroll, M., Fuller, W., et al. Identification of Tire Noise Generation Mechanisms Using a Roadwheel Facility[J]. SAE Paper:1980-80-0281.
    [19]Donavan P. R. Comparative Measurements of Tire/Pavement Noise in Europe and the United States[J]. Noise/News International,2005,13(2):46-53.
    [20]Gagen M. J., Novel acoustic sources from squeezed cavities in car tires[J]. Journal of the Acoustical Society of America,1999,106:794-801.
    [21]陈理君,曹嘉欣,肖旺新,等.基于声偶极子原理修正载重轮胎噪声模型[J].轮胎工业,2011,31(7):399-402.
    [22]陈理君,陈义庆,陈弘,等.TNS/ODS系列低噪声轮胎花纹仿真分析与优化软件的应用[J].橡胶科技市场,2010(1):22-24.
    [23]车勇.轮胎噪声的预测方法与试验研究及优化设计[D].武汉:武汉理工大学,2010.
    [24]于增信.轮胎花纹沟噪声激励与仿真研究[D].哈尔滨:哈尔滨工业大学,2001.
    [25]卢晓军.轻型汽车轮胎噪声的试验研究[J].汽车工程,1996,18(3):158-162.
    [26]Richard J. R. A Study of tire/pavement interaction noise using nearfield acoustic holography[D]. Pennsylvania State University,1999.
    [27]Pietila G, Cerrato J. G Evaluation of Different Vehicle Noise Reduction Test Methods for Tire Sound Quality Synthesis[J]. Evaluation,2007,1:2252.
    [28]Saemann E. U., Schmidt H. Schallmessungen bei der Entwicklung von Reifen mit geringem Vorbeifahrtpegel[J]. Zeitschrift fur Larmbekampfung,2002,49(2):59-62.
    [29]Iwao K., Yamazaki I. A study on the mechanism of tire/road noise[J]. JSAE review,1996,17(2): 139-144.
    [30]Wilken I., Oswald L., Hickling R., Research on Individual Noise Source Mechanisms of Truck Tires: Aeroacoustic Sources[J]. SAE Paper:1976-76-2022.
    [31]Richards M. G Cross lug tire noise mechanisms[C]. SAE highway noise symposium,1976:181-186.
    [32]Biermann J., von Estorff O., Petersen S., et al. Computational Model to Investigate the Sound Radiation from Rolling Tires[J]. Tire science and technology,2007,35(3):209-225.
    [33]陈振艺.不规则横向细沟槽胎面花纹噪声研究[J].轮胎工业,2009(29):283-287.
    [34]李汉堂.可降低路面噪音的胎面花纹沟形状设计[J].世界橡胶工业,2005,32(3):25-28.
    [35]葛剑敏,王佐民.轮胎花纹噪声机理的试验研究[C].中国声学学会2002年全国声学学术会议,桂林,2002.
    [36]黄敏祥,许荣均.轮胎噪音产生机制研究探讨[C].中华民国力学学会第三十六届全国力学会议,桃园县,2012.
    [37]Nakajima Y. Theory on Pitch Noise and Its Application[J]. Journal of Vibration and Acoustics,2003, 125 (3):252-257.
    [38]李福军,吴桂忠.轮胎花纹沟的发声模拟计算[J].轮胎工业,2006(26):203-207.
    [39]朱兴元.轮胎的气泵噪声研究[J].噪声与振动控制,2002(5):26-28.
    [40]郑小刚,危银涛,李勇.轿车子午线轮胎泵浦噪声分析[C].北京力学会第19届学术年会,北京,2013.
    [41]Sungtae K., Wontae J., Yonghwan P., et al. Prediction method for tire air-pumping noise using a hybrid technique [J]. Journal of the Acoustical Society of America,2006,119(6):3799-3811.
    [42]Fujiwara S, Yumii K, Saguchi T, et al. Reduction of tire groove noise using slot resonators[J]. Tire Science and Technology,2009,37(3):207-223.
    [43]蔡昶文.汽车轮胎噪声仿真分析的方法与研究[J].装备制造,2009(8):154-155.
    [44]余洁冰,臧孟炎.轮胎泵气噪声有限元仿真研究[J].中国制造业信息化,2010,39(15):48-50.
    [45]李忠禹.轮胎噪声数值分析及研究[D].合肥:合肥工业大学,2012.
    [46]毛竹君,王国林,周海超,等.轮胎单个横沟泵吸噪声计算方法研究[J].机械工程学报,2012,48(4):116-119.
    [47]高龙,王国林,周海超,等.基于FSI方法的轮胎横向花纹沟泵吸噪声研究[J].汽车技术,2012,4:32-35.
    [48]范俊岩.轮胎噪声拖车测试法试验研究[D].上海:同济大学,2007.
    [49]董毛华,闫芳,李明.轿车子午线轮胎噪声探讨[J].轮胎工业,2009,29(1):24-29.
    [50]陈霞.轮胎噪声分析评价及试验研究[D].武汉:武汉理工大学,2012.
    [51]Browne A., Cheng H., Kistler A. Dynamic hydroplaning of pneumatic tires[J]. Wear,1972,20(1): 1-28.
    [52]Moore, D.F. Prediction of skid-resistance gradient and drainage characteristics for pavements[J]. Highway Research Record,1966,131:181-203.
    [53]Flanigan C. M., Beyer L., Klekamp D., et al. Comparing silica, carbon black and novel fillers in tread compounds-Development Laboratory [J]. Rubber World,2012,245(5):18.
    [54]Ko J.Y., Prakashan K., Kim J.K. New silane coupling agents for silica tire tread compounds[J]. Journal of Elastomers and Plastics,2012,44(6):549-562.
    [55]马建华,吴友平.炭黑与白炭黑补强溶聚丁苯橡胶和乳聚丁苯橡胶胎面胶性能的对比研究[J].橡胶工业,2012(59):84-90.
    [56]王雷.节能型轮胎胎面胶料的结构与性能及防静电性研究[D].北京:北京化工大学,2010.
    [57]Masataka K., Toshihiko O. Hydroplaning Simulation Using msc Dytran[J]. MSC Publication,2000.
    [58]Cho J. R., Lee H. W., Sohn J. S., et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire [J]. European Journal of Mechanics-A/Solids,2006,25(6):914-926.
    [59]Cho J. R., Lee H. W., Yoo W. S. A wet-road braking distance estimate utilizing the hydroplaning analysis of patterned tire[J]. International journal for numerical methods in engineering,2007,69(7): 1423-1445.
    [60]Jenq S. T., Chiu Y. S. Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme[J]. Computers, Materials & Continua (CMC),2009,11(1):33.
    [61]Kim T. W., Jeong H. Y. Hydroplaning simulations for tires using FEM, FVM and an asymptotic method[J]. International Journal of Automotive Technology,2010,11(6):901-908.
    [62]Kumar S. S, Kumar A. Analyzing effect of tire groove patterns on hydroplaning speed[J]. Journal of the Eastern Asia Society for Transportation Studies,2010,8:2018-2031.
    [63]Nakajima Y., Seta E. Hydroplaning Analysis By FEM and FVM:Effect of Tire Rolling and Tire Pattern on Hydroplaning [J]. International Journal of Automatic Technology,2000,1(1):26-34.
    [64]Fwa T. F., Kumar S. S., Anupam K., et al. Effectiveness of tire-tread patterns in reducing the risk of hydroplaning[J]. Transportation Research Record:Journal of the Transportation Research Board,2009, 2094(1):91-102.
    [65]Fwa T. F., Anupam K., Ong G. P. Relative Effectiveness of Grooves in Tire and Pavement for Reducing Vehicle Hydroplaning Risk[J]. Transportation Research Record:Journal of the Transportation Research Board,2010,2155(1):73-81.
    [66]余治国,李曙林,朱青云.机轮动力滑水机理分析[J].空军工程大学学报,2004(5):9-11.
    [67]孔江生,吕海涛,朱天军.滑水临界车速分析及可能采取的解决措施[J].兵工学报,2004(3):60-62.
    [68]赵珍辉,李子然,汪洋.带混合花纹的轮胎滑水显式动力学分析[J].汽车技术,2010(4):34-38.
    [69]董斌,唐伯明,刘唐志,等.基于Fluent软件的雨天潮湿路面滑水现象研究[J].武汉理工大学学报,2011,34(4):710-713.
    [70]臧孟炎,朱林培,应卓凡.3-D轮胎模型滑水仿真分析[J].科学技术与工程,2009,9(11):2999-3002.
    [71]王国林,陈海荣.子午线轮胎滑水仿真分析[J].系统仿真学报,2012,24(8):1719-1722.
    [72]张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-102.
    [73]王国林,邓元,金梁,等.轮胎滑水特性的CFD分析[J].橡胶工业,2013,6(7):417-422.
    [74]王国林,金梁.轮胎滑水的CFD方法研究[J].计算力学学报,2012,29(4):594-598.
    [75]http://www.michelin.com.cn/Home.
    [76]http://toyotires.com/tire-technology.
    [77]Chen H., Rao E, Shang X., et al. Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather[J]. Journal of Bionic Engineering,2013,10(3):341-349.
    [78]Walsh M. J., Lindemann A. M. Optimization and application of riblets for turbulent drag reduction[M]. American Institute of Aeronautics and Astronautics,1984.
    [79]胡海豹,宋保维,潘光,等.回转体表面条纹沟槽降噪水洞实验研究[J].火力与指挥控制,2008,33(2):139-141.
    [80]石秀华,宋保维,施仲庆.条纹薄膜降低水下航行器流噪声的实验研究[J].西北工业大学学报,1997(3):395-398.
    [81]潘光,黄明明,马骥.脊状表面降噪特性研究[J].火力与指挥控制,2010,35(5):16-19.
    [82]王永华,张成春,王晶,等.仿生多孔材料吸声性能[J].吉林大学学报,2012,42(6):1142-1147.
    [83]Ren L. Q. Progress in the Bionic Study on Anti-adhesion and Resistance Reduction of Terrain Machines[J]. Sci China Ser E-Tech Sci,2009,52(2):273-284.
    [84]孙少明.风机气动噪声控制耦合仿生研究[D].长春:吉林大学,2008.
    [85]Shi L., Zhang C., Wang J., et al. Numerical Simulation of the Effect of Bionic Serrated Structures on the Aerodynamic Noise of a Circular Cylinder[J]. Journal of Bionic Engineering,2012,9(1):91-98.
    [86]Goldstein M. Aeroacoustics[M]. New York, USA:McGraw-Hill International Book Company.1976.
    [87]Lighthill M. J. On sound generated aerodynamically i. General theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1952,211(1107):564-587.
    [88]Lighthill M. J. On sound generated aerodynamically ii. Turbulence as a source of sound [J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1952, 222(1148):1-32.
    [89]Curle N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,1955,231 (1187):505-514.
    [90]Williams J. E., Hawkings D. L. Sound generation by turbulence and surfaces in arbitrary motion [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1969,264(1151):321-342.
    [91]Goldstein M. Unified approach to aerodynamic sound generation in the presence of sound boundaries [J]. Journal of the Acoustical Society of America,1974,56(1974):497-509.
    [92]Sanjiva K. L. Computational aero-acoustics:A review [C].35th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV,1997:AIAA-1997-18.
    [93]Tam C. K. W. Computational aero-acoustics:Issues and methods [J]. AIAA Journal,1995,33(10): 1788-1796.
    [94]徐俊伟,吴亚锋,陈耿.气动噪声数值计算方法的比较与应用[J].噪声与振动控制,2012(4):6-10.
    [95]李增刚,詹福良Virtual lab Acoustics声学仿真计算高级应用实例[M].北京:国防工业出版社,2010.
    [96]石磊.圆柱杆件气动噪声仿生控制研究[D].长春:吉林大学,2013.
    [97]Fluent A.14.0 Documentation [R]. Users Guide Manual, Ansys Inc,2011.
    [98]屈焕成,张荻,谢永慧,等.汽轮机调节级非定常流动的数值模拟及汽流激振力研究[J].西安交通大学学报,2011,45(11):39-44.
    [99]卢云涛,张怀新,潘徐杰.四种湍流模型计算回转体流噪声的对比研究[J].水动力学研究与进展,2008,23(3):348-355.
    [100]Wang G. L., Zhou H. C., Yang J., et al. Study on the influence of bionic non-smooth surface on water flow in antiskid tire tread pattern[J]. Journal of Donghua University(Englis Edition),2013,30(4):1-7.
    [101]Moin P, Kim J. Numerical investigation of turbulent channel flow[J]. Journal of Fluid Mechanics, 1982,118:341-377.
    [102]Ferziger J. H., Peric M. Computational methods for fluid dynamics[M]. Berlin:Springer,1996.
    [103]Chang Y. S., Scotti A. Modeling unsteady turbulent flows over ripples:Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES)[J]. Journal of Geophysical Research,2004,109(C9):C09012.
    [104]王福军.计算流体动力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [105]Pope S. B. Turbulent flows[M]. Cambridge:Cambridge University Press.2000.
    [106]Howe M. S. Theory of vortex sound[M]. Cambridge:Cambridge university press,2002.
    [107]王佐民.噪声与振动测试[M].北京:科学出版社,2009.
    [108]王彤,谷传纲,杨波,等.非定常流动的PISO算法[J].水动力学研究与进展,2003,18(2):233-239.
    [109]Zhao Y, Hui T. H, Zhang B. A High-resolution Characteristics-Based Implicit Dual Time-stepping VOF Method for Free Surface Flow Simulation on Unstructured Grids[J]. Journal of Computational Physics,2002,183:233-273.
    [110]Vincent S., Sarthou A., Caltagirone J. P., et al. Augmented Lagrangian and penalty methods for the simulation of two-phase flows interacting with moving solids. Application to hydroplaning flows interacting with real tire tread patterns[J]. Journal of Computational Physics,2011,230(4):956-983.
    [111]Alhendal Y., Turan A., Aly W. I. A. VOF simulation of marangoni flow of gas bubbles in 2D-axisymmetric column[J]. Procedia Computer Science,2010,1(1):673-680.
    [112]辛振祥,邓涛,王伟.现代轮胎结构设计[M].北京:化学工业出版社,2011.
    [113]伍建军.载重子午线轮胎滚动阻力有限元仿真分析[D].镇江:江苏大学,2011.
    [114]王国林,董大鹏,何志刚,等.全钢载重子午线轮胎稳态温度场试验及仿真分析[J].橡胶工业,2009,56(9):557-561.
    [115]梁晨.子午线轮胎综合接地性能评价体系与方法研究[D].镇江:江苏大学,2013.
    [116]王国林,马银伟,梁晨,等.仿蝗虫脚掌的子午线轮胎胎面结构设计[J].机械工程学报,2013,49(12):131-135.
    [117]王国林,万治君,梁晨,等.基于非平衡轮廓理论的子午线轮胎结构设计[J].机械工程学报,2012,48(24):112-118.
    [118]石琴,陈无畏,谷叶水,等.基于非线性有限元理论的子午线轮胎侧偏特性研究[J].农业机械学报,2005(11):1-4.
    [119]王强,齐晓杰,张娜,等.基于Pro/E与Ansys载重车辆轮胎有限元分析[J].交通科技与经济,2009,1:35-38.
    [120]陈芳,王国林,高先进,等.载重子午线轮胎帘线受力有限元分析[J].橡胶工业,2008,55(2):80-84.
    [121]王国林,陈海荣.子午线轮胎滑水仿真分析[J].系统仿真学报,2012,24(8):1719-1722.
    [122]李兵.计及复杂胎面花纹的子午线轮胎结构有限元分析[D].合肥:中国科学技术大学,2008.
    [123]Wilken I.D., Oswald L. J., Kickling R. Research on individual noise source mechanisms of truck tires: Aeroacoustic source[J]. SAE Highway Noise Symposium Society of Automotive Engineers, Warrendale,1976,762024:181-186.
    [124]唐家鹏. FLUENT 14.0超级学习手册[M].北京:人民邮电出版社,2013.
    [125]龙双丽,聂宏,薛彩军,等.民用飞机起落架气动噪声数值仿真[J].南京航空航天大学学报,2012,44(6):786-791.
    [126]Janajreh I., Rezgui A., Estenne V. Tire tread pattern analysis for ultimate performance of hydroplaning[C]. Conference on Computational Fluid and Solid Mechanics.2001:264-267.
    [127]Ong G. P. Hydroplaning and skid resistance analysis using numerical modeling[D]. Singapore: National University of Singapore.2006.
    [128]JTJ014-97,公路沥青路面设计规范[S].北京:人民交通出版社,1997.
    [129]Horne W. B., Dreher R. C. Phenomena of pneumatic tire hydroplaning[Z]. Technical Note D-2056, National Aeronautics and Space Adiministration,1963.
    [130]Dunlap D., Fancher P. S. Pavement skid-resistance requirements[J]. Transportation Research Record, 1976,584:15-21.
    [131]Dinescu, C., Hirsch, C., Leonard B., et al. Fluid-Structure Interaction Model for Hydroplan-ing Simulations[J]. SAE Paper:2006-01-1190.
    [132]任露泉.试验优化设计与分析[M].北京:高等教育出版社,2001.
    [133]韩建保,韩双庆.胎面花纹深度及车速影响滑水现象分析[J].车辆与动力技术,2003(4):55-58.
    [134]Kang Z. X., Ji Z. L. Aeoustic length correction of duct extension into a cylindrical chamber[J]. Journal of Sound and Vibration,2008,310(4-5):782-791.
    [135]Anupam K. Numerical Simulation Of Vehicle Hydroplaning And Skid Resistance On Grooved Pavement[D]. Singapore:Natioanl University of Singapore,2011.
    [136]何琳,朱海潮,邱小军等.声学理论与工程应用[M].北京:科学出版社,2006.
    [137]任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2012.
    [138]Sandberg U. A closer look at the tread groove resonance in tyre/road noise[R]. The 18th International Congress on Acoustics ICA-2004. Kyoto.2004.
    [139]周利坤,王洪伟.仿章鱼吸盘式轮胎花纹设计与有限元分析[J].西安理工大学学报,2013,29(2):228-232.
    [140]林丽玉,白雅,罗吉良.275/25ZR 95W轿车子午线轮胎的设计[J].轮胎工业,2010,30(9):524-527.
    [141]李杰,庄继德,魏东,等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J].吉林大学学报,2006,36(4):510-513.
    [142]薛祖绳.边界层理论[M].北京:水利电力出版社,1995.
    [143]景恩芮,张鸣远.流体力学[M].西安:西安交通大学出版社,2001.
    [144]Olujic Z. Compute friction factors fast for flow in pipes[J]. Chemical Engineering,1981, 88(25):91-93.
    [145]Choi H., Moin P., Kim J. Direct numerical simulation of turbulent flow over riblets[J]. Journal of fluid mechanics,1993,255:503-503.
    [146]Itoh M., Tamano S., Iguchi R., et al. Turbulent drag reduction by the seal fur surface[J]. Physics of Fluids,2006,18:065102.
    [147]Dean B., Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow:a review[J]. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2010,368(1929):4775-4806.
    [148]王晋军.沟槽面湍流减阻研究综述[J].北京航空航天大学学报,1998,24(1):31-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700