用户名: 密码: 验证码:
冲击和准静态载荷下固支夹芯浅拱的力学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫金属夹芯结构由上下两层金属面板和超轻泡沫金属芯层粘合而成。由于其独特的多功能复合特性(如高比刚度、比强度,隔音及保温隔热,阻尼减震,优越的抗冲击性能等),使其具有广泛的应用前景,例如可以设计出兼具高强度和良好能量吸收性能的超轻结构。因此,近年来泡沫金属夹芯结构广泛应用于航空航天飞行器、高速轨道车辆、汽车、舰船等高科技领域。
     本文主要研究冲击和准静态载荷下夹芯浅拱的变形/失效模式,能量耗散机制及结构响应。实验用夹芯拱由铝合金面板和泡沫铝芯层构成。
     实验研究了泡沫铝子弹冲击载荷作用下固支夹芯拱的动态响应。使用激光位移传感器记录了夹芯拱后面中心的位移历史,并用后面板永久位移和芯层压缩应变来衡量夹芯拱的抗冲击能力。首先,对夹芯拱的变形和失效模式进行了系统的分类和分析;其次,详细分析了冲击载荷作用下夹芯拱的结构响应和变形机理;最后,深入研究了子弹冲量、面板厚度、芯层厚度和曲率半径对其抗冲击性能的影响。
     使用LS-DYNA有限元软件对夹芯拱的动力响应进行了数值模拟计算。通过比较变形模态、位移历史、永久位移和芯层压缩应变的计算结果与实验结果,验证了有限元模型的合理性和可靠性,并进一步对有限元计算结果进行了详细的分析与讨论。研究结果表明:可以通过增加面板厚度、芯层厚度和适当调整曲率有效控制后面板的永久位移,提高夹芯拱的抗冲击能力。一个近似的质量最优化研究被提出,优化设计通过无量纲参数来确定。通过研究泡沫子弹作用于结构上的压力时程曲线和冲量,验证了使用泡沫铝子弹冲击加载是一种实验室环境研究结构抗冲击动态响应的安全、有效方法。
     通过实验和理论两方面研究了准静态载荷下夹芯拱的结构响应和塑性坍塌模式。实验结果显示,在准静态载荷下夹芯拱主要通过面板屈服、芯层剪切和压入失效三种模式发生塑性坍塌,并且对塑形坍塌机理进行了分析。建立了简化的理论分析模型,得到了夹芯拱弹性刚度和初始坍塌强度的分析方程,并且与实验结果有很好的吻合。
Metal foam sandwich structures, obtained by combining metal face sheets with a lightweight metal foam core, have peculiar properties (low specific weight, efficient capacity of energy dissipation, high impact strength, acoustic and thermal insulation, high damping, etc.), that made them interesting for a number of practical applications, such as the realization of lightweight structures with high mechanical strength and good capacity of energy dissipation under impacts. Therefore, they have been applied to many fields, for example, aerospace aircrafts, high-speed rail vehicles, automotive, ships and so on.
     In this paper, the structural response of clamped shallow sandwich arches with aluminum foam cores subjected to impact and quasi-static loading have been measured. The shallow sandwich arches comprise2A12-0aluminum alloy face sheets and aluminum foam cores.
     The dynamic response of end-clamped shallow sandwich arches has been measured by impacting the arches at mid-span with aluminum foam projectiles. Laser displacement transducer was used to measure the permanent transverse deflection of the back face mid-point of the arches. The resistance to impact loading is quantified by the permanent back face deflection and final core compressive strain at the mid-span of the arches. First, the deformation/failure modes of shallow sandwich arch were observed and classified systematically. Further, the structural response and deformation mechanism of clamped shallow sandwich arches subjected to projectile impact were analyzed. Finally, the effects of projectile impulse, face-sheet thickness, core thickness, and radius of curvature on the structural response were obtained.
     Based on the experiments, corresponding finite element simulations were conducted using LS-DYNA software, and the simulation results are reported and discussed in this paper. Finite element simulations of these experiments are in good agreement with the experimental measurements. The results indicated that permanent deflection of the back face can be efficiently controlled by increasing thickness of face sheets, thickness of core or appropriately increasing curvature. Meanwhile, shock resistance of the shallow sandwich arch can also be improved. A limited study of weight optimization is carried out. Dimensionless parameters governing optimal designs are identified. Specific results are presented for the best performance that can be achieved and the optimal distribution of thickness between face sheet and core. The numerical simulations were employed to determine the pressure versus time history exerted by the foam projectiles on the arches. It was found that the pressure transient was reasonably independent of the dynamic impedance of the arch, suggesting that the metal foam projectile is a convenient experimental tool for ranking the shock resistance of structures.
     The structural response and plastic collapse modes for clamped sandwich arches under quasi-static loading have been investigated experimentally and theoretically. The experimental results showed that plastic collapse displayed in three competing mechanisms:face yield, core shear and indentation. Simplified theoretical models and analytical formulae are developed for the elastic stiffness and initial collapse strength of sandwich arches.
引文
[1]Gibson L J, Ashby M F. Cellular Solids:structure and properties,2nd ed[M]. Second Edition. Cambridge:Cambridge University Press,1997.
    [2]王志华,朱峰,赵隆茂.多孔金属夹芯结构动力学行为及其应用[M].北京:兵器工业出版社,2010.
    [3]卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535.
    [4]Banhart John. Manufacture, characterisation and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46:559-632.
    [5]Ashby M F, Evans A G, Flack N A, etc. Metal foams:a design guide[M]. Oxford: Butterworth Heinemann,2000.
    [6]Sugimura Y, Meyer J, He M Y, etc. On the mechanical performance of closed cell Al alloy foams[J]. Acta materialia,1997,45(12):5245-5259.
    [7]McCullouh K Y G, Fleck N A, Ashby M F. Toughness of aluminium alloy foams [J]. Acta materialia,1999,47(8):2331-2343.
    [8]Chen C, Fleck N A, Lu T J. The mode I crack growth resistance of metallic foams[J]. Journal of the Mechanics and Physics of Solids,2001,49(2):231-259.
    [9]Evans A G, Hutchinson J W, Fleck N A, etc. The topological design of multifunctional cellular metals[J]. Progress in Materials Science,2001,46(3-4):309-327.
    [10]Gu S, Lu T J, Evans A G. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity [J]. International Journal of Heat and Mass Transfer,2001,44(11):2163-2175.
    [11]Kim T, Zhao C Y, Lu T J, etc. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials,2004,36(8):767-780.
    [12]Lu T J, Hess A, Ashby M F. Sound absorption in metallic foams[J]. Journal of Applied Physics,1999,85(11):7528-7539.
    [13]Wang X L, Lu T J. Optimized acoustic properties of cellular solids[J]. Journal of the Acoustical Society of America,1999,106(2) 756-765.
    [14]Ashby M F, Lu T J. Metal foams:a survey[J]. Science in china series B:Chemistry, 2003,46(6):521-532.
    [15]Evan A G, Hutchinson J W, Ashby N F. Multi-functionality of cellular metal systems [J]. Progress in Materials Science,1999,43:171-221.
    [16]Betts C. Benefits of metal foams and developments in modelling techniques to assess their materials behavior:a review[J]. Materials science and technology,2012,28(2): 129-143.
    [17]Vinson J R. Sandwich structures:Past, present, and future[C]//Thomsen O T, etc. Sandwich Structures 7:Advancing with Sandwich Structures and Materials. Proceedings of the 7th International Conference on Sandwich Structures, Aalborg University, Aalborg, Denmark:Springer,2005:3-12.
    [18]Degischer H P, Kriszt B. Handbook of Cellular Metals:Production, Processing, Applications[M]. New York: Wiley,2002.
    [19]Sosnick B. Process for Making Foam-like Mass of Metal [P]. US Patent:2434775, 1948.
    [20]宋延泽.泡沫铝子弹撞击下多孔金属夹芯板的塑性动力响应研究[D].太原理工大学,2009.
    [21]Bart-Smith H, Hutchinson J W, Evans A G. Measurement and analysis of the structural performance of cellular metal sandwich construction[J]. International Journal of Mechanical Sciences,2001,43(8):1945-1963.
    [22]Kesler O, Gibson L J. Size effects in metallic foam core sandwich beams[J]. Materials Science and Engineering:A,2002,326 (2):228-234.
    [23]McCormack T M, Miller R, Kesler O, etc. Failure of sandwich beams with metallic foam cores[J]. International Journal of Solids and Structures,2001, 38(28-29):4901-4920.
    [24]Tagarielli V L, Fleck N A. A comparison of the structural response of clamped and simply supported sandwich beams with aluminium faces and a metal foam core[J]. Journal of Applied Mechanics,2005,72(3):408-417.
    [25]Crupi V, Montanini R. Aluminium foam sandwiches collapse modes under static and dynamic three-point bending[J]. International Journal of Impact Engineering,2007, 34(3):509-521.
    [26]Chen C, Harte A-M, Fleck N A. The plastic collapse of sandwich beams with a metallic foam core[J]. International Journal of Mechanical Sciences,2001,43(6):1483-1506.
    [27]Wick N, Hutchinson J W. Optimal truss plate [J]. International Journal of Solids and Structures,2002,38:5165-5183.
    [28]Xue Z, Hutchinson J W. Preliminary assessments of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences,2003,45:687-705.
    [29]Xue Z, Hutchinson J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering.2004,30:1283-1305.
    [30]Hutchinson J W, Xue Z. Metal sandwich plates optimized for pressure impulses[J]. International Journal of Mechanical Sciences.2005,47:545-569.
    [31]Vaziri A, Hutchinson J W. Metal sandwich plates subject to intense air shocks[J]. International Journal of Solids and Structures.2007,44:2021-2035.
    [32]Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading[J]. Journal of Applied Mechanics.2004,71(3):386-401.
    [33]Qiu X, Deshpande V S, Fleck N A. Dynamic response of a clamped circular sandwich plate subject to shock loading[J]. Journal of Applied Mechanics. ASME.2004,71(5): 637-645.
    [34]Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International Journal of Impact Engineering,2005,31: 1152-1171.
    [35]Radford D D, McShane G J, Deshpande V S, etc. The response of clamped sandwich plates with metallic foam cores to simulated blast loading[J]. International Journal of solids and structures,2006,43:2243-2259.
    [36]McShane G J, Radford D D, Deshpande V S, etc. The response of clamped sandwich plates with lattice cores subjected to shock loading[J]. European Journal of Mechanics A/Solids,2006,25:215-229.
    [37]Radford D D, Fleck N A, Deshpande V S. The response of clamped sandwich beams subjected to shock loading[J]. International Journal of Impact Engineering,2006,32: 968-987.
    [38]Tagarielli V L, Deshpande V S, Fleck N A. The dynamic response of composite sandwich beams to transverse impact[J]. International Journal of Solids and Structures, 2007,44:2442-2457.
    [39]Panciroli R, Abrate S. Dynamic response of sandwich structures to impulsive loads[C]. IMECE 2009:Proceedings of the ASME international mechanical engineering congress and exposition,2010,11:199-209.
    [40]Theobald M D, Langdon G S, Nurick G N, etc. Large inelastic response of unbonded metallic foam and honeycomb core sandwich panels to blast loading[J]. Composite structures,2010,92:2465-2475.
    [41]Andrews E W, Moussa N A. Failure mode maps for composite sandwich panels subjected to air blast loading[J]. International Journal of Impact Engineering,2009,36: 418-425.
    [42]王志华,曹晓卿,马宏伟等.泡沫铝合金动态力学性能实验研究[J].爆炸与冲击,2006,26(1):46-52.
    [43]Wang Z H, Ma H W, Zhao L M, etc. Studies on the dynamic compressive properties of open-cell aluminum alloy foams[J]. Scripta Materialia,2006,54:83-87.
    [44]Wang Z H, Li Z Q, Ning J G, etc. Effect of heat treatments on the crushing behaviour and energy absorbing performance of aluminium alloy foams[J]. Materials and Design, 2009,30:977-982.
    [45]Wang Zhihua, Shen Jianhu, Lu Guoxing, Zhao Longmao. Compressive behavior of closed-cell aluminum alloy foams at medium strain rates [J]. Materials Science and Engineering:A,2011,528(6):2326-2330.
    [46]Wang Zhihua, Jing Lin, Zhao Longmao. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J]. Transactions of Nonferrous Metals Society of China,2011,21(3):449-454.
    [47]Zhu Feng, Zhao Longmao, Lu Guoxing, etc. Deformation and failure of blast-loaded metallic sandwich panels-Experimental investigations[J]. International Journal of Impact Engineering,2008,35:937-951.
    [48]Zhu Feng, Zhao Longmao, Lu Guoxing, etc. An experimental and preliminary analytical study on the impulse response of metallic sandwich panels [J]. International Journal of Modern Physics B,2008,22(09-11):1337-1342.
    [49]Zhu Feng, Zhao Longmao, Lu Guoxing, etc. Structural response and energy absorption of sandwich panels with an aluminium foam core under blast loading [J]. Advances in Structural Engineering,2008,11(5):525-536.
    [50]Zhu Feng, Wang Zhihua, Lu Guoxing, etc. Analytical investigation and optimal design of sandwich panels subjected to shock loading[J]. Materials & Design,2009,30(1): 91-100.
    [51]Zhu F, Wang Z H, Lu G X, etc. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading[J]. International Journal of Impact Engineering,2010,37:625-637.
    [52]张旭红,王志华,赵隆茂.爆炸载荷作用下铝蜂窝夹芯板的动力响应[J].爆炸与冲击,2009,29(4):356-360.
    [53]宋延泽,王志华,赵隆茂等.撞击载荷下泡沫铝夹层板的动力响应[J].爆炸与冲击,2010,30(3):301-307.
    [54]敬霖,王志华,赵隆茂.撞击载荷下泡沫铝夹芯梁的塑性动力响应[J].爆炸与冲击,2010,30(6):561-568.
    [55]Jing Lin, Wang Zhihua, Zhao Longmao. Failure and Deformation Modes of Sandwich Beams under Quasi-Static Loading[J]. Applied Mechanics and Materials,2010, 29-32(84):84-88.
    [56]Jing Lin, Wang Zhihua, Zhao Longmao. Experimental and analytical study of dynamic response of sandwich beam under impact loading. Materials Research Innovations. 2011,15(SUPPL1):S94-S97
    [57]Wang Z H, Ning J G, Zhao L M, etc. Experimental investigation on deformation and failure of metallic sandwich panels under blast loading [J]. Materials Research Innovations,2011,15(SUPPL 1):s98-s101.
    [58]Jing Lin, Yan Qingrong, Wang Zhihua, etc. The dynamic mechanical behavior of sandwich beams with aluminum honeycomb cores[J]. Advanced Science Letters,2011, 4(3):731-735.
    [59]Jing Lin, Wang Zhihua, Ning Jianguo, etc. The dynamic response of sandwich beams with open-cell metal foam cores[J]. Composites Part B:Engineering,2011,42(1):1-10.
    [60]Wang Zhihua, Jing Lin, Ning Jianguo, etc. The structural response of clamped sandwich beams subjected to impact loading[J]. Composite structures.2011,93(4):1300-1308.
    [61]李庆明,赵隆茂.固支浅圆拱受子弹撞击的实验研究[J].爆炸与冲击,1991,11(3):238-243.
    [62]魏德敏.拱的非线性理论及其应用[M].北京:科学出版社,2004.
    [63]Li R, Kardomateas G A, Simitses G J. Nonlinear response of a shallow sandwhich shell with compressible core to blast loading[J]. Journal of Applied Mechanics,2008,75: 1-10.
    [64]Hutchinson J W, He M Y. Buckling of cylindrical sandwich shells with metal foam cores[J]. International Journal of Solids and Structures,2000,37(46-47):6777-6794.
    [65]Corona E, Wang J. Response and collapse of foam-supported sheet metal beams and shallow arches[J]. International Journal of Solids and Structures.2008,45:5844-5855.
    [66]Shen Jianhu, Lu Guoxing, Wang Zhihua, etc. Experiments on curved sandwich panels under blast loading[J]. International Journal of Impact Engineering,2010,37:960-970.
    [67]谢青海,王志华,赵隆茂.泡沫铝夹芯拱塑性动力响应的实验研究[J].兵工学报,2011,32(5):589-595.
    [68]Li Q M, Magkiriadies I, Harrigan J J. Compressive strain at the onset of densification of cellular solids[J]. Journal of Cellular Plastics,2006,42(5):371-392.
    [69]Dannemann K A, Lankford J. High strain rate compression of closed-cell aluminium foams[J]. Materials Science and Engineering:A,2000,293(1-2):157-164.
    [70]Miyoshi T, Mukai T, Higashi K. Energy absorption in closed-cell Al-Zn-Mg-Ca-Ti foam[J]. Materials Transactions,2002,43(7):1778-1781.
    [71]Shen Jianhu, Lu Guoxing, Ruan Dong. Compressive behaviour of closed-cell aluminium foams at high strain rates[J]. Composites Part B-Engineering,2010,41(8): 678-685.
    [72]Menkes S B, Opat H J. Tearing and shear failures in explosively loaded clamped beams[J]. Experimental Mechanics,1973,13(11):480-486.
    [73]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [74]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [75]LS-DYNA THEORY MANUAL[M]. Livermore Software Technology Corporation.
    [76]赵隆茂.结构动力响应分析中接触-碰撞界面算法研究的进展[J].太原理工大学学报,2001,32(5):459-462.
    [77]Hughes T J. A finite element method for a class of contact-impact problems [J]. Computer Methods in Applied Mechanics and Engineering,1976(8):249-276.
    [78]Hallquist J O. A procedure for the solution of finite deformation contact-impact problems by the finite element method[J]. University of California, Lawrence Livermore national laboratory, Rept. UCRL-52066,1976.
    [79]Haug E. Contact-impact problems for crash[C]. Process of Second International Symposium of plasticity, Nagoya, Japan,1981.
    [80]Wilkins M L. Calculations of elastic plastic flow[J]. Meth. Comp. Phys,1964(3): 211-263.
    [81]Burton D E. Physics and numerical of the TENSOR code. Lawrence Livermore national laboratory, Internal Document UCID-19428,1982.
    [82]Qiu X, Deshpande V S, Fleck N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch[J]. Journal of the Mechanics and Physics of solids, 2005,53(5):1015-1046.
    [83]Jones N. Structural Impact[M]. Cambridge University Press,1989.
    [84]Allen H G. Analysis and Design of Structural Sandwich Panels[M]. NewYork: Pergamon Press,1969.
    [85]龙驭球,包世华,匡文起等.结构力学I,第2版[M].北京:高等教育出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700