用户名: 密码: 验证码:
射频板条CO_2激光器的光束特性及其热稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光束特性及其热稳定性是高功率射频板条CO_2激光器中的重要理论问题和关键工程问题。本文研究了射频板条CO_2激光器的输出光束特性和腔内模式与损耗特性,射频板条电极的温度场与热变形问题、窗口镜的热畸变问题,热稳定性对光束特性的影响,并对射频板条选支CO_2激光器这一新的应用分支进行了探讨。主要研究内容如下:
     (1)在一维非稳腔与一维波导腔的理论基础上,针对百瓦级射频板条CO_2激光器设计了正支非稳-波导混合腔,采用分离变量法分析了光束在波导与非稳两个方向的输出模式及传输特性。实验测量了输出光束近场远场分布及激光谐振腔的功率失调特性。研究表明输出光束在非稳方向呈近似的准直输出,硬边衍射效应对光场分布有着明显影响;波导方向为近似的基模输出,发散角为12mrad。
     (2)从非稳腔的模式交叉特性入手,结合Collins公式与光学ABCD矩阵方法,将特征向量法的应用推广到非稳腔,计算过程中没有对腔镜的横向尺寸进行任何近似。采用该扩展的特征向量法分别对非对称和非共焦这两种不规则结构的非稳腔进行了数值模拟,可以准确的获得腔内各阶本征模和损耗。通过改变非稳腔的各种几何参数获得各阶模式损耗的变化曲线,为非稳腔的结构设计和深入理解提供了便捷的方法。
     (3)针对2kW射频板条CO_2激光器,进行了板条电极热稳定性的研究。探讨了影响对流换热问题的关键参数——对流换热系数的取值。在不同的对流换热系数取值条件下进行了稳态热分析,结果表明当水流量超过一定值后,电极冷却效果增加不明显。然后在激光器满功率运行的条件下,分析了从开机到达到稳定状态的动态过程,结果表明更高的对流换热系数下板条电极达到稳态的时间更短,h=2000W/(m2·℃)时达到稳态过程约为五分钟。
     (4)对板条电极和窗口镜的热应力和变形进行了有限元分析。设计了三种不同的电极安装结构并分别进行了热应力与变形的分析,证明采用绝缘陶瓷定位方案和自由无约束方案均适用,各有优劣。针对非稳-波导腔特殊的输出光束特性,研究了其对窗口镜的热影响。采用多项式拟合的方法构造了一个用于有限元分析的激光功率分布函数,精确模拟了窗口镜在条形光斑作用下的温度场分布和热应变情况,并讨论了高功率激光器窗口镜的热透镜效应。
     (5)从选支调谐CO_2激光器的技术路线、研究进展和基本原理出发,对工作介质、能级结构、光栅选支方法等技术理论进行了分析,并讨论了选支调谐射频板条CO_2激光器的发展情况和关键技术问题。针对大功率射频板条选支CO_2激光器,设计了一种特殊的光栅-波导-折叠腔,该谐振腔在横向上表现为一个等效的稳定腔,而在垂直电极方向为波导腔。对这种大功率光栅腔的模式特征进行了分析,计算了在不同Littrow入射角、以及偏离Littrow波长时的腔内本征横模的光场分布和损耗特性。
Beam characteristic and its thermal stability of the radio frequency-exited waveguideCO_2laser are important both in theoretical researches and engineering design. Theintra-cavity and output beam characteristics of the RF-excited slab CO_2laser whichdetermined by the slab structure have been studied in this thesis. The temperaturedistribution and the hot distortion of the slab electrodes and the output window areanalysed by the finite element method, to find out the impact of the thermal stability onthe laser. The wavelength selected RF-excited waveguide CO_2lasers is summarized andintroduced as a branch application, and a large power grating-waveguide-folded resonatoris designed for this laser. The main contents are classified as follows.
     (1) A positive-branch unstable-waveguide hybrid resonator is designed for thehundred watts level RF-excited slab CO_2lasers based on the theory of one-dimensionalunstable resonator and waveguide resonator. The output beam modes in these twodirections are analyzed with the method of separating variables. The optical fielddistributions in the near field and the far field and the characteristics of powermisalignment are measured experimentally. It is demonstrated that the beam isapproximately collimated in the unstable dimension, yet strongly affected by thehard-edge diffraction. Simultaneously, the beam mode is a similar fundamental mode inthe waveguide dimension with a big divergence angle.
     (2) The eigenvector method is extended for unstable resonators combined with theCollins formula and the ABCD ray matrix. In the process of this method there is not anyapproximation on the aperture sizes of both mirrors. The mode behavior in a resonatorwith arbitrary irregular structures can be studied exactly and conveniently. Anasymmetrical practical unstable resonator and a non-confocal practical unstable resonatorare numerically simulated under varying structure parameters, and some newcharacteristics are found. The loss curves of some lower order modes versus differentgeometric parameters are obtained.
     (3) Experiments for the stabilities are taken on a2kW RF-excited slab CO_2laser, toinvestigate how the thermal stability affects the beam characteristics. The steady state temperature distribution on the slab electrodes are simulated with thermodynamics FEMmethod. The value of the convective heat transfer coefficient, which is a key parameter inthe heat convection, is discussed, and several values are tried in the simulations. Atransient heat analysis of the slab electrode is taken. The dynamic thermodynamicsprocess from start to stability of some points on the electrode is simulated. It is shown thatwhen the convective heat transfer coefficient is given a higher value, this process will befast, and when h=2000W/(m2·℃) the time is about5min.
     (4) The heat stress and heat distortion of the slab electrodes and the output windoware analyzed with FEM. Three different fixing structures of the electrodes are designedand analyzed. It is proven that the insulating ceramics fixing method and the free fixingmethod without restriction are both suitable, and the later method is more advanced for theelectrodes with large area. The impact of the output beam of the unstable-waveguidehybrid resonator on the output window is researched. A distribution function of the laserpower is composed with polynomial fitting in the FEM simulation. And then, the thermallens effect of the output window under a high laser beam is studied.
     (5) Some technologies of the wavelength selected CO_2laser are summarized, such asthe actuating medium, the level structures, the tuning method with grating and so on. Thedevelopment and the key technologies of the tunable RF-excited slab CO_2laser arediscussed. A special grating-waveguide-folded resonator is designed for the high powertunable slab CO_2laser, and mode behaviors are researched. For a grating resonator, themode and misaligned characteristics under different Liitrow angle are studiedsystematically.
引文
[1]唐霞辉.高功率横流CO2激光器及其应用.华中科技大学出版社,2008:23~26
    [2]徐啓阳,王新兵.高功率连续CO2激光器.(第1版).北京:国防科技出版社,2000:147~149
    [3]彭浩.高功率板条CO2激光器射频放电技术研究:[博士学位论文].武汉:华中科技大学,2012
    [4]柳娟.大功率射频激励CO2激光器激励特性研究:[博士学位论文].武汉:华中科技大学,2009
    [5]张焱.射频激励CO2激光器的流道设计与反射镜变形分析:[硕士学位论文].武汉:华中科技大学,2009
    [6] http://www. rofin. com/en/products/co2_lasers/slab_laser/,2012-12-27
    [7] P. W. Smith. A Waveguide Gas Laser. Appl. Phys. Lett.,1971,19(5):132~134
    [8] T. J. Bridges, E. G. Burkhardt, P. W. Smith. CO2waveguide lasers. Appl Phys Lett1972,20(11):403~407
    [9] K. D. Laakmann, W. H. Steier. Waveguides: characteristic modes of hollowrectangular dielectric waveguides. Appl. Opt.,1976,15(5):1334~1340
    [10] J. L. Lachamber, J. Mackriane, G. Otis, et al. A transverse rf-excited CO2waveguide laser. Appl Phys Lett.,1978,22(10):652~658
    [11] S. L vold, G. Wang. Ten-atmospheres high repetition rate rf-excited CO2waveguide laser. Appl. Phys. Lett.,1982,40(1):13~15
    [12] D. He, D. R. Hall. Influence of xenon on sealed-off operation of rf-excited CO2waveguide lasers. J. Appl. Phys.,1984,56(3):856~857
    [13] P. Vidaud, D. R. Hall. Effect of xenon on the electron temperatures of rf dischargeCO2laser gas mixtures. J. Appl. Phys.,1985,57(5):1757~1758
    [14] B. A. McArthur, J. Tulip. CO2dissociation in sealed rf-excited CO2waveguidelasers. Rev. Sci. Instrum.,1988,59(5):712~715
    [15] D. He, D. R. Hall. Longitudinal voltage distribution in transverse rf dischargewaveguide lasers. J. Appl. Phys.,1983,54(8):4367~4373
    [16] D. He, C. J. Baker, D. R. Hall. Discharge striations in rf excited waveguide lasers.J. Appl. Phys.,1984,55(11):4120~4122
    [17] R. L. Sinclair, J. Tulip. Parameters affecting the performance of a rf excited CO2waveguide laser. J. Appl. Phys.,1984,56(9):2497~2501
    [18] D. He, D. R. Hall. Frequency dependence in RF discharge excited waveguide CO2lasers. IEEE J. Quantum Electron.,1984,20(5):509~514
    [19] U. E. Hochuli, P. R. Haldemann. Efficient30-W,140-MHz rf amplifier for cw CO2waveguide laser excitation. Rev. Sci. Instrum.,1988,59(11):2380~2383
    [20] K. Schroder. Theoretical treatment of rf discharges in CO2waveguide lasers. J.Appl. Phys.,1990,68(11):5528~5531
    [21] R. C. Sharp. Measurements of transverse-gain profiles in rf-and dc-excited CO2gain cavities. J. Appl. Phys.,1987,61(11):5184~5186
    [22] D. G. Youmans. Phase locking of adjacent channel leaky waveguide CO2lasers.Appl. Phys. Lett.,1984,44(4):365~367
    [23] L. A. Newman, R. A. Hart, J. T. Kennedy, et al. High power coupled CO2waveguide laser array. Appl. Phys. Lett.,1986,48(25):1701~1703
    [24] K. M. Abramski, A. D. Colley, H. J. Baker, et al. Phase-locked CO2laser arrayusing diagonal coupling of waveguide channels. Appl. Phys. Lett.,1991,60(5):530~532
    [25] K. M. Abramski, H. J. Baker, A. D. Colley, et al. Single-mode selection usingcoherent imaging within a slab waveguide CO2laser. Appl. Phys. Lett.,1992,60(20):2469~2471
    [26] A. M. Hornby, H. J. Baker, A. D. Colley, et al. Phase locking of linear arrays ofCO2waveguide lasers by the waveguide confined Talbot effect. Appl. Phys. Lett.,1993,63(19):2591~2593
    [27] K. M. Abramski. Multiwaveguide molecular lasers. SPIE Vol.2202.1995:56~65
    [28] D. He, D. R. Hall. A30-W radio frequency excited waveguide CO2laser. Appl.Phys. Lett.,1983,43(8):726~728
    [29] R. L. Sinclair, J. Tulip. Radio frequency excited CO2waveguide lasers. Rev. Sci.Instrum.,1984,55(10):1539~1541
    [30] P. E. Jackson, H. J. Baker, D. R. Hall. CO2large-area discharge laser using anunstable-waveguide hybrid resonator. Appl. Phys. Lett.,1989,54(20):1950~1952
    [31] K. M. Abramski, A. D. Colley, H. J. Baker, et al. Power scaling of large-areatransverse radio frequency discharge CO2lasers. Appl. Phys. lett.,1989,54(19):1833~1835
    [32]辛建国,魏光辉.射频横向激励扩散型冷却CO2激光器技术的进展与前景.中国激光,1994,21(5):371~376
    [33] A. Duncan, J. G. Xin, D. R. Hall. Herriott cell resonators for large area gasdischarge lasers. SPIE Vol.1124,1990:312~320
    [34] R. Nowack, H. Opower, U. Schaefer, et al. High power CO2waveguide laser of the1kW category. SPIE Vol.1276,1990:18~28
    [35] A. D. Colley, H. J. Baker, D. R. Hall. Planar waveguide,1kW cw, carbon dioxidelaser excited by a single transverse rf discharge. Appl. Phys. Lett.,1992,61(2):136~138
    [36] E. F. Yeldon, H. J. J. Seguin, C. E. Capjack, et al. Multichannel slab discharge forCO2laser excitation. Appl. Phys. Lett.,1991,58(7):693~695
    [37] W. D. Bilida, H. J. J. Seguin, C. E. Capjack. Resonant cavity excitation system forradial array slab CO2lasers. J. Appl. Phys.,1995,78(7):4319~4322
    [38] J. D. Strohschein, W. D. Bilida, H. J. J. Seguin, et al. Enhancing dischargeuniformity in a multi-kilowatt radio frequency excited CO2slab laser array. Appl.Phys. Lett.,1996,68(6):1043~1045
    [39] H. J. J. Seguin. Power scaling of diffusion-cooled lasers. Optics&LaserTechnology,1998,30:331~336
    [40] D. Ehrlichmann, U. Habich, H. D. Plum, et al. Azimuthally unstable resonators forhigh-Power CO2lasers with annular gain media. IEEE J. Quantum Electron,1994,30(6):1441~1447
    [41] R. Nowark, H. Bouchum. High power coaxial CO2waveguide laser. GCL/HPL’96,Edinburgh U. K, August,1996:25~30
    [42] A. I. Dutov, A. A. Kuleshov, S. A. Motovilov, et al. High-power high opticalquality RF-excited slab CO2-lasers. SPIE Vol.4351,2001:104~109
    [43] A. I. Dutov, A. A. Kuleshov, N. A. Novoselov, et al. RF-excited slab CO2laserwith intra-cavity mode selection. SPIE, Vol.5120,2003:84~86
    [44] A. I. Dutov, A. A. Kuleshov, N. A. Novoselov, et al. New approach to theformation of the basic waveguide radiation mode in a high-power slab-type CO2lasers. SPIE Vol.5777,2005:464~46
    [45]曹锋光.中小功率射频激励CO2激光器关键技术研究及实践:[硕士学位论文].武汉:华中科技大学,2005
    [46]苏红新,高允贵.射频板条CO2激光器波导耦合损耗的理论研究.量子电子学报,2000,17(3):226~230
    [47]辛建国,张旺,焦文涛.射频激励扩散型冷却板条波导千瓦CO激光器.光学学报,2000,20(5):714~716
    [48] Du Wang, Gen Li, Yingxiong Qin, et al. Output beam characteristics of the radiofrequency–excited slab CO2laser with unstable-waveguide hybrid resonator.Optical Engineering,2011,50(9):1~5
    [49] Gen Li, Xiahui Tang, Du Wang. Effects of small misalignments on output beamquality in off-axis negative-branch confocal strip unstable resonator. SPIE,2009.75150B
    [50] J. G. Xin, D. R. Hall. Compact, multipass, single transverse mode CO2laser. Appl.Phys. Lett.,1987,51(7):469~471
    [51] H. Nishihara, T. Inoue, J. Koyama. Low-loss parallel-plate waveguide at10.6μm.Appl. Phys. Lett.,1974;25(7):391~393
    [52]凌东雄.导光金属平板波导模损耗理论及其应用.应用激光,1989,9(5):199~203
    [53] A. I. Dutov, V. N. Ivanova, N. A. Novoselov, et al. Experimental and computerinvestigations of slab waveguide RF-excited CO2laser. SPIE,1996,2773:23~30
    [54] A. I. Dutov, N. A. Novoselov, V. N. Sokolov, et al. Slab waveguide RF-excitedCO2laser for material processing. SPIE,1996,2713:51~57
    [55] Rebecca L. Kozodoy, James A. Harrington. Solgel alumina coating for hollowwaveguide delivery of CO2laser radiation. Applied Optics,1995,34(34):7840~7849
    [56]李淑凤,李成仁,宋昌烈.掺Er及Yb-Er共掺Al2O3光波导放大器的理论与实验研究.光学学报,2007,27(5):928~936
    [57]汪舟. Al2O3基CO2激光空芯波导材料的制备和研究:[硕士学位论文].武汉:武汉理工大学,2006
    [58]韩立敏.国外氧化铝纤维研制和应用概况.无机盐工业,1982:21~27
    [59] L. Serri, V. Fantini, S. De Si1vestri, et al. Theoretical and experimental study ofhybrid unstable-guided resonator for diffusion cooled CO2laser. Proc. SPIE,1996,2788:24~34
    [60] A. Panahpour, M. T. Soltanifard, M. Shirmahi, et al. Output characteristics of aplaner rf-excited CO2laser with unstable-waveguide hybrid resonator. SPIE,2005,5777:460~463
    [61] Katherine D. Laakmann, William H. Steier. Waveguides: characteristic modes ofhollow rectangular dielectric waveguides. Applied Optics,1976,15(5):1334~1340
    [62]魏晓羽,吴念乐,李师群.非稳腔-稳腔混合腔失调特性理论研究.量子电子学报,2006,23(1):37~41
    [63] Koji Yasui, Yushi Takenaka. Advantages of negative-branch compared withPositive-branch One-dimensional Unstable Resonators. Applied Optics,2001,40(21):3547~3551
    [64] T. Hall. Numerical studies on hybrid resonators for a medium-sized chemicaloxygen iodine laser. Opt. Engineering,2005,44(11):114201
    [65] A. E. Siegman. Stable-unstable Resonator Design for a Wide-Tuning-RangeFree-Electron Laser. Quantum Electronics,1992,28(5):1243~1247
    [66] A. Lapucci, A. Labate, F. Rossetti, et al. Hybrid stable–unstable resonators fordiffusion-cooled CO2slab lasers. Appl. Opt.,1996,35(18):3185~3192
    [67] A. P. Mineev, S. M. Nefedov, P. P. Pashinin. RF Excited Planar CO2Laser withHybrid Waveguide-Unstable Resonator Cavities. SPIE,1999.35~42
    [68] W. H. Southwell. Virtual-source theory of unstable resonator modes. Opt. Lett.1981,6:487~489
    [69] A. E. Siegman. A Canonical Formulation for Analyzing Multielement UnstableResonators. IEEE J. Quantum Electron.,1976,12(1):35~40
    [70] A. E. Siegman. Lasers. University Science Books, Mill Valley Calif,1986
    [71] A. Panahpour, M. T. Soltanifard, M. Shirmahi, et al. Output characteristics of aplaner rf-excited CO2laser with unstable-waveguide hybrid resonator. SPIE,2005,5777:460~463
    [72] C. J. Shacklcton, K. M. Abramski, H. J. Baker, et al. Lateral and transverse modeproperties of CO2slab waveguide lasers. Opics Communications,1992,89:23~428
    [73] G. P. Karman, J. P. Woerdman. Fractal structure of eigenmodes of unstable-cavitylasers. Opt. Lett.,1998,23(24):1909~1911
    [74] M. A. Yates, G. H. C. New. Fractal dimension of unstable resonator modes. Opt.Commun.,2002,208:377~380
    [75] C. M. G. Watterson, M. J. Padgett, J. Courtial. Classic-fractal eigenmodes ofunstable canonical resonators. Opt. Commun.,2003,223:17~23
    [76] A. Wasilewski, H. J. Baker, D. R. Hall. Intracavity beam behavior in hybridresonator planar-waveguide CO2lasers Appl. Opt.,2000.39(33):6174~6187
    [77] M. Ciofini, E. Favilla, A. Lapucci, et al. Propagation parameters of the beamextracted from a diode pumped Nd: YAG ceramic slab laser with a hybridstable–unstable resonator. Opt. Laser Technol.,2007,39:1380~1388
    [78] A. Lapucci, M. Ciofini. Numerical analysis of non-confocal configurations of ahybrid stable–unstable resonator. Opt. Commun.,2011,284:999~1003
    [79] C. Yuanying, W. Youqing, H. Jin, L. Jiarong. An eigenvector method for opticalfield simulation. Opt. Commun.,2004,234:1~6
    [80] J. Chao, B. Li, Y. Cheng, et al. Simulation of optical field in laser resonators cavityby eigenvector method. Opt. Laser Technol.,2007,39:490~499
    [81] Q. Yingxiong, T. Xiahui, X. Yu, et al. Toric concave mirror laser resonator with abig Fresnel number. Opt. Lett.,2009,34(7):1120~1122
    [82] P. Barriga, B. Bhawal, L. Ju, et al. Numerical calculations of diffraction losses inadvanced interferometric gravitational wave detectors J. Opt. Soc. Am. A.,2007,24(6):1731~1741
    [83] G. Li, X. Tang, D. Wang, et al. Excess noise in strip off-axis confocal unstableresonators. J. Mod. Opt.,2012,59(3):235~240
    [84]周寿桓.固体激光器中的热管理.量子电子学报,2005,22(4):497~509
    [85] Cousins A. Temperature and thermal stress scaling in finite-length end-pumpedlaser rods. Quantum Electronics. IEEE Journal of,2002,28(4):1057~1069
    [86] Peng X, Xu L, Asundi A. Thermal lensing effects for diode-end-pumped Nd: YVOand Nd: YAG lasers. Optical Engineering,2004,43(10):2454~2461
    [87]王明哲.高功率固体激光器热管理新技术研究:[博士学位论文].长沙:国防科学技术大学,2011
    [88] J. Frauchiger, P. Albers, H. P. Weber. Modeling of thermal lensing and higherorder ring mode oscillation in end-pumped CW Nd: YAG lasers. IEEE J. QuantumElectron.,1992,28(4):1046~1056
    [89]李志刚,熊政军,黄维玲等.高功率激光二极管端面抽运复合晶体激光器的研究.中国激光,2005,32(3):297~300
    [90]樊素,侯涛.基于ANSYS的圆截面激光晶体的热变形分析.激光技术,2012,36(2):285~288
    [91]王明哲,郑建刚,张永亮等.评估固体激光器对流换热系数的方法.强激光与粒子束,2011,23(6):1487~1481
    [92]王超,唐晓军,徐鎏婧等.输出功率11kW的高功率固体板条激光器介质热分析.中国激光,2010,37(11):2807~2809
    [93]张志军,刘云,付喜宏等.百瓦级半导体激光器模块的风冷散热系统分析.发光学报,2012,33(2):187~191
    [94]王智群,尧舜,崔碧峰等.高光束质量大功率半导体激光阵列的热特性.中国激光,2010,37(10):2497~2501
    [95]王菲,王晓华,王金艳等.光泵浦双反射带半导体激光器的热效应有限元分析.发光学报,2012,33(3):309~313
    [96]陈柏众,戴特力,梁一平等.用有限元法讨论光抽运垂直外腔面发射半导体激光器的散热性能.中国激光,2009,36(10):2745~2750
    [97]陈海涛,杨华军,程晓洪.布拉格光纤激光器热效应研究.激光杂志,2011,32(5):12~14
    [98]高昆.高功率光纤激光器特性分析及应用研究:[博士学位论文].合肥:中国科学技术大学,2009
    [99]王鹏飞,马再如,李密等.流体液体激光器的热流场对输出光场的影响.激光技术,2010,34(6):861~864
    [100]韩有镇,李刚炎,熊智文等. ANSYS在高功率横流CO2激光器流道温度场分析中的应用.激光杂志,2005,26(4):44~45
    [101]陈龙.高功率CO2激光器箱体应力分析及光腔稳定性研究:[硕士学位论文].武汉:华中科技大学,2011
    [102]曾元,谭荣清,陈静.可调谐TEA CO2激光器谐振腔结构稳定性研究.激光与红外,2009,39(9):928~930
    [103]李斌,焦路光,刘亮等.射流式碳化硅水冷镜数值模拟.中国激光,2011,38(2):1~7
    [104]李斌,李兰,焦路光等.射流式水冷镜结构优化设计.强激光与粒子束,2011,23(4):859~862
    [105]余亮英,程祖海,朱海红等.强激光作用下水冷硅镜沟槽参数的模拟分析.强激光与粒子束,2007,19(3):353~356
    [106] R. Bonner, R. Wadell, G. Popov. Local heat transfer coefficient measurements offlat angled sprays using thermal test vehicle.24thIEEE Semiconductor ThermalMeasurement and Management Symposium,2008:149~153
    [107] A. Tawfek. Heat transfer and pressure distributions of an impinging jet on a flatsurface. Heat and Mass Transfer,1996,32(1):49~54
    [108] F. Incropera, De Witt D. Fundamentals of heat and mass transfer.6thed. New York:John Wiley and Sons,2006
    [109]陈佳元.高功率TEA CO2激光器腔镜热稳定性研究:[博士学位论文].武汉:华中科技大学,2009
    [110]李维特,黄保海,毕仲波.热应力理论分析及应用.北京:中国电力出版社,2004:69~72
    [111] AllmenM. von, Allmen, Allmen M V. Laser-beam Inieractions With Materials:Physical Principles And Applications. Berlin: Springer,2002
    [112]郭麓,刘泽金,杜少军等.窗口效应对高能激光光束质量影响的实验研究.红外与激光工程,2003,32(2):134~137
    [113]蒋金波,程兆谷,牛振亚.快速轴流CO2激光器输出窗热透镜效应对输出特性的影响.应用激光,1999,19(5):309~312
    [114]盛朝霞,王再军.强激光输出窗口热行为对光束质量的影响.激光技术,2008,32(3):278~280
    [115]陆培华,王润文.高功率激光器窗口三维温度场分析及其热透镜研.光学学报,2001,21(8):965~969
    [116]黄峰,牛燕雄,汪岳峰等.光学窗口材料激光辐照热力效应的解析计算研究.光学学报,2006,26(4):576~580
    [117]陈发良,李有宽.环形分布激光束引起光学窗口镜热变形理论分析.强激光与粒子束,2003,15(8):736~740
    [118]张文英,史彭,李隆. TEM01模式输出高功率激光器红外耦合窗热形变半解析方法.红外与激光工程,2006,35(增刊):222~227
    [119]刘明强,史彭,徐仰彬等.高功率CO2激光器高反膜耦合窗热效应研究.光学技术,2006,32(3):392~395
    [120]程兆谷,程亚,王润文等.高功率横流CO2激光器高反膜耦合窗口ZnSe热形变理论和实验研究.光学学报,1995,15(1):78~82
    [121] T. Y. Chang, T. J. Bridges. Laser action at452,496, and541[im in opticallypumped CH3F. Opt. Commun.,1970,1(9):423~426
    [122] Eric R. Mueller, Robert Henschke, William E. Robotham, et al. Terahertz localoscillator for the Microwave Limb Sounder on the Aura satellite. Applied Optics,2007,46(22):4907~4915
    [123]赫光生,雷仕湛.激光器设计基础.上海:上海科学技术出版社,1979:122~124
    [124] B. G. Danly, S. G. Evangelides, T. R. Temkin, et al. Infrared and MillimeterWaves, Vol.12, Electromagnetic Waves in Matter, Part II (Edited by K. J. Button)Academic Press, New York,1984
    [125] D. T. Hodges. A review of advances in optically pumped far-infrared lasers. Infra.Phys.,1978,18:375~384
    [126] D. T. Hodges, T. S. Hartwick. FIR waveguide laser performance in the40μm-1mm spectral region. in Proc. Int. Conf. SMMW and their Applications, IEEE cat.no.74, CHO856-5MTT,1974:59~60
    [127] Tian Zhao shuo, Wang Qi, Wang Yu san. Tunable RF excited waveguide CO2laserwith two unequal long channels. Journal of Harbin Institute of Technology (NewSeries),2000,7(3):50~52
    [128] Qi Wang, Zhaoshuo Tian, Yusan Wang. Tunable electrooptically Q-switched RFexcited CO2waveguide laser with two channels. Infrared Physics&Technology,2000,41:349~352
    [129] Q. Wang, Z. S. Tian, Q. S. Zhu. Study on tunable Q-sweitched/cavity-dumpedpartial Z-old CO2waveguide laser with two channels and common electrodes.LFNM,2006,29:54~61
    [130] Sun Zhenghe, Zhang Yanchao, Tian Zhaoshuo, et al. Double-vacuum SealedZ-fold Dual-channel RFexcited CO2Waveguide Laser. Optoelectronics andMicroelectronics Technology (AISOMT),2011Academic InternationalSymposium on12-16Oct,2011:83~85
    [131]吴谨.光栅调谐TEA CO2激光器理论计算模型.光学学报,2004,24(4):472~476
    [132] A. Hardy, D. Treves. Modes of a diffraction grating optical resonator. Appl. Opt,.1975,14(3):589~594
    [133]彭先兆,吴谨,万重怡.柱面镜-光栅谐振腔模式与频率选择特性.光学学报,1999,19(9):1189~1192
    [134]王裕民.光栅谐振腔的理论分析.中国激光,1982,9(6):365~370

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700