用户名: 密码: 验证码:
SiO_2基多孔陶瓷的制备及其性能表征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔陶瓷是以气孔为主相的一类陶瓷材料。与玻璃纤维、网状金属材料相比,多孔陶瓷的性能稳定、耐腐蚀性好、选择渗透性高,使用寿命长,具有十分广阔的应用前景。
     本文以正硅酸乙酯、铝粉、硼酸为主要原料,采用溶胶-凝胶和有机泡沫浸溃的复合工艺制备SiO_2基复合多孔陶瓷。研究了AlOOH溶胶、SiO_2溶胶以及复合溶胶的制备工艺;采用多次浸渍的方法提高复合溶胶在有机泡沫体上的附着量,为了保证烧结体孔隙结构的均匀性,加快浸渍试样固化成型,在浸渍过程中还采用挤压离心分离除去多余溶胶,微波干燥加速附着溶胶固化;本文利用正交实验方法优化了原料配比,并在优化实验结果的基础上,研究了AlOOH溶胶、硼酸的引入量和有机泡沫浸渍复合溶胶体积的多少对烧结体气孔率、力学性能和显微结构的影响,并进一步探索了烧结试样各项性能随烧结温度变化的规律。本文还进一步对有机泡沫体进行直通孔道预处理,将蜂窝陶瓷和泡沫陶瓷相结合,对制备复合型多孔陶瓷的可行性做了初步探索和分析。同时,通过TG-DTA研究了试样在热处理过程中的物理化学变化:通过XRD、SEM扫描电镜和Axiophot光学显微镜研究了烧结体的物相组成及其显微组织;通过阿基米德原理、杠杆原理、氮吸附法、定量分析及数理统计等手段对烧结体的孔隙率、力学性能、孔径和晶粒大小及其分布进行了表征和探讨。
     研究表明:采用溶胶—凝胶和有机泡沫浸渍的复合工艺,能成功制备宏观气孔有一定分布,且孔壁上由大量晶粒堆垛而成、微孔分布均匀的SiO_2基多孔陶瓷;通过挤压离心除去浸渍体中多余复合溶胶,能提高复合溶胶在聚氨酯泡沫中的均匀性,有效避免了烧结试样开裂的问题,微波干燥有利于提高干燥速率,制备密度均匀、规则的样品;烧结体中方石英为主要晶相,Al_2O_3、B_2O_3的引入影响着莫来石相的生成,且有助于降低烧成温度,提高试样强度;B_2O_3的引入较Al_2O_3对烧结体的性能影响大,随B_2O_3含量增加,烧结体中玻璃相明显增多,显气孔率和抗压强度变化幅度较大,而随Al_2O_3含量增加,烧结体的显气孔率和抗压强度均呈缓慢变化趋势;浸渍体积影响着烧结体的性能及孔径分布,浸渍体积多,烧结体的气孔率和孔径减小,抗压强度增大;烧成温度的提高有利于试样充分氧化烧结,在1150~1280℃之间,随烧结温度提高,显气孔率先增大后减小,而抗压强度逐渐增大。
Porous ceramic is a kind of ceramic material with lots of pores. Compared with glass fiber and reticular metal materials, it has steady performance, good corrosion resistance, high selective permeability and long service life. It has a promising application in the future.
    In this paper, SiO2 based composite porous ceramic is prepared by compound processes of Sol-gel method and dipping method with polymer foams. TEOS, aluminium powder and boric acid are adopted to be main raw materials. Preparing process of A1OOH sol, SiO2 sol and compound sol are studied in this paper. Dipping volume in polymer foam is increased by multi-dipping method. Excess sol in polymer foam is removed by extruding and centrifugal method during dipping, and compound sol dipped to polymer foam is dried by microwave. Applying the cross experiment method, the influence of the concentration of A1OOH sol, boric acid and volume of sol dipping in the polymer foam on the porosity, mechanical property and structure of sintering bodies have been investigated. The variation of properties versus sintering temperature has also been taken into consideration. Further, honeycomb formed polymer foam is used to investigate the possibility of preparing porous walled honeycomb ceramic. The physico-chemistry transformation,
    phase distribution and microstructure of as-prepared porous ceramic foam are systematically characterized via TG-DTA, XRD, SEM and optical microscope. On the other hand, porosity, mechanical property, distribution of pore size and grain size are also developed respectively via Archimedes principle, lever principle ,BET and quantitative analysis method.
    It is indicated that the compound technology of sel-gel and organic foam dipping can prepare reticular SiO2 based porous ceramic, which have macroscopic pores of certain distribution and microscopic pores distributed evenly, The pore wall are formed by stacking of the thousands of tiny grains. Extra sol is removed by extruding and centrifugal method, which can raise uniformity of sol in polymer foam, and avoid efficiently the problem of cross-crack on the sintering bodies. Microwave is helpful to improve drying speed, which is useful to prepare even density and regular samples.
    
    
    
    In sintering bodies, cristobalite is the major phase. The addition of Al2O3 and B2O3 has a good influence on the formation of mullite, lowering of sintering temperature and enhancement of samples' strength. The addition of B2O3 has a bigger affection on property of sintering bodies than Al2O3. With increasing B2O3 content, more glass phase are appeared, which change dramatically the structure of the porosity and strength of the ceramic body. The same trend has been observed as respect to the variation of porosity and strength with increasing Al2O3 content, but the variation is more smoothly. Soaking volume of polymer foam also affect performance and pore size distribution of the sintering bodies directly. More sol is dipped, porosity and pore size become smaller, and strength increased. The elevation of sintering temperature is generally good for full oxidation of specimen. The porosity of the ceramic body vary with the temperature from 1150 C to 1280 C and have a peak value, while its strength increases ste
    adily.
引文
[1] 曾汉民主编.高技术新材料要览[M].中国科学技术出版社出版,1 993年11月
    [2] 徐政,倪宏伟编著.现代功能陶瓷[M].国防工业出版社出版,1998年9月
    [3] Paolo Colombo, Enrico Bernardo. Macro-and micro-cellular porous ceramics from preceramic polymers[J]. Composites Science and Technology,2003,63(16): Pages2353-2359
    [4] Fengqiu Tang, Hiroshi Fudouzi, Tetsuo Uchikoshi and Yoshio Sakka. Preparation of porous materials with controlled pore size and porosity[J]. Journal of the European Ceramic Society, In Press, Corrected Proof, Available online 10 September 2003
    [5] Toshiyuki Yokota, Yasuyuki Takahata, Tetsuo Katsuyama and Yoshihiro Matsuda. A new technique for preparing ceramics for catalyst support exhibiting high porosity and high heat resistance[J]. Catalysis Today, 2001,69(1-4):11-15
    [6] J.H.She, T. Ohji and S. Kanzaki. Oxidation bonding of porous silicon carbide ceramics with synergistic performance[J]. Journal of the European Ceramic Society, In Press, Corrected Proof, Available online 2 July 2003
    [7] 徐如人,庞文琴主编.无机合成与制备化学[M].高等教育出版社,2003年
    [8] 王耀明,蔡伟庆.多孔陶瓷过滤材料[J].江苏陶瓷,2003,36(1):19~23
    [9] 钦征骑主编.新型陶瓷材料手册[M].江苏科学技术出版社,1995年12月
    [10] 陈磊,陈达谦.多孔陶瓷及其发展[J].现代技术陶瓷,2002(3):7~11
    [11] 李月琴,吴基球.多孔陶瓷的制备、应用及发展前景[J].陶瓷工程,2000(12):44~47
    [12] 王连星,宁青菊,姚治才.多孔陶瓷材料[J].硅酸盐通报,1998(1):41~45
    [13] 郑仕远,陈键,潘伟.湿化学方法合成及应用[J].材料导报,2000,14(9):25~27
    [14] 徐东升,郭国森,桂琳琳.超临界干燥和普通干燥方法对多孔硅的结构及性质的影响[J].科学通报,1999,44(21):2272~2276
    
    
    [15] K.Schwartzalder and A.V.Somers. Method of manufactureing porous ceramic[P]. US pat 3090094,1963
    [16] 张昂.我国车用催化剂载体的现状及发展[J].陶瓷,2001(4):15~17
    [17] Sunderman and J.Viedt. United States Patent, US3754201,1973
    [18] L.L.Wood,P.Messina and K.Frisch. United States Patent, US3833386,1974
    [19] H.Motoki. United States Patent, US4084980,1978
    [20] 翼川. China light industry machinery association net, 2002,12
    [21] O.Lyckfeldt and J.M.F.Ferreira. Processing of Porous Ceramics by Starch Consolidation[J]. Journal of the European Ceramic Society, 1988 (18): 131~140
    [22] Makoto Nanko, Kozo Ishizaki and Takao Fujikawa. J. Am. Ceram. Soc,77(1994) 2437
    [23] 韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J].材料导报,2002,16(3):26~29
    [24] 王连洲,施剑林,严东生等.介孔氧化硅材料的研究进展[J].无机材料学报,1999,14(3)333~342
    [25] Kochi. Porous materials:expanding applications[J]. Am Ceramic Soc Bull,1992,71(12): 1770~1775
    [26] A.Dauscher, P.Wehrek and L.Hilaire. Catal Lett,1992, 14 (2): 177
    [27] H.Ichinose,H.Nakao,et al. Eur,Pat. Appl. EP479533,1992
    [28] 张宇民,刘殿魁,韩杰才等.多孔陶瓷材料制备工艺研究进展[J].兵器材料科学与工程,2002,25(2):62~67
    [29] Swith, Pilar Sepulveda. American Ceramic Society Bulletin,1997 (76):61
    [30] Park J H, Sung J S. Development of a new forming method (pressureless powder packing forming method) and its characteristics[J]. Journal of Materials Science, 1995,33:1907~1914
    [31] 中国包装网,2003.8.1
    [32] 孙鸿涛等.材料科学进展,1988(2):61
    [33] 吴皆正,易石阳,欧阳琨.可控微米级多孔陶瓷的研制[J].硅酸盐通报,1993(3):4~9
    [34] 樊栓狮,史小龙,李春华等.超细孔二氧化硅膜的制各研究[J].无机材料学报,1995,10(1):90~94
    
    
    [35] 彭长琪,任国浩,彭华.用粉石英烧制多孔陶瓷的实验研究[J].武汉工业大学学报,1995,17(2):28~31
    [36] 吴国安.Sol-gel法制备TiO_2多孔陶瓷膜[J].华中理工大学学报,1996,24(8):109~112
    [37] 周勇,刘杏芹,杨萍华等.多孔α—Al_2O_3陶瓷的制备及其研究[J].中国科学技术大学学报,1997,27(2):181~185
    [38] 徐振平,郭敏.一种孔径分布能控制的多孔陶瓷[J].硅酸盐通报,1996(4):49~51
    [39] 曾庭英,邱勇,杜金环等.纳米级微孔SiO_2玻璃球的研制[J].功能材料,1997(3):275~277
    [40] 曾庭英,刘剑波,邱勇等.纳米级微孔SiO_2玻璃体材的研制[J].功能材料,1997(3):272~274
    [41] 曾庭英,刘剑波,邱勇等.纳米级微孔SiO_2玻璃粉末的研制[J].功能材料,1997(3):268~271
    [42] 孙宏伟,谢灼利,郑冲.微孔α—Al_2O_3陶瓷膜管的制备与性能[J].无机材料学报,1998,13(5):198~702
    [43] 王连星,党桂彬.系列孔径多孔陶瓷的研制[J].功能材料,1997,28(2):186~191
    [44] 奚红霞,黄仲涛.用Sol-gel技术制备v—Al_2O_3中孔膜[J].华南理工大学学报(自然科学版),1997,25(3):129~132
    [45] 王莉玮,王子忱,赵敬哲等.PEG法合成多孔高比表面积SiO_2[J].功能材料,1998,29(4):397~399
    [46] 龚森蔚,江东亮,谭寿洪.孔径可控羟基磷灰石复相陶瓷中破璃相的作用[J].材料导报,1998,12(4):31~34
    [47] 薛明俊,孙承绪,李雁.用Sol-gel法制备氧化铝多孔陶瓷的研究[J].中国陶瓷,1999,35(3):5~8
    [48] 方国家,刘祖黎,姚凯伦.纳米微孔SiO_2薄膜的Sol-gel制备及气孔率控制[J].功能材料,1999,30(2):190~192
    [49] 姚秀敏,谭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备[J].无机材料学报,2000.15(3):465~472
    [50] 韦奇,王大伟,张术根.溶胶—凝胶法制备Al_2O_3—SiO_2复合膜的微观结构分析[J].硅酸盐学报,2001,29(4):392~396
    
    
    [51] 曹小刚,田杰谟.多孔氧化铝陶瓷的凝胶注模成型[J].功能材料,2001,32 (5):523~524
    [52] 唐竹兴,王树海,陈达谦等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅰ)[J].硅酸盐通报,2001(2):23~29
    [53] 唐竹兴,王树海,陈达谦等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅱ)[J].硅酸盐通报,2001(3):8~13
    [54] 唐竹兴,王树海,陈达谦等.注凝成型微孔梯度陶瓷材料制备新工艺的研究(Ⅲ)[J].硅酸盐通报,2001(5):11~15
    [55] 于云,何超,陈新彪等.多孔γ-Al_2O_3过渡膜的结构与性能的研究[J].无机材料学报,2002,17(6):1277~1282
    [56] 张锐,高濂,程国峰等.注浆成型SiC多孔陶瓷的工艺和性能研究[J].无机材料学报,2002,17(4):725~730
    [57] 陆平.过滤器用氧化铝多孔陶瓷[J].河北陶瓷,2001,29(1):16~18
    [58] 田杰谟,李信勇,张勇等.浸浆法制备生物多孔陶瓷[J].功能材料,2002,33(6):656~657
    [59] 赵俊亮,付涛,徐可为.有机泡沫浸渍法制备多孔羟基磷灰石复相陶瓷[J].中国陶瓷,2003,39(1):4~7
    [60] 朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的制备[J].无机材料学报,2000,15(6):1055~1060
    [61] 朱新文,江东亮,谭寿洪.网眼多孔陶瓷浸渍成型工艺的研究[J].无机材料学报,2001,16(6):1144~1149
    [62] 朱新文,江东亮,谭寿洪等.孔结构可控的网眼多孔陶瓷的制备[J].无机材料学报,2002,17(1):79~84
    [63] 朱新文,江东亮,谭寿洪.真空脱气处理对网眼多孔陶瓷力学性能的改善[J].无机材料学报,2001,16(5):889~895
    [64] 朱新文,江东亮,谭寿洪.碳化硅网眼多孔陶瓷的微波吸收特性[J].无机材料学报,2002,17(6):1152~1156
    [65] Xinwen Zhu, Dongliang Jiang and Shouhong Tan. Preparation of silicon carbide reticulated porous ceramics[J]. Materials Science and Engineering A, 2002,323(1-2):232-238
    [66] 中国技术创新信息网:www.ctiin.com.cn
    [67] 中国专利.专利名称:一种高强度网眼多孔陶瓷的制造方法,专利申请号:
    
    00125877 公开号:1287989
    [68] 钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究[J].硅酸盐学报,2003,31(7):635—640
    [69] 张志杰,李素文.几种新的多孔陶瓷制造技术[J].陶瓷工程,1998,32(6):28~29
    [70] 朱新文,江东亮,谭寿洪多孔陶瓷的制备、性能及应用:(Ⅰ)多孔陶瓷的制造工艺[J].陶瓷学报,2003,24(1):40~45
    [71] 朱时珍,赵振波,刘庆国等.多孔陶瓷材料的制备技术[J].材料科学与工程,1996,14(3):33~39
    [72] 江昕,尹美珍.多孔陶瓷材料的制备技术及应用[J].现代技术陶瓷,2002(1):15~19
    [73] 王慧,曾令可,张海文等.多孔陶瓷—绿色功能材料[J].中国陶瓷,2002,38(3):6~8
    [74] 朱新文,江东亮.有机泡沫浸渍工艺——种经济实用的多孔陶瓷制备工艺[J].硅酸盐通报,2000(3):45~51
    [75] 朱小龙,苏雪筠.多孔陶瓷材料[J].中国陶瓷,2000,36(4):36~39
    [76] 张芳,徐晓红.多孔陶瓷的制备及应用[J].河南建材,2001(4):9~12
    [77] 刘富德,陈森风,张书政.多孔陶瓷材料的发展状况[J].材料导报,2000,14(6):33~34
    [78] Shihong Li,Klaas de Groot,Pierre Jean F.Layrolle,Clemens Antoni van Blitterswijk,Joost Robert de Wijn. Porous Ceramic Body[P]. United States Patent, Patent No: US 6,479,418 B29, 2002
    [79] Gary R.Pickrell, Kenneth R.Buther. Porous ceramic articles[P]. United States Patent, Patent No:US 6,235,665 B1, 2001
    [80] 史可顺.多孔陶瓷制备工艺及进展[J].硅酸盐通报,1994(3):38~44
    [81] 任雪潭,曾令可,王慧.泡沫陶瓷制备工艺的探讨[J].材料科学与工程,2001,19(1):102~103
    [82] 王丽秋,张循梅,倪吉华等.溶胶—凝胶法SiO_2陶瓷膜的制备及应用[J].齐齐哈尔轻工学院学报,1997,13(3):67~70
    [83] 段曦东.多孔陶瓷的制备、性能及应用[J].陶瓷研究.1999,14(3):12~17
    [84] 霍明亮,李世光,越宗艾等.多孔陶瓷分离膜[J].化学工业与工程,1996,13(4):25~28
    
    
    [85] 孟广耀,周明,彭定坤.多孔陶瓷膜的制备、表征及其应用[J].薄膜科学与技术,1991,4(3):54~63
    [86] 徐建梅,张德.溶胶—凝胶法的技术进展与应用现状[J].地质科技情报,1999,18(4):103~106
    [87] 资文华,孙俊赛,黄明华等.溶胶—凝胶法制备多孔陶瓷的研究进展[J].中国陶瓷,2003,39(4):14~18
    [88] 邓重宁.600孔/in2蜂窝陶瓷载体挤出成型模具[J].陶瓷,2001,152(4):40~41
    [89] Poberts P, Knackstedi M A. Mechamical and transport properties of model foamed solids[J]. Journal of Materials Science Letters,1995,14:1357~1359
    [90] Thomas Ostrowski,Jurgen Rodel. Evolution og mechanical properties of porous alumina during free sintering and hot pressing[J]. Journal of American Ceramic Society,1999,11:3080~3086
    [91] 王卫君,王成平.多孔陶瓷的应用[J].江苏陶瓷,1996,24(8):33~35
    [92] 左雨人.多孔陶瓷及其在化工中的应用[J].化工腐蚀与防护,1997(4):24~26
    [93] 薛友祥,王耀明.多孔陶瓷及过滤器在过滤技术中的应用[J].过滤与分离,1996(3):37~41
    [94] Wataru Kotani,Kasugai;Yoshiro Ono; Kazubiko Kumazawa. Porous Ceramic Honeycomb Filter[P]. United States Patent, 5 545 243,1996
    [95] Willian M Carty, Peter W Lednor. Monolithic ceramics and heterogeneous catalysts: honeycombs and foams[J].Current Opinon in Solid State & Materials Science, 1996(1):88~95
    [96] F.Y.C.Boey and A.I.Y.Tok. Porous AIN ceramic substrates by reaction sintering[J]. Jorunal of Materials Processing Technology, 2003, 140(1-3):P413-419
    [97] Aurore Morancais, Francois Louver, David Stanley Smith, et al. High porosity SiC ceramics prepared via a process involving an SHS stage[J]. Journal of the European Ceramic Society,2003,23(11): 1949-1956
    [98] Guangyao Meng,Huanting Wang,Wenjun Zheng,et. Preparation of porous ceramic by gelcasting approach[J] .Materials Letters,2000,45 (3~4): 224~227
    
    
    [99] Marc A.Anderson, Lixin Chu. Porous Ceramic Material[P]. United States Patent, 5 610 109,1997
    [100] Tomonori Nlwa,Yusuke Makino. Porous Ceramic Material[P]. United States Patent, 5 688 728,1997
    [101] 郑昌琼,冉均国主编.新型无机材料.科学出版社出版,2003年1月
    [102] 逢杰斌,丘坤元,WEI Yen.中孔材料的研究进展Ⅱ:应用.无机材料学报,2002,17(4):665~671
    [103] 李彬.溶胶—凝胶及其在无机材料合成中的应用[J].材料科学与工程,1990:26~30
    [104] 刘旭俐,马峻峰,欧阳胜林等.溶胶—凝胶技术的发展与研究[J].现代技术陶瓷,1999(4):12~16
    [105] 周明,孟广耀,彭定坤.溶胶—凝胶(sol-gel)过程化学和无机新材料[J].材料科学与工程,1991:8~14
    [106] 卢旭晨,徐廷献.溶胶—凝胶法及其应用[J].陶瓷学报,1998,19(1):53~57
    [107] 余桂郁,杨南如.溶胶—凝胶法简介:第一讲 溶胶—凝胶法的基本原理与过程[J].硅酸盐通报,1992(2)56~63
    [108] 罗伍文.溶胶—凝胶法简介:第二讲 用于溶胶—凝胶法的主要原料—金属醇盐[J].硅酸盐通报,1993(4):60~67
    [109] 王德宏.溶胶—凝胶法的化学原理简述[J].玻璃,1998,25(1):35~38
    [110] 余桂郁,杨南如.溶胶—凝胶法简介:第三讲 溶胶—凝胶法工艺过程[J].硅酸盐通报,1993(6):60~66
    [111] 陈庆华,曹自平,孙俊赛等.溶胶—凝胶法在材料复合制备技术中的应用[J].有色冶金,2001,53(2):71~75
    [112] 韦奇,张术根,王大伟.Sol-Gel法制备无机陶瓷膜研究新进展[J].中国陶瓷,1999(4):30~33
    [113] 冯端,师昌绪,刘治国主编.材料科学导论[M].化学工业出版社2002年5月
    [114] 果世驹编著.粉末烧结理论[M].冶金工业出版社,1998年3月
    [115] R.W卡恩,P.哈森,E.J克雷默主编.材料科学,技术丛书(第17B卷)陶瓷工艺(第Ⅱ部分)[M].科学出版社,1999年6月
    [116] 陈佩文主编.无机材料科学基础(硅酸盐物理化学)[M].武汉工业大学出
    
    版社,1996年8月
    [117] 西北轻工业学院主编.玻璃工艺学[M].中国轻工业出版社,1997年4月
    [118] 刘平,叶先贤.莫来石研究及应用进展[J].地质科技情报,1998,17(2):18~22
    [119] 赵惠忠,计道珺,雷中兴等.Al_2O_3-SiO_2纳米复合粉体材料的超临界制备及其性能[J].耐火材料,2003,37(2):69~74
    [120] 曹自平.溶胶—凝胶法制备氧化铝水洗涂层的初步研究.昆明理工大学硕士研究生毕业论文,2002年3月
    [121] 李家驹主编.日用陶瓷工艺学[M].武汉工业大学出版社,1997年1月
    [122] 田胜元,萧日嵘著.实验设计与数据处理[M].中国建筑出版社,1998
    [123] 夏光华,成岳著.工程实验设计法.景德镇陶瓷学院[M],2000
    [124] 周链儿,江伟辉等.莫来石抑制钛酸铝分解的研究[J].无机材料学报,1999(5):801~804
    [125] 祝桂洪著.陶瓷工艺实验.中国建筑出版社,1996
    [126] 郭海珠,余森著.实用耐火原料手册.中国建筑工业出版社,2000年9月
    [127] 沈钟,王果庭著.胶体与表面化学.化学工业出版社,1997年9月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700