用户名: 密码: 验证码:
西北半干旱区梨枣树水分高效利用机制与最优调亏灌溉模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国干旱半干旱区占国土面积的52.5%,西北半干旱区许多地区作物生育期内降水不足250mm,难以满足正常生长需水,灌溉对于该区作物稳产、增产具有不可替代的作用。该区灌溉水有效利用率较低,且近年来地下水过度开采、水土流失严重,生态环境十分脆弱,农业与生态用水矛盾突出。但该区光照资源丰富、昼夜温差大,是我国优质水果重要产区,梨枣是该区的特色出口水果,也是该区种植结构调整中重点发展的支柱产业之一,因此,如何高效利用有限的水资源进行科学灌溉,提高灌溉水有效利用率是当地枣业生产中急需解决的突出问题。
     针对西北半干旱区果业生产面临水资源紧缺的现实,论文以该区特色经济果树梨枣树为研究对象,在西北农林科技大学旱区农业水土工程教育部重点实验室、陕西省大荔县城关镇梨枣园分别开展了温室与大田试验,对调亏灌溉的梨枣树根区土壤水分动态变化特征、水分亏缺与复水环境下梨枣树用水过程、生理调控与气孔响应机理、不同生育期不同水平亏水处理对营养生长与生殖生长的影响及其调控机制等进行了较系统的研究,分析了各生育期不同亏水处理对梨枣耗水规律、产量、品质、作物系数、水分利用效率及经济效益的影响,取得了以下成果:
     ⑴通过亏水处理与复水效应研究,进一步证实了适度水分亏缺可以有效调控梨枣树叶片气孔开度,降低叶片过多的蒸腾耗水,并刺激树体诱发补偿效应,初步揭示了调亏灌溉提高果树叶片水平水分利用效率的机理与水分亏缺引起的“干湿交替过程”对气孔的调控机理,从果树生理角度进一步证实了调亏灌溉的节水机理。
     ⑵揭示了调亏灌溉对梨枣树生长发育的调控过程,初步阐明了不同生育期不同亏水处理对其营养生长与生殖生长、梨枣果实发育与产量形成的影响机制,为提高梨枣产量水平水分利用效率提供了理论依据。
     ⑶分析了温室不同生育期亏水处理梨枣树液流在全生育期内的变化规律及其与参考作物蒸发蒸腾量、土壤含水率间的定量关系,表明不同亏水处理在显著降低灌溉水量的同时液流总量最大降幅仅为10.5%,且部分处理出现液流总量略高于对照的现象,表明亏水处理下梨枣树根区土壤“干湿交替”可诱发根系产生明显的吸水补偿效应;同时,利用液流液流—株间微型株间微型蒸渗仪法计算各亏水处理梨枣树的蒸发蒸腾量与水量平衡法计算结果具有较好的一致性,相对误差在-6%~17%之间,可用于灌溉制度的制定。
     ⑷研究了梨枣树不同生育期不同水平亏水处理对果实品质的影响,分析了梨枣单项品质指标对水分调控的敏感性并通过熵权法与主成份分析法对梨枣综合品质进行了评价,在此基础上初步建立了基于梨枣树水分-品质响应机理的控水调质生产函数。
     ⑸得到了温室与大田条件下不同水平亏水处理的梨枣树耗水规律和作物系数,结果表明,生育期内两者均呈单峰曲线变化,最高值出现在开花座果期与果实膨大期。
     ⑹通过对温室与大田梨枣树不同生育期实施不同水平亏水处理,研究了叶片碳稳定同位素分辨率(△L)与相应时段叶片水平WUE(WUEi、WUEn)、最终产量、产量水平WUE(WUEy)间的关系,同时研究了果实碳稳定同位素分辨率(△F)与产量、WUEy和耗水量间的关系。结果表明不同生育期亏水处理对梨枣树△L、△F影响显著,不同生育期亏水处理的△L与WUEi、WUEn仅在果实成熟期均呈显著负相关(P<0.05),△F与WUEy、产量也仅在果实成熟期均呈显著负相关(P<0.05或0.01)全生育期所有亏水处理下△L对叶片水平WUE具有一定指示性,且对WUEn的指示性优于WUEi,△F对WUEy、ETc指示效果较为理想。
     ⑺根据三年的试验资料,从优选梨枣树最佳调亏灌溉方案出发,构建了评估梨枣树调亏灌溉综合效益的多层次指标体系,利用多层次多目标模糊理论与方法,建立了调亏灌溉综合效益多层次多目标模糊评价模型,利用信息熵理论求得各层评价指标客观熵权,结合专家法的主观权重获得了模型各层评价指标综合权重,提高了模型评价可靠性。同时,运用该模型对3年温室、大田梨枣树调亏灌溉综合效益进行了评价。结果表明,在温室条件下,果实成熟期中度(灌水定额为对照1/2)亏水处理方案的调亏灌溉综合效益较好;在大田自然降水条件下,果实成熟期重度(不灌水)、中度(灌水定额为对照1/2)亏水的单阶段调亏灌溉方案及萌芽展叶期重度(不灌水)+果实成熟中度(灌水定额为对照1/2)亏水的复阶段调亏灌溉方案综合效益较为理想,符合生产实际情况。因此,基于信息熵理论的调亏灌溉综合效益模糊评价模型可为梨枣树最佳调亏灌溉方案的制定提供较为可靠的指导。
     ⑻根据三年的调亏灌溉试验资料与当地降水资料,初步提出了西北半干旱区不同水文年型梨枣树调亏灌溉模式,同时还探讨了调亏灌溉在西北半干旱区推广应用的适用性和潜力。
     研究结果表明,在西北半干旱区梨枣园实施科学的调亏灌溉可以提高梨枣树叶片和产量水平水分利用效率,有助于节水、稳产、优质、高效的可持续型果业生产模式的形成,对促进该区果业健康发展具有重要的指导。
The area of the arid and semi-arid regions accounts for about 52.5% of the total area of China, and the rainfall of the crop growth stages in most areas of the semi-arid region in Northwest is less than 250mm, which cannot meet the water demand for normal growing, so irrigation has a irreplaceable effect on the high and stable yield. The lower irrigation water use efficiency in the study area and irrational competitions for surface water between its upper and lower reaches have resulted in serious soil erosion, deteriorated ecosystem and serious conflict of water shortage for both agricultural and ecological water demand. However, this area is an important productive base of good quality fruit due to the abundant sunshine and large day/night temperature range. The pear-jujube which is the special local export fruit of this area and also one of the supporting industries should be mainly developed during the process of the planting structure adjustment. So, to use the limited water resources for efficient irrigation of these crops and to enhance irrigation water efficiency have become an important issue of this area.
     According to the scarce water resources the fruit industry in the semi-arid region of northwest are facing, this paper focuses on the characteristic economy fruit tree, pear-jujube tree, and developed on the experiments in the greenhouse and the oasis field respectively in Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University and in the pear-jujube orchard located in Chengguan Village, Dali Town, ShaanXi Provence. This paper has made systematic research about characteristics of soil water dynamic changes, water deficit of the root-zone of pear-jujube tree with regulated deficit irrigation, physiological control in the process of the water use and the stomal response mechanism of pear-jujube tree under the water deficit environment, and the effects of different deficit irrigation levels at different growth stages vegetative growth and repproductive growth of pear-jujube trees, and also its regulation mechanism.This paper also analyses the effect of water deficit on water use, yield, fruit quality, crop coefficient, water use efficiency and economical benefit, and achieved the followings:
     ⑴The research of the water deficit treatment and rewater domino effect significantly test that proper water deficit can regulate and control stomal open degree efficiently, reduce the overtranspiration of leaves, stimulate the compensating effects. It also primarily reveals the mechanism of the regulated deficit irrigation which can enhance the leaf water use efficiency, the mechanism of regulation and control to the stomata caused by“dry-wet alternative process”originated from the water deficit, and also the mechanism of physiological water saving of the regulated deficit irrigation from physiology of the fruit tree.
     ⑵It reveals the control process to the growth of pear-jujube tree which is caused by the regulated deficit irrigation, primarily illuminates the cause of the effects of different deficit irrigation levels at different growth stages on the vegetative growth and reproductive growth of pear-jujube trees, the fruit growth and the yield of the pear-jujube and offers a theory basis for the enhancement in the yield of the pear-jujube and of water use efficiency.
     ⑶The dynamics of the sap fluxes of pear-jujube tree in the greenhouse under different deficit irrigation treatments at different growth stages and its quantitive relationship with reference crop evapotranspiration and soil water content, indicate that different deficit irrigation treatments not only can decrease the irrigation water amount significantly, but also make the maximum decrease of the sap flow amount just be only by 10.5%, and even the phenomenon that the sap flow amount is a little bit higher than the reference crops is observed, which illustrates that the“dry-wet alternative”in the rootzone of pear-jujube tree under the treatment of water deficit can stimulate the root to produce significant compensating effects of water supping.The results of combination method of sap flow and micro-lysimeter indicate that the evapotranspiration were in accordance with those of soil water balance method, with relative error ranging from -6% to +17%, which can be used to directed establish the irrigation schedule.
     ⑷This paper sduty the effects of different deficit irrigation levels at different growth stages on the fruit quality, analyzes the sensitivity of the special quality index of pear-jujube tree to the regulate and control of water and makes a evaluation on the comprehensive quality of pear-jujube tree by the entropy method and the primary component analysis method, and primarily establish the regulated quality by control water production function which is based on water-quality response mechanism of pear-jujube tree.
     ⑸The water consumption and crop coefficient of pear-jujube tree with different deficit irrigation levels treatment under the condition of the greenhouse and oasis field, indicate that the two above change as a single-peak curve the whole during growth stages, with the maximum appears at the flowering to fruit set stage and the fruit maturation stage.
     ⑹By using various water deficit treatments at different growth stages on pear-jujube tree planted in both greenhouse and oasis field, we do some researches on the relationship between leaf stable carbon isotope discrimination(△L) and leaf water use efficiency at the same stage, the relationship between final yield and yield WUE, and also the relationship between fruit stable carbon isotope discrimination, yield, yield WUE and water use amount. Results indicate that water deficit had significant effect on the△L and the△F at different growth stages, and the△L under different water deficit treatments appear negatively related to WUEi、WUEn on fruit maturation stage(P<0.05)and the related relationship is not obvious at other growth stages(P>0.05),△F is significantly negatively related with WUEy and yield at fruit maturation stage. Thus the△L can indicate leaf water use efficiency over whole growth stage under different water deficit condition, and it indicated WUEn superior to WUEi,),and the indicated effect of△F to WUEy、ETc is also quite well.
     ⑺From the view of selecting the best schedule of regulated deficit irrigation (RDI) for pear-jujube tree, a multi-hierarchy index system for evaluating the integrated benefit of the RDI was established using the field experimental data during 2005~2007. A multi-hierarchy and multi-objective fuzzy evaluation mode1 for evaluating the integrated benefit of RDI was also established using the multi-hierarchy and multi-objective fuzzy theory. The impersonality weights coefficient of all hierarchy evaluation index were obtained using the information entropy theory, then combined with the subjective weights given by experts, we obtained the integrated weights objective for the multi-hierarchy evaluation index, which can improved the reliability of the model evaluation results. At the same time, RDI integrated benefits (RDIIB) of pear-jujube tree with different water deficit treatments during 2005~2007 was evaluated and sorted using the model. Results show that under the greenhouse condition, the RDI integrated benefits (RDIIB) of pear-jujube tree with moderate water deficit (1/2 of full irrigation) treatments is better; Under the field condition the severe(no irrigation) and moderate water deficit (1/2 of full irrigation) treatments at the fruit maturation stage, the combined severe water deficit(no irrigation) at the bud burst to leafing stage and moderate water deficit(1/2 of full irrigation) at the fruit maturation stage had the better RDIIB,the result are in line with the actual production.Therefore, the RDIIB evaluation model based on information entropy theory can provide the reliable technical guidance for the optimal RDI scheme of pear-jujube tree.
     ⑻According to the regulated deficit irrigation experiment data and local rainfall data in 3 years, the application model of the regulated deficit irrigation for pear-jujube tree on different hydrological years in the semi-arid region of Northwest China is primarily established, and the applicability and potential to apply and spread the regulated deficit irrigation for pear-jujube tree in the semi-arid region of Northwest is also discussed.
     The result of the research shows that the proper application of the regulated deficit irrigation in pear-jujube orchard in the semi-arid regions of northwest can enhance the yield and water use efficiency in leaves, contributing to form the continuable fruit produce model with stable water saving and high fruit quality, and give some important guidance to promote the scientific development of the fruit production in this region.
引文
[1]水利部发展研究中心形势分析课题组.对2020年我国水资源供需形势的初步判断[J].水利发展研究,2008,5:5-7.
    [2]方日尧.渭北旱原保护性耕作制度技术体系研究[D].陕西杨凌:西北农林科技大学,2005.
    [3]马福生.梨枣树耗水规律与调亏灌溉模式研究[D].陕西杨凌:西北农林科技大学,2006.
    [4] Davies W. J., Zhang J. Root signals and the regulation of growth and development of plants in drying seil [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42:55-76.
    [5] Jones H.G. Stomatal control of photosynthesis and transpiration [J].Journal of Experimental Botany, 1998, 49:387-398.
    [6]康绍忠,杜太生,孙景生,等.基于生命需水信息的作物高效节水调控理论与技术[J].水利学报,2007,38(6):661-667.
    [7] Shen Y.Y., Zhang D.P., Wu F.Q.,et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443:823-826.
    [8]孙大业.植物细胞信号转导研究进展[J].植物生理学通讯,1996,32(2):81-91.
    [9] Heckenberger U., Schurr U., Schulze E.D. Stomatal response to ABA fed into the xylem of intact Helianthus annuus(L) plant[J]. Experimeantal Botany,1996, 47:1405-1412.
    [10] Liu L., McDonald A. J.,Stadenberg I., et al. Abscisic acid in leaves and roots of willow: significance for stomatal conductance [J].Tree Physiology, 2001, 21, 759-764.
    [11]曹帮华,翟明普,张明如.土壤干旱条件下脱落酸根冠通讯的研究进展[J].内蒙古农业大学学报(自然科学版),2005,26(1):115-120.
    [12] Close T.J. Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteinsf [J]. Physiologia Plantarum, 1996, 97 (4):795-803.
    [13] Liang J., Zhang J., Wong M. H. How do roots control xylem sap ABA concenration in response to soil drying [J].Plant and Cell Physiology, 1997, 38:10-16.
    [14] Frey A., Godin B., Bonnet M., et al. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia [J]. Planta, 2004, 218:958-964.
    [15] Razem F., El A., Abrams S., et al. The RNA-binding protein FCA is an abscisic acid receptor [J]. Nature, 2006,439:290-294.
    [16] Xi G.L., Yan L.Y., Bin L., et al. A G Protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid [J]. Science, 2007, 8:165-173.
    [17] Song L., Sarah M., Assmann R. Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling [J]. PLoS Biology, 2006,4(10) :312-319.
    [18]胡博,李玲.脱落酸信号转导研究进展[J].生命科学研究,2007,11(4):52-56.
    [19] Walker B.H. Biodiversity and ecological redundancy[J]. Conservation Biology, 1992, 6(1): 18-23.
    [20] Walker B.H. Conserving biological diversity through ecosystem resilience[J].Conservation Biology,1995,9:747-752.
    [21] Donald C.M. The breeding of crop ideotype [J]. Euphytica, 1968, 7: 385-403.
    [22] Reynolds M.P.Yield potential in modem wheat varieties:its association with a less competitive ideotype[J]. Field Crops Research, 1994, 37:149-160.
    [23]党承林,王崇云.生态系统的能量冗余与热力学第二定律[J],1999,18(1):53-58.
    [24]马守臣,徐炳成,李凤民,等.冬小麦(Triticum aestivum)分蘖冗余生态学意义以及减少冗余对水分利用效率的影响[J].生态学报,2008,28(1):321-326.
    [25]李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的初步研究[J].应用生态学报,1992,10(1):26-30.
    [26]韩明春,吴建军,王芬.冗余理论及其在农业生态系统管理中的应用[J].应用生态学报,2005,16(2):375-378.
    [27]盛承发.生长的冗余—作物对于虫害超越补偿作用的一种解释[J].应用生态学报,1990,3(1):26-30.
    [28]郝树荣,郭相平,张展羽.作物干旱胁迫及复水的补偿效应研究进展[J].水利水电科技进展,2009,29(1):81-84.
    [29]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.
    [30] Wenkert W., Lemon E.R., Sinclair T.R. Leaf elongation and turgor pressure in field grown soybean[J]. Agronomy,1978, 70: 761-764.
    [31]苏佩,山仑.拔节期复水对玉米苗期受旱胁迫的补偿效应[J].植物生理学通讯,1995,31(5):341-344.
    [32]郭相平.水分胁迫的滞后效应[R].南京:河海大学,2002.
    [33]陈晓远,高志红.干湿变化条件下小麦的补偿效应研究[J].内蒙古农业大学报,2001,22(2):62-66.
    [34]张丛志,张佳宝,赵炳梓,等.作物对水分胁迫的响应及水分利用效率的研究进展[J].节水灌溉,2007,5:1-5.
    [35]山仑.我国节水农业发展中的科技问题[J].干旱地区农业研究,2003,21(1):1-5.
    [36]黄占斌.干湿变化与作物补偿效应规律研究[J].生态农业研究,2000,8(1):30-33.
    [37] Ludlow M.M.,Ng T. T. Water stress suspends leaf aging[J]. Plant Science Letters, 1974, 3:235-240.
    [38] Sakamoto A., Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enchancement of stress tolerance [J]. Journal of Experimental Botany, 2000, 51:81-88.
    [39] Kramerp J. Water relations of plant [M]. London: Academic Press, 1983: 35-47.
    [40]胡梦芸,李辉,张颖君,等.水分胁迫下葡萄糖对小麦幼苗光合作用和相关生理特性的影响[J].作物学报,2009,35(4):724?732.
    [41] Chaves M.M., Pereira J.S., Maroco J., et al. How plants cope with water stress in the field. Photosynthesis and growth [J]. Annual Botany, 2002, 89:907-916.
    [42] Webb A.A.R., Hetherington A.M. Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells [J]. Plant Physiology, 1997, 114:1557-1560.
    [43] Bang H., Sleskovar D.I., Bender D.A., et al. Deficit irrigation impact only copene, soluble solids, firmness and yield of diploid and triploid watermelon in three distinct environments [J]. Journal of Horticultural Science and Biotechnology, 2004, 79:885-890.
    [44] Jones H.G. Plants and Microclimate. A quantitative approach to environmental plant physiology [M]. Cambridge:Cambridge University Press,1992.
    [45] Zeiger E. Biology of stomatal guard cells [J]. Annual Review of Plant Physiology, 1983, 34:441-475.
    [46] Jarvis P.G. The Interpretation of the variations in leaf water potential and stomatal conductance foundin canopies in the field [J].Philosophical transactions of the royal society of London, Series B, Biological Sciences[C].London: Royal Society,1976, 593-610.
    [47] Maroco J.P., Pereira J.S., Chaves M.M. Stomatal responses to leaf-to-air vapour pressure deficit in sahelian species [J]. Australian Journal of Plant Physiology, 1997, 24:381-387.
    [48] Eamus D., Shanahan S.T. A rate equation model of stomatal responses to vapour pressure deficit and drought [J]. BMC Ecology, 2002, 2:1-14.
    [49] Davies W.J., Mansfield T.A. Auxins and stomata, stomatal sunction[M]. UK:Stanford University Press, 1987.
    [50] Bacon M. Water use efficiency in plant biology [M]. Oxford UK: Blackwell Publishing, 2004.
    [51] Sobelh W., Dodd I.C., Bacon M.A., et al. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial rootzone drying [J]. Journal of Experimental Botany, 2004, 55:2353-2364.
    [52] Dodd I.C. Root-to-shoot signalling: Assessing the roles of up in the up and down world of long-distance signalling [J]. Plant Soil, 2005, 274:251-270.
    [53] Merlot S., Mustilli A.C., Genty B., et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation [J]. The Plant Journal,2002 , 30:601-609.
    [54] Wilkinson S., Davies W.J. ABA-based chemical signalling: The co-ordination of responses to stress in plants [J]. Plant Cell Environment, 2002, 25:195-210.
    [55] Davies W.J., Kudoyarova G., Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought[J]. Journal of Plant Growth Regulation, 2005, 24:285-295.
    [56]张建华,贾文锁,康绍忠.根系分区灌溉和水分利用效率[J].西北植物学报,2001,21(2):191-197.
    [57]杨明超.渗透胁迫下不同玉米品种叶片水分关系的研究[J].种子,2008,27(3):14-17.
    [58]李远华.节水灌溉理论与技术[M].武汉:武汉水利电力大学出版社,1999.
    [59]王志良,付强,梁川,等.非充分灌溉下作物优化灌溉制度仿真[J].农机化研究,200l,4:82-85.
    [60]察基里斯.灌溉水量的最优季内分配[J].袁宏源译,水利水电快报,1985,6(1):15-19.
    [61] Rao N.H., Sarma P.B.S. A simple dated water-production function for use in irrigated agriculture [J].Agricultural Water Management, 1988,13: 25-32.
    [62] Rao N.H.,Sarma P.B.S.Irrigation scheduling under a limited water supply[J].Agricultural Water Management,1988,5:165-175.
    [63] Rao N.H., Sarma P.B.S.Real-time adaptive irrigation scheduling under a limited water supply [J]. Agricultural Water Management, 1992, 20:267-279.
    [64]卢麾,田富强,胡和平,等.基于遗传算法和GIS技术的灌溉决策支持系统[J].水利水电技术,2002,33(7):27-30.
    [65]崔远来,李远华,顾炜,等.黄河流域典型灌区灌溉节水管理模型研究[J].中国农村水利水电,2002,4:14-17.
    [66]潘林,肖新棉,雷永富.模拟退火遗传算法在灌溉水量最优分配中的应用[J].节水灌溉,2006,6:45-47.
    [67] Fereres E., Evans R.G. Irrigation of fruit trees and vines [J]. Irrigation Science, 2006, 24:55-57.
    [68] Goodwin I.,Boland A.M. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency [A]. Deficit Irrigation Practices[C]. Tatura,Australia: FAO,Water Reports Publication,2002, 67-78.
    [69] Loveys B.R. Diurnal changes in water relations and abscisic acid in field grown Vitis vinifera cultivars.Ⅲ.The influence of xylemderived abcissic acid on leaf gas exchange [J].New Phytologist, 2006, 98(4):563-573.
    [70]程福厚,李绍华,孟昭清.调亏灌溉条件下鸭梨营养生长、产量和果实品质反应的研究[J].果树学报,2003,20(1):22-26.
    [71]张承林,付子轼.水分胁迫对荔枝幼树根系与梢生长的影响[J].果树学报,2005,22(4),339-342.
    [72] Pérez J.G., Romero P., Navarro J. M., et al. Response of sweet orange‘Lane Late’to deficit irrigation in two rootstocks.Ⅰ: water relations, leaf gas exchange and vegetative growth [J]. Irrigation Science, 2008, 26:415-425.
    [73] Chalmers D. J., Ende B. Productivity of peach trees factors affecting dry-weight distribution during tree growth[J]. Annual Botany, 1975, 39:423-432.
    [74]徐胜利,陈小青.膜下调亏灌溉对香梨产量和品质的影响[J].新疆农业科学,2003,40(1):6-9.
    [75]刘建福,陈李林,汤青林,等.不同土壤水分胁迫对澳洲坚果花期生长的影响[J].西南农业大学学报(自然科学版),2004,26:735-739.
    [76] Peter D., Mitchell B., Ende P.H. Response of Bartlett pear to withholding irrigation, regulated deficit irrigation and tree spacing[J]. Journal of the American Society for Horticultural Science 1989,114(1):15-19.
    [77] Chalmers D.J., Vandenende B. Productivity of peach trees: factors affecting dry-weight distribution during tree growth[J]. Annuals of Botany, 1975, 39:423-432.
    [78] Girona, Girona J., Mata M., et al. Peach tree response to single and combined regulated déficit irrigation regimes under shallow soils[J]. Journal of the American Society for Horticultural Science, 2003,128 (3):432-440.
    [79] Zegbe-Domínguez J.A.,Behboudian M.H.,Clothier B.E. Responses of‘Petopride’processing tomato to partial rootzone drying at different phenological stages [J].Irrigation Science, 2006, 24: 203-210.
    [80] Fernández J.E., Díaz-Espejo A., Infante J.A., et al. Water relations and gas exchange in olive trees under regulated deficit irrigation and partial rootzone drying [J]. Plant Soil, 2006, 284:273-291.
    [81] Kang S. Z.,Hu X.T.,Goodwin I.,et al.Soil water distribution, water use and yield response to partial rootzone drying under a shallow groundwater table condition in a pear orchard [J]. Journal of the American Society for Horticultural Science, 2002, 92:277-291.
    [82] Marsal J., Rapoport H.F., Manrique T., et al. Pear fruit growth under regulated deficit irrigation in container-grown plants[J]. Journal of the American Society for Horticultural Science, 2000, 85:243-259.
    [83] Costa J.M., Maria F.O., Chaves M. Deficit irrigation as a strategy to save water: physiology and potential application to horticulture [J]. Journal of Integrative Plant Biology, 2007, 49:1421-1434.
    [84] Li S.H., Huguet J.G., Schoch P.G., et al. Response of peach tree growth and cropping to soil water deficit at various phenological stages of fruit development [J]. Journal of the American Society for Horticultural Science, 1989, 64:541-552.
    [85] Boland A.M., Mitchell P.D., Jerie P.H., et al. The effect of regulated deficit irrigation on tree water use and growth of peach [J]. Journal of the American Society for Horticultural Science, 1993, 68:261-274.
    [86] Girona J., Gelly M., Mata M., et al. Peach tree response to single and combined deficit irrigation regimes in deep soils. Agric [J]. Agricultural Water Management, 2005, 72:97-108.
    [87] Villar-Salvador P., Ocāna L., Pēnuelas, et al. Effect of water stress conditioning on the water relations, root growth capacity, and the nitrogen and non-structural carbohydrate concentration of Pinus halepensis Mill. (Aleppo pine) seedlings [J].Annals of forest science 1999, 56:459-465.
    [88]管雪强,赵世杰,李德全,等.干旱胁迫下抑制光呼吸对‘赤霞珠’葡萄光抑制的影响[J].园艺学报,2004,31(4):433-436.
    [89] Nagarjah S. Physiological responses of grapevine to water stress [J]. Acta Horticulturae, 1989,240: 249-256.
    [90]房玉林,惠竹梅,陈洁,等.水分胁迫对葡萄光合特性的影响[J].干旱地区农业研究,2006,24 (2): 135-138.
    [91]严巧娣,苏培玺.不同土壤水分条件下葡萄叶片光合特性的比较[J].西北植物学报,2005,25 (8):1601-1606.
    [92]王开荣,李世诚,杨天仪,等.调亏灌溉对大棚葡萄生长与结实的影响[J].江苏农业科学,2008,4:140-143.
    [93]马福生,康绍忠,王密侠,等.调亏灌溉对温室梨枣树水分利用效率与枣品质的影响[J].农业工程学报,2006,40(1): 37-43.
    [94]柯世省,金则新.水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报,2008,19(1):43-49.
    [95] Ahmed C.B., Rouina B.B., Boukhris M. Effects of water deficit on olive trees cv. Chemlali under field conditions in arid region in Tunisia [J]. Scientia Horticulturae, 2007, 113:267-277.
    [96]徐迎春,朱绍华,柴成林,等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报,2001,18 (1):1-6.
    [97] Kilili A.W., Behboudian M.H., Mills T.M. Composition and quality of‘Braeburn’apples under reduced irrigation [J]. Scientia Horticuhurae, 1996, 67:1-11.
    [98] Bussakorn S. M.S., Behboudian M.H. Production of aroma volatiles in response to deficit irrigation to a crop load in relation to fruit maturity for‘Braeburn’apple [J]. Postharvest biology and technology, 2002, 24:1-11.
    [99] Mpelasoka B.S., Behboudian M.H., Green S.R. Water use, yield and fruit quality of lysimeter-grown apple trees: Responses to deficit irrigation and to crop load [J]. Irrigation Science, 2001, 20:107-113.
    [100] Verreynne J.S., Rabe E.K., Theron I. The effect of combined deficit irrigation and summer trunk girdling on the internal fruit quality of‘Marisol’Clementines [J]. Scientia Horticulturae Jounnal, 2001, 91:25-37.
    [101]刘明池,小岛孝之,陈杭,等.亏缺灌溉对草莓生长和果实品质的影响[J].园艺学报,2001,28(4):307-311.
    [102] Santos T.P., Lopes C.M., Rodrigues M.L., et al. Effects of partical root-zone drying irrigation on cluster microclimate and fruit composition of field grow castel grapevines [J].Vitis, 2005,44: 117-125.
    [103] Santos T.P., Lopes C.M., Rodrigues M.L., et al. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of‘Moscatel’field-grown grapevines [J]. Journal of the American Society for Horticultural Science, 2007, 112:321-330.
    [104] Tovar M.J., Romero M.P., Alegre S., et al. Composition and organoleptic characteristics of oil from Arbequina olive (Olea europaea L) trees under deficit irrigation [J]. Journal of the Science of Food and Agriculture, 2002, 82(15):1755-1763.
    [105] Lavee S., Hanoch E., Wodner M.H. Abramowitch.The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel [J]. Scientia Horticulturae, 2007, 112:156-163.
    [106] Gelly M., Recasens I., Mata M., et al. Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage [J]. Journal of the Science of Food and Agriculture, 2004, 84(6): 561-568.
    [107] Marsal J., Area T., Fruticola, et a1. Effects of stage II and postharvest deficit irrigation on peach quality during maturation and after cold storage [J]. Journal of the Science of Food and Agriculture,2004,84(6):561-568.
    [108] Motilva M.J., Tavar M.J., Alegre S., et a1. Evolution of oil accumulation and polyphenol content in fruits of olive tree (Olea europaeaL.) related to different strategies [J].Acta Horticulturae, 2002, 586:345-348.
    [109] Gu S., Du G., Zoldoske D., et al. Effects of irrigation amount on water relations, vegetative growth, yield and fruit composition of Sauvignon blanc grapevines under partial rootzone drying and conventional irrigation in the San Joaquin Valley of California [J]. The Journal of Horticultural Science and Biotechnology, 2004, 79:26-33.
    [110]茆智.发展节水灌溉应注意的几个原则性技术问题[J].中国农村水利水电,2003,3:19-23.
    [111]李绍华.果树生长发育、产量和果实品质对水分胁迫反应的敏感期及节水灌溉[J].植物生理学通讯,1993,29(1):10-16.
    [112] Ohen M.E., Flore J.A. Effect of a rapid water stress and a slow water stress on the growth of‘Redhaven’peach trees [J]. Fruit Varieties Journal, 1990, 44:4-12.
    [113] Goldhamer D.A. Regulated deficit irrigation for California canning olives [J]. Acta Horticulturae, 1999, 474:369-372.
    [114] Girona J., Mata M., et al. Peach tree response to single and combined regulated déficit irrigation regimes under shallow soils [J]. Journal of the American Society for Horticultural Science, 2003,128 (3):432-440.
    [115] Leib B.G., Caspari H.W., Redulla C.A., et al. Partial rootzone drying and deficit irrigation of 'Fuji' apples in a semiarid climate [J]. Irrigation Science, 2006, 24:85-99.
    [116] Einhorn T., Caspari H.W. Partial rootzone drying and deficit irrigation of‘Gala’apples in a semi-arid climate [J]. Acta Horticulturae, 2004, 664:197-204.
    [117] Romero P., Botia P., and Garcia F. Effects of regulated deficit irrigation under subsurface drip irrigation conditions on vegetative development and yield of mature almond trees [J]. Plant Soil, 2004, 260:169-181.
    [118] Santos T.P., Lopes C.M., Rodrigues M.L., et al. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines [J]. Scientia Horticulturae, 2007, 112:321-330.
    [119] Spreer W., Nagle M., Neidhart S. Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv.‘Chok Anan’) [J]. Agricultural water management, 2007, 88:173-180.
    [120] Iniesta F.,Testi L.,Goldhamer D., et al. Quantifying reductions in consumptive water use under regulated deficit irrigation in pistachio (Pistacia Vera L.)[J].Agricultural Water Management, 2008,95:2570-2579.
    [121] Hueso J.J., Cuevas J. Loquat as a crop model for successful deficit irrigation [J]. Irrigation Science, 2008, 26:269-276.
    [122] Tiago P.S., Carlos M., Rodrigues M.L., et al. Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines [J].Scientia Horticulturae, 2007, 112:321-330.
    [123] Cuevas J., Canete M.L., Pinillos V. Optimal dates for regulated deficit irrigation in‘Algerie’loquat (Eriobotrya japonica Lindl.) cultivated in Southeast Spain[J], Agricultural Water Management, 2007, 89:131-136
    [124] Goldhamer D.A.,Viveros M.,Salinas M. Regulated deficit irrigation in almonds: effects of variations in applied water and stress timing on yield and yield components[J].Irrigation Science,2006,24(2): 101-114.
    [125] Teviotdale B.L., Goldhammer D.A., Viveros M. Effects of deficit irrigation on hull rot disease of almond trees caused by Monilinia fructicola and Rhizopus stolonifer[J].Plant Disease,2001, 85:399-403.
    [126] Ogawa J.M., English H. Disease of temperature zone tree fruit and nut crops[M]. Oakland:University of California, 1991.
    [127] Matthews M.A., Anderson M.M. Fruit ripening in grapes (Vitis vinifera L.): Responses to seasonal water deficits [J]. American Journal of Enology and Viticulture, 1988, 39:313-320.
    [128] Hardie W.J., Considine J.A. Response of grapes to water-deficit stress in particular stages of development [J]. American Journal of Enology and Viticulture, 1976, 27:55-61.
    [129] Williams, L.E., Phene, C.J., Grimes, D.W., et al. Water use of mature Thompson Seedless grapevines in California. 2003, Irrigation Science. 22, 11–18.
    [130] Ginestar C., Castar J.R. Response of young Clementine citrus trees to water stress during different phonological periods [J]. The Journal of Horticultural Science and Biotechnology, 1996, 71:551-559.
    [131] Peng Y.H., Rabe E. Effect of differing irrigation regimes on fruit quality, yield, fruit size and net CO2 assimilation of‘Mihowase satsuma’[J].The Journal of Horticultural Science and Biotechnology, 1998,73:229-234.
    [132] Assaf R., Levin I., Bravdo B. Apple fruit growth as a measure of irrigation control [J]. HortScience,1982,17(1):59-61.
    [133] Robert C., Ebel E.L., Probsting, G. E.,et al. Deficit irrigation to control vegetable growth in apple and monitoring fruit growth to schedule irrigation [J]. HortScience, 1995, 30 (6):1229-1232.
    [134]付凌,彭世彰,李道西.作物调亏灌溉效应影响因素之研究进展[J].中国农学通报,2006,22(1):380-383.
    [135] Robert S.R., Drske, Ebel R.G., et al. Regulated deficit irrigation may alter apple maturity, quality and storage life [J]. HortScience,1993,28 (2) :141-143
    [136]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151.
    [137]刘安能,孟兆江.玉米调亏灌溉效应及其优化农艺措施[J].农业工程学报,1999,15(3):108-111.
    [138] Chalmers D.J., Mitchell P.D., Van Heek L. Control of peach tree growth and productivity by regulated water supply, tree density, and summer pruning [J]. Journal of the American Society forHorticultural Science, 1981,106 (3): 307-312.
    [139] Bloand A.M, Mitchell P.H, Goodwin I. Long-term effects of restricted root volume and regulated deficit irrigation on peach: productivity and water use [J]. Journal of the American Society for Horticultural Science, 2000,125 (1):135-142.
    [140] Mitchell P.D., Chalmers D.J., Jerie P.H., et al. The use of initial withholding of irrigation and tree spacing to enhance the effect of regulated deficit irrigation on pear trees [J]. Journal of the American Society for Horticultural Science, 1986, 111(5):858-861.
    [141]方锋,俞满源,黄占斌,等.化学覆盖与干湿变化对玉米生长及水分利用效率的影响[J].干旱地区农业研究,2003,21(1):61-65.
    [142]丁昆仑,Hann M.J.耕作措施对土壤特性及作物产量的影响[J].农业工程学报,2000,16(3):28-31.
    [143]赵力超,刘欣,金越,等.话梅品质评价方法的研究[J].食品工业科技,2007,28(11):93-96.
    [144]刘遵春,包东娥,廖明安.层次分析法在金花梨果实品质评价上的应用[J].西北农林科技大学学报,2006,34(8):125-128.
    [145]张晓煜,亢艳莉,袁海燕,等.酿酒葡萄品质评价及其对气象条件的响应[J].生态学报,2007,27(2):740-745.
    [146]鲍江峰,夏仁学,邓秀新,等.用主成份分析法选择纽荷尔脐橙品质的评价因素[J].华中农业大学学报,2004,23(6):663-666.
    [147]岳田利,彭帮柱,袁亚宏,等.基于主成份分析法的苹果酒香气质量评价模型的构建[J].农业工程学报,2007,23(6):223-227.
    [148]张海英,韩涛,王有年,等.桃果实品质评价因子的选择[J].农业工程学报,2006,22(8):235-239.
    [149]陈贤,赵雁,龚元圣.熵权法在番茄果实商品性状评价上的应用分析[J].湖北农业科学,2008,47(11):1294-1297.
    [150]刘刚,赵桂琴,魏黎明.基于熵权赋权法的灰色系统理论在燕麦品种综合评价中的应用[J].中国草地学报,2007,29(3):84-89.
    [151]汤瑞凉,王笑.农作物品种综合评判的熵权系数法研究[J].资源开发与市场,2002,18(5):3-5.
    [152]王海波,陈学森,辛培刚,等.几个早熟苹果品种果实糖酸组分及风味品质的评价[J].果树学报,2007,24(4):513-516.
    [153]刘晓,陈建.攀西地区12个澳洲坚果品种的产量和品质分析及适应性评价[J].中国南方果树,2006,35(2):33-34.
    [154]聂继云,刘凤之,李静,等.制汁用苹果品质评价体系探讨[J].果树学报,2006,23(6):798-800.
    [155]张晓煜,亢艳莉,袁海燕,等.酿酒葡萄品质评价及其对气象条件的响应[J].生态学报,2007,27(2):740-745.
    [156]王华田.林木耗水性研究综述[J].世界林业研究,2003,16(2):23-27.
    [157] Marshall D.C. Measurement of sap flow in conifers by heat transport [J]. Plant Physiology, 1958, 33:385-396.
    [158] Kluitenberg, G. J., Ham, J. M.. Improved theory for calculating sap flow with the heat pulse method [A]. Agricultural and Forest Meteorology[C], Kansas State: Elsevier Science B.V, 2004, 126:169-173.
    [159] Green S.R., Clothier B.E. Water use of kiwifruit vines and apple trees by the heat-pulse technique[J]. Journal of Experimental Botany, 1988, 39:115-123.
    [160] Green S.R., McNaughton K.G., Clothier B.E. Observations of night-time water use in kiwifruit vines and apple trees [J]. Agricultural and Forest Meteorology,1989, 48: 251-261.
    [161] Hatton T.J., Greenslade D., Dawes W.R. Integration of sap flow velocity in elliptical stems [J]. Tree Physiology,1992,11: 185-196.
    [162]姚立民,康绍忠,龚道枝,等.苹果树根系吸水模型研究[J].灌溉排水学报,2004,23(6):67-70.
    [163] Fernández J.E., Palomo M.J., D?′az-Espejoa A., et al. Heat-pulse measurements of sap flow in olives for automating irrigation: tests, root flow and diagnostics of water stress [J]. Agricultural Water Management,2001,51:99-123.
    [164] Bauerle W.L., Whitlow T.H., Pollock C.R., et al. A laser-diode-based system for measuring sap flow by the heat-pulse method [J]. Agricultural and Forest Meteorology,2002,110:275-284.
    [165] Giorio P.,Giorio G. Sap flow of several olive trees estimated with heat-pulse technique by continuous monitoring of a single gauge[J]. Environmental and Experimental Botany,2003,49:9-20.
    [166]康绍忠,胡笑涛,Ian G,等.地下水位较高条件下不同根区湿润方式对梨树根与茎液流及其水分平衡的影响[J].农业工程学报,2001,17(3):15-23.
    [167]孙慧珍,康绍忠,胡笑涛.梨树干木质部液流速度径向分布特征[J].园艺学报,2008,35(7):937-944.
    [168]孙慧珍,康绍忠,龚道枝.测定位点对计算梨树树干液流的影响[J].应用生态学报,2006,17(1):2024-2028.
    [169] Pasquale G., Giovanni G. Sap flow several olive trees estimated with the heat-pulse technique by continuous monitoring of a single gauge [J]. Environmental and Experimental Botany, 2003, 49:9-20.
    [170] Tognetti R., Andria R.d’, Morelli G., et al. Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relation in olive trees [J]. Plant and Soil, 2004, 263: 249-264.
    [171] Alarcón J.J., Ortuňo M.F., Nicolás, et al. Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees [J]. Biologia Plantarum, 2005, 49(4): 527-532.
    [172]龚道枝,王金平,康绍忠,等.不同水分状况下桃树根茎液流变化规律研究[J].农业工程学报,2001,17(4):34-38.
    [173] Goodwin I., Desmond M.W., David J.C. Effects of tree size on water use of peach (Prunns persica L. Batsch) [J]. Irrigation Science, 2006, 24:59-68.
    [174]陈英华,胡俊,李裕红,等.碳稳定同位素技术在植物水分胁迫研究中的应用[J].生态学报,2004,24(5):1027-1033.
    [175]赵兴云,王建,钱君龙,等.天目山柳杉树轮δ13C年序列差异[J].应用生态学报,2006,17(3):362- 367.
    [176] O’Leary M.H. Carbon isotopes in photosynthesis (fractionation techniques may reveal new aspects of carbon dynamics in p lants) [J]. Bioscience, 1988, 38:328- 336.
    [177] Condon A.G., RA R., GJ R., et al. Breeding for high water use efficiency [J]. Journal of Experimental Botany, 2004, 407(55):2447-2460.
    [178] Farquhar C.D., Ehleringer J.R., HubickC.T. Carbon isotope discrimination and photosynthesis [J]. Annual Review of Plant Physiology, 1989, 40:503-537.
    [179] Thompson D.R., Bury S.J., Hobson K.A., et al. Stable isotopes in ecological studies [J]. Oecologia,2005, 144(4):517-519.
    [180] Motilva M.J., Tavar M.J., Alegre S., et a1. Evolution of oil accumulation and polyphenol content in fruits of olive tree (Olea europaeaL.) related to different strategies [J]. Acta Horticulturae, 2002, 586:345-348.
    [181] Gerard J. K., Jay M.H. Improved theory for calculating sap flow with the heat pulse method [J]. Agricultural and Forest Meteorology, 2004, 126:169-173.
    [182] Malse J.,Farquhar G.D.Effects of aoil atrength on the eelation of water-use efficiency and growth to carbon isotope discrimination in wheat seedlings [J].Plant Physiology, 1988, 86:32-38.
    [183] Wright G.C., Nageswara R.R.C.,Farquhar G.D. Water-use efficiency and carbon isotope discrimination inpeanut under water deftcit conditions[J].Crop Science,1994,34:92-97.
    [184] Ismall A.M.,Hall A.E.,Bray E.A.Drought and pot size effects on transpiration efficiency and carbon isotope discrimination of cowpea accessions and hybrids [J]. Australian Journal of Plant Physiology, 1994, 21:23-35.
    [185] Farquhar, G.D., Richards R.A. Isotopic composition of plant carbon correlates with water use efficiency of wheat genotypes [J]. Australian Journal of Plant Physiology, 1984, 11:539-552.
    [186] Claudia R.S., Joao P. M., Tiago P.S., et al. Impact of deficit irrigation on water use efficiency and carbon isotope composition (δ13C) of field-grown grapevines under Mediterranean climate[J]. Journal of Experimental Botany, 2005, 56:2163-2172.
    [187] Tsialtas J.T., Karadimos D.A. Leaf carbon isotope discrimination and its relation with qualitative root traits and harvest index in sugar beet (Beta vulgaris L.) [J]. Journal of Agronomy & Crop Science, 2003,189: 286-290.
    [188] Tsialtas J.T., Tokatlidis I.S., Tsikrikoni C., et al. Leaf carbon isotope discrimination, ash content and K relationships with seedcotton yield and lint quality in lines of Gossypium hirsutum L[J]. Field Crops Research, 2008, 107(1):70-77.
    [189] Delucia E.H., Schlesinger W.H. Resource fuse efficiency and drought to lerance in adjacent great basin and sierran plants [J]. Ecology,2001,72 (1):51-58
    [190] Saranga Y., Lash I.F., Paterson A.H., et al. Carbon isotope ratio in cotton varies with growth stage and plant organ [J]. Plant Science, 1999,142 (1):47-56.
    [191] Zho F.J., Gao R.F., Shen Y.B.,et a1.Foliar carbon isotope composition(△13C)and water use efficiency of different populus deltoids clones under water stress[J].Front For China,2006 (1):89-94.
    [192]陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报,2002,44(12):1484-1490.
    [193]马剑英,陈发虎,夏敦胜,等.荒漠植物红砂叶片δ13C值与生理指标的关系[J].应用生态学报,2008,19(5):1166-1171.
    [194]朱林,梁宗锁,许兴,等.三种土壤水分条件下春小麦旗叶碳同位素分辨率与灰分含量的关系[J].中国农业大学学报,2009,14(1):66-72.
    [195]朱林,梁宗锁,许兴,等.土壤水分对春小麦碳同位素分馏与矿质元素K、Ca和Mg含量的影响[J].核农学报,2008,22(6):839-845.
    [196] Merah O., Deléens E., Monneveux P., et al. Grain yield, carbon isotope discrimination, mineral and silicon content in durumwheat under different precipitation regimes [J]. Physiology Plantarum, 1999, 107:387-394.
    [197] Merah O. Carbon isotope discrimination and mineral composition of three organs in durumwheat genotypes grown under Mediterranean conditions[J]. Comptes Rendus de l’Académie des Sciences - Series III - Sciences de la Vie, 2001, 324:355-363.
    [198] Meinzer F.C., Goldstein G., Grantz D.A. Carbon isotope discrimination in coffee genotypes grown under limited water supply [J]. Plant Physiol, 1990, 92:130-135.
    [199]方日尧,赵惠青,方娟.渭北旱原冬小麦不同覆盖栽培模式的节水效益研究[J].农业工程学报,2006,22(2):46-49.
    [200]强秦,曹卫贤,刘文国,等.旱地小麦不同栽培模式对土壤水分和水分生产效率的影响[J].西北植物学报,2004,24(6):1066-1071.
    [201]罗金耀,李道西.节水灌溉多层次灰色关联综合评价模型研究[J].灌溉排水学报,2003,22(5):31-38.
    [202]吴泽宁,王敬,刘进国.引黄灌区灌溉效益优化计算模型[J].灌溉排水,2002,21(2):8-11.
    [203] Williams, J.R., Buller O.H., Dvorak G.J.,et al.A microcomputer model for irrigation system evalution[J].Southern Journal of Agricultural Economics,1988,20:10-16.
    [204]李寿声,彭世彰.多种水源联合运用非线性规划灌溉模型[J].水利学报,1986,1(6):11-19.
    [205]刘维峰.农业节水决策支持系统[J].决策与决策支持系统,1996,6(2):31-36.
    [206]侯维东,徐念榕.井灌节水项目综合评价模型及其应用[J].河海大学学报,2000,28(3):90-94.
    [207]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006.
    [208] Kelly, C.K., Woodward, F.I. Ecological correlates of carbon isotope composition of leaves: A comparative analysis testing for the effects of temperature, CO2 and O2 partial pressures and taxonomic relatedness on C3 [J]. Journal of Ecology, 1995, 83:509-515.
    [209]陈菁,谢江辉,李瑞民.毛叶枣根系分布调查初报[J].中国南方果树,2003,32(4):78-79.
    [210]欧毅,王进,吴天强,等.水分胁迫对桃形李叶片含水量、质膜透性和抗氧化酶活性的影响[J].西南农业学报,2007,20(5):982-985.
    [211]郭相平,刘才良,邵孝侯,等.调亏灌溉对玉米需水规律和水分生产效率的影响[J].干旱地区农业研究,1999,17(3):92-96.
    [212]张源沛,张益明,周会成.半干旱地区春小麦不同种植方式土壤水分变化规律研究初探[J].土壤,2003,35(2):168-170.
    [213]卜玉山,苗果园,周乃健,等.秸秆与地膜覆盖玉米农田土壤水分时空动态变化—兼评回归等值线法的应用[J].土壤学报,2004,41(5):795-801.
    [214]陈金平,王和洲,周新国,等.豫东平原棉田土壤水分变化规律和灌溉试验研究[J].农业工程学报,2005,21(增):29-32.
    [215]张北赢,徐学选,刘文兆,等.黄土丘陵沟壑区不同降水年型下土壤水分动态[J].应用生态学报, 2008,19(6):1234-1240.
    [216]李巧珍,郝卫平,龚道枝,等.不同灌溉方式对苹果园土壤水分动态、耗水量和产量的影响[J].干旱地区农业研究,2007,25(2):128-133.
    [217] Caylor K.K., D'Odorico P.D., Rodriguez-Iturbe I. On the ecohydrology of structurally heterogeneous semiarid landscapes [J].Water Resources Research, 2006, 42(7):W07424.
    [218]刘鹄,赵文智,何志斌,等.祁连山浅山区不同植被类型土壤水分时间异质性[J].生态学报,2008,28(5):2389-2395.
    [219] McLaren J.R., Wilson S.D., Peltzer D.A.Plant feedbacks increase the temporal heterogeneity of soilmoisture [J].OIKOS, 2004, 107:199-205.
    [220]张正斌,徐萍,董宝娣,等.水分利用效率—未来农业研究的关键问题[J].世界科技研究与发展,2005,27(1):52-61.
    [221]石元春.开拓中的蹊径:生物性节水[J].科技导报,1999,10:3-5.
    [222] Turner N C. Crop water deficits: A decade of progress [J]. Advances of Agronomy, 1986 (39):1-51.
    [223]山仑,邓西平,张岁歧.生物节水研究现状及展望[J].中国科学基金,2006,20(2):66-71.
    [224] Krause G.H., Schmude C., Garden H., et al. Effects of sola rultraviolet radiation on the potential efficiency of photosystemⅡ.inleaves of tropical plants[J].Plant Physiology,1999,121:1349-1358.
    [225] Smith S.D., Huxman T.E., Zitzer S.F., et al. Elevated CO2 increasing productivity and invasive species success in an arid ecosystem [J]. Nature, 2000, 408:79-82.
    [226]孙伟,王德利,王立,等.贝加尔针茅不同枝条叶片蒸腾特性与水分利用效率对瞬时CO2和光照变化的响应[J].生态学报,2004,24(11):2437-2445.
    [227] Lloyd J. Modelling stomatal responses to environment in Macadamia integrifolia [J]. Australian Journal of Plant Physiology, 1991, 18:649-660.
    [228] Yu G.R.,Zhuang J., Yu Z.L. An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior formaize and soybean plants grown in field [J]. Journal of Plant Physiology, 2001, 158:861-874.
    [229]曾光辉,郭延平,王法格,等.冬小麦季节柑桔叶片光合机构运转的研究[J].浙江大学学报:农业与生命科学版,2006,32(4):410-414.
    [230]刘长利,王文全,崔俊茹,等.干旱胁迫对甘草光合特性与生物量分配的影响[J].中国沙漠,2006,26(1):142-146.
    [231]李凤霞,郭建平,高素华.不同土壤湿度下柠条光合速率对CO2浓度和辐射强度响应的模拟研究[J].农业环境科学学报,2006,25(1):81-85.
    [232]宋清海,张一平,郑征,等.热带季节雨林冠层树种绒毛番龙眼的光合生理生态特性[J].应用生态学报,2006,17(6):961-966.
    [233] Farquhar G.D., Rkey T.D.Stomatal conductance and photosynthesis [J]. Annual Review of Plant Physiology, 1982, 3:317-345.
    [234] Bassman J.B., wier J.C. Gas exchange characteristics of Populus trichocarpa, opulns deltoids and Populus trichocarpa XP .deltoids clone [J].Tree Physiology, 1991,145-149.
    [235]张香凝,孙向阳,王保平,等.土壤水分含量对Larrea tridentata苗木光合生理特性的影响[J].北京林业大学学报,2008,30(2):95-101.
    [236]康国栋,程存刚,李敏,等.水分胁迫对苹果不同品种光合特性的影响[J].吉林农业大学学报, 2008,30(1):31-35.
    [237] Zhu T.C., Yang C. Biological Ecology[M].Changchun: Jilin Science and Technology Press, 2004.
    [238]王会肖,刘昌明.作物光合、蒸腾与水分高效利用的试验研究[J].应用生态学报,2003,14(10):1632-636.
    [239]邵玺文,韩梅,韩忠明,等.黄芩光合作用日变化及其与环境因子关系的研究[J].吉林农业大学学报,2006,28(6):634-638.
    [240]阎秀峰,孙国荣,李敬兰,等.羊草和星星草光合蒸腾日变化的比较研究[J].植物研究,1994,14(3):287-291.
    [241]沈其荣.ABA、IAA对旱作水稻叶片气孔的调节作用[J].中国农业科学,2003,36(12):1450-1455.
    [242]杨凤云.土壤水分胁迫对梨树生理特性的影响[J].安徽农业,2004,6:11-12.
    [243]董伊晨,刘悦秋.异株荨麻(Urtica dioica)生长及光合特性对不同土壤水分含量的响应[J].生态学报,2008,28(10) :4685-4691.
    [244]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学,2005,25(4):80-85.
    [245]刘子会,郭秀林,王刚,等.干旱胁迫与ABA的信号转导[J].植物学通报,2004,21(2):228-234.
    [246] Giraudat J., Paracy F., Bertauche N., et a1.Current advances in abscisic acid action and signalling[J]. Plant Molecular Biology,1994,26: 1557- 1577.
    [247]赵文魁,童建华,张雪芹,等.干旱胁迫下枳橙和山下红蜜柑内源激素含量的变化规律[J].湖南农业科学,2007,13(2):34-36.
    [248] Sofo A., Tuzio A.C., Dichio B., et a1. Influence of water deficit and rewatering on the components of the ascorbate-glutathione cycle in four interspecific Prunus hybrids[J].Plant Science,2005,169:403-412.
    [249] Liang J.S., Zhang J.H. The relations of stomatal closure and reopening to xylem ABA concentration and leaf water potential during soil drying and rewatering[J].Plant Growth Regulation,1999,29:77-86
    [250]张维强,沈秀瑛.水分胁迫和复水对玉米叶片光合速率的影响[J].华北农学报,1990,5(4):54-60.
    [251]李金洪,李伯航.干旱条件下抗蒸腾剂对玉米的生理效应研究[J].河北农业大学学报,1993,16(3):42-45.
    [252] Osmond C.B., Winter K., Powles S.B. Adaptive significance of carbon dioxide cycling during photosynthesis in water-stressed plants[A]. Adaptation of plants to water and high tmperature stress[C].New York: John Wiley and Sons, Inc,1980,139-154.
    [253]山仑.植物水分利用效率和半干旱地区农业用水[J].植物生理学通讯,1994,1:61-66.
    [254]庞云龙,王进鑫,田丽.水分胁迫及复水对元宝枫幼树生理特性的影响[J].西北农林科技大学学报(自然科学版),2008,36(6):92-96.
    [255]张启昌,杜凤国,夏富才,等.美国椴光合蒸腾的生理生态[J].北华大学学报(自然科学版),2000,1(5):436-438.
    [256]涂琛,王克勤.干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3):26-30.
    [257] Levis S., Foley J.A., Pollard D. Large-scale vegetation feedbacks on a doubled CO2 climate [J]. Journal of Climate, 2000, 13:1313-1325.
    [258] Niyogi D.,XueY.K. Soil moisture regulates the biological response of elevated atmospheric CO2 concentrations in a coupled atmosphere biosphere model [J]. Lobal and Planetary Change, 2006, 54:94-108.
    [259] Wang M., Dai L.M., Ji L.Z., et a1.Effect of drought stress on apparent resource utilization efficiency of Quercus mongolica [J].Chinese Journal of Applied Ecology,2002,13(3):275-280.
    [260]曾伟,蒋延玲,李峰,等.蒙古栎(Quercus mongolica)光合参数对水分胁迫的响应机理[J].生态学报,2008,28(6):2504-2510.
    [261]欧毅,王进,吴天强,等.水分胁迫对桃形李叶片含水量、质膜透性和抗氧化酶活性的影响[J].西南农业学报,2007,20(5):982-985.
    [262]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明叶片含水量和光合特性的影响[J].厦门大学学报(自然科学版),2005,44:28-31.
    [263]武维华.植物生理学[M].北京:科学出版社,2003.
    [264]王沙生.植物生理学[M].北京:中国林业出版社,1991.
    [265]王群英,胡昌浩.玉米不同叶位叶片叶绿体超微结构与光合性能的研究[J].植物学报,1988,30(2):146-150.
    [266]胡颂平,王正功,张琳,等.干旱胁迫下水稻叶片光合速率与叶绿素含量的相关性及其基因定位[J].中国生物化学与分子生物学报,2007,23(11):926-932.
    [267]赵瑾,白金,潘青华,等.干旱胁迫下圆柏不同品种(系)叶绿素含量变化规律[J].中国农学通报,2007,23(3):236-238.
    [268]柯世省,金则新.干旱胁迫和复水对夏蜡梅幼苗光合生理特性的影响[J].植物营养与肥料学报[J].2007,13(6):1166-1172.
    [269]林祥磊,许振柱,王玉辉,等.羊草(Leymus chinensis)叶片光合参数对干旱与复水的响应机理与模拟[J].生态学报,2008,28(10):4718-4724.
    [270] Katul G., Leuning R.,Oren R. Relationship between plant hydraulic and biochemical properties derived from a steady state coupled water and carbon transport mode1[J].Plant,Cell and Environment,2003,26:339-350.
    [271] Montil A., Brugnoli E., Scāzza A., Amaducci M T.The efect of transient and continuous drought on yield,photosynthesis and carbon isotope discrimination in sugar beet(Beta vulgaris L.) [J].Journal of Experimental Botany, 2006, 57(6):1253-1262.
    [272]山仑,陈培元.旱地农业生理生态基础[M].北京:科学出版社,1998.
    [273] Erice G., Aranjuelo I., Irigoyen J.J., et a1. Effect of elevated CO2, temperature and limited water supply on antioxidant status during regrowth of nodulated alfalfa [J]. Physiologia Plantarum, 2007, 130:33-45.
    [274] Cabrera-Bosquet L., Molerol G., Bortl J., Nogués S., et a1. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and△13C in durum wheat potted plants[J]. Annals of Applied Biology, 2007, 151:277-289.
    [275]冯玉龙,巨关升,朱春全.杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J].林业科学,2003,39(3):30-36.
    [276]杨敏生,裴保华,朱之悌,等.白杨双交杂种新无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):36-42.
    [277] De Souza C.R., Maroco J.P., dos Santos T.P., et al. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel)[J]. Functional Plant Biology, 2003, 30(6):653-662.
    [278] Blackman P.G., Davies W.J. Root to shoot communication in maize plants of the effect of soil drying[J]. Journal of Experimental Botany, 1985, (36):39-48.
    [279] Centritto M., Wahbi S., Serraj R., et al. Effects of partial rootzone drying (PRD) on adult olive tree (Olea europaea) in field conditions under arid climate II. Photosynthetic responses [J]. Agriculture, Ecosystems and Environment, 2005,106: 303-311.
    [280] Cifre J., Bota J., Escalona J.M., et al. Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.) An open gate to improve water-use efficiency[J].Agriculture, Ecosystems andEnvironment, 2005(106):159-170.
    [281]范杰英,郭军战,彭少兵.10个树种光合和蒸腾性能对水分胁迫的响应[J].西北林学院学报,2005,20(2):36-38.
    [282]胡昌芬,王书先,王红桃,等.梨枣密植园早期丰产高效栽培技术[J].山西果树,2002,(2) :19-20.
    [283] Mitchell P.D., Jerie P.H., Chalmers D.J. The effects of regulated water deficits on pear tree growth, flowering, fruit growth, and yield [J]. Journal of the American Society for Horticultural Science, 1984, 109:604-606.
    [284] Li S.H., Huguet J.G., Sehoch P.G., et a1. Response of peach tree growth and cropping to soil water deficit at various physiological stages of fruit development [J]. Horticultural Science, 1989, 64:541-552.
    [285] Alexander I.K., Chua .N. Flower development in petunia[J].American Society of Plant Physiologists ,1993,5:1195-1203.
    [286] Abrisqueta J.M., Mounzer O., Alvarez S., et al. Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation[J]. Agricultural Water Management, 2008, 89:959-967.
    [287]张新燕,蔡焕杰.地面灌溉理论研究进展[J].中国农村水利水电,2005,8(2):6-9.
    [288]李代鑫,中国灌溉管理与用水户参与灌溉管理[J].中国农村水利水电,2002,5:1-3.
    [289]山仑.植物抗旱生理研究与发展半旱地农业[J].干旱地区农业研究,2007,25(1):1-5.
    [290]刘晓志.石羊河流域苹果梨液流变化规律与调亏灌溉机理研究[D].北京:中国农业大学,2008.
    [291]肖娟,雷廷武,李光永,等.西瓜和蜜瓜咸水滴灌的作物系数和耗水规律[J].水利学报,2004,35(6):119-124.
    [292]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究[J].林业科学,2004,40(2):174-177.
    [293]杜太生.干旱荒漠绿洲区作物根系分区交替灌溉的节水机理与模式研究[D].北京:中国农业大学,2006.
    [294] Cohen Y., Fuchs M., Falkenflug V., et al. Calibrated heat pulse method for determined water uptake in cotton[J]. Agronomy Journal, 1988, 80: 398-402.
    [295] Green S.R., Clotrier B.E. Water use of kiwifruit vines and apple trees by heat-pulse technique [J]. Journal of Experimental Botany,1983 , 39(198): 115-123.
    [296] Cohen Y. Improvement for the heat pulse method for determining sap flow in trees [J]. Plant, Cell, and Enviroment,1984,4: 391-397.
    [297] Miller, David.R, Vavrina C.R., et al. Measurement of sap flow and transpiration in ring-porous oaks using a heat pulse velocity technique [J]. Forest Science,1980,26(3): 485-494.
    [298] Steven J.K., Peter J.T., Greg M.D. A comparision of heat pulse and deuterium tracing techniques for estimating sap flow in Eucalyptus grandis trees [J]. Tree Physiology, 1998, 18: 698-705.
    [299] Lassoie J.P., David R.M., Leo J.F. Transpiration studies in douglas fir using the heat pulse technique [J]. Forestry Science, 1977, 23(3):377-390.
    [300]崔俊芳,张振华,谢恒星,等.苹果树干液流与气象因子关系的定量分析[J].山东农业科学,2008,1:47-50.
    [301]马跃青,袁小艳,刘丽平,等.无核白鸡心葡萄离体叶水势与叶柄木质部液流的关系[J].中国农业大学学报,2008,13(2):35-38.
    [302] González-Altozano P., Pavel E.W., Oncins J.A., et al. Comparative assessment of five methods of determining sap flow in peach trees [J]. Agricultural Water Management, 2008, 95:503-515.
    [303] Cecilia R.M., Patricia I. F., Guillermo C., et al. Searles. Seasonal variations in sap flow and soil evaporation in an olive (Olea europaea L.)grove under two irrigation regimes in an arid region of Argentina[J].Agricultural Water Management,2009,96:1037-1044.
    [304]夏桂敏.干旱荒漠区三种典型沙生植物耗水规律研究[D].北京:中国农业大学,2008.
    [305] Kramer P.J.,Kozlowski T.T.Physiology of woody plants[M].New York:Academic Press(3 Edition), 2007.
    [306]孙鹏森.京北水源保护林格局及不同尺度树种蒸腾耗水特性研究[D].北京:北京林业大学,2000.
    [307]李海涛,向乐,夏军.应用热扩散技术对亚热带红壤区湿地松人工林树干边材液流的研究[J].林业科学,2006,42(10):31-38.
    [308]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学,2002,38(5):31-37.
    [309]康绍忠,蔡焕杰.作物根系分区交替灌溉和调亏灌溉的理论与实践[M].北京:中国农业出版社,2002.
    [310] Caspari H.W., Behboudian M.H., Chalmers D.J. Water use,growth,and fruit yield of‘Hosui’Asian pears under deficit irrigation [J]. Journal of the American Society for Horticultural Science,1994, 119:383-388.
    [311]尹光彩,周国逸,王旭,等.应用热脉冲系统对桉树人工林树液流通量的研究[J].生态学报,2003,23(10):1984-1990.
    [312] Leib, Brian G., Caspari, Horst W., et al. Deficit irrigation and partial rootzone drying compared in Fuji apples: Fruit yield, fruit quality and soil moisture trends [J]. ASAE Annual International Meeting, 2004, 3449-3459.
    [313] Stern R.A., Meron M., Naor A., et al. Effect of fall irrigation level in Mauritius and Floridian lychee on soil and plant water status, flowering intensity and yield[J]. Journal of the American Society for Horticultural Science, 1998, 123: 150-155.
    [314] Stern R.A., Gazit S. The reproductive biology of the lychee [J]. Horticultural Science, 2003, 28:393-493.
    [315] Chalmers D.J., Van Den Ende B. Productivity of peach trees.factors affecting dry-weight distribution during tree growth [J]. Annual Botany, 1975, 39:423-432.
    [316] Yesim E., Nedim A., Yuksel. Yield response of watermelon to irrigation shortage [J].Scientia Horticulturae, 2003, 98:365-383.
    [317] Batten D.J., McConchie C.A., Lloyd J. Effect of soil water deficit on gas exchange characteristics and water relations of orchard lychee (Litchi chinensis Sonn.) trees [J]. Tree Physiology, 1994, 14:1177-1189.
    [318]吴强盛,夏仁学,张琼华.果树对水分胁迫反应研究进展(综述)[J].亚热带植物科学研究, 2003,32(2):72-76.
    [319]李跃强,盛承发.植物超补偿效应[J].植物生理学通讯,1996,32(6):457- 464.
    [320] Philippe M., Madavalam S.S., Javed A., et al. Using carbon isotope discrimination to select maize(Zea mays L.)Inbred lines and hybrids for drought tolerance [J]. Plant Science, 2007,173: 390-396.
    [321] Riga P., Vartanian N. Sequential expression of adoptive mechanism is responsible for drought resistance in tobacco [J]. Australian Journal of Plant Physiology,1999, 26:211-220.
    [322] Ferrio J.P., Florit A., Vega A., et al.△13C and tree-ring width reflect different drought responses in Quercusilex and Pinus halepensis [J]. Oecologia,2003,442:512-518.
    [323] Ehleringer J.R. Correlations between carbon isotope discrimination and leaf conductance to water vapor in common beans [J]. Plant Physiol, 1990, 93:1422-1425.
    [324]龚吉蕊,黄永梅,葛之葳,等.4种杂交杨对土壤水分变化的生态学响应[J].植物生态学报,2009,33(2):387-396.
    [325] Cabrera-Bosquet1 L., Molero1 G., Bort1 J., et al. The combined effect of constant water deficit and nitrogen supply on WUE, NUE and△13C in durum wheat potted plants[J]. Annals of Applied Biology, 2007, 151:277-289.
    [326] El-sharkawy M.A., Tafur S.M.D. Genotypic and within canopy variation in leaf carbon isotope discrimination and its relation to short-term leaf gas exchange characteristics in cassava grown under rain-fed conditions in the tropics[J]. Photosynthetica, 2007, 45(4):515-526.
    [327]梁银丽,康绍忠,山仑.水分和氮磷水平对小麦碳同位素分辨率和水分利用效率的影响[J].植物生态学报,2000,24(3):289-292.
    [328] Yin C.Y., Wang X., Duan B.L., et al. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress[J].Environmental and Experimental Botany,2005,53:315-322
    [329]赵炳梓,张佳宝,近藤始彦,等.旱稻水分利用率与碳同位素识别值之间的关系[J].土壤学报,2004,41(5):707-714.
    [330] Raeini-Sarjaz M.Z., Barthakur N. N., Arnold N. P., et al. Water stress, water use efficiency, carbon isotope discrimination and leaf gas exchange relationships of the bush bean [J]. Journal of Agronomy & Crop Science.1998, 180,173-179.
    [331] Impa S.M., Nadaradjan S., Boominathan P., et al. Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice [J]. Crop Science, 2005, 45:2517-2522.
    [332] Anyia A.O., Slaski J.J., Nyachiro J.M., et al. Relationship of carbon isotope discrimination to water use efficiency and productivity of barley under field and greenhouse conditions [J]. Journal of Agronomy & Crop Science, 2007, 193:313-323.
    [333] Philippe M., Matthew P. R., Richard T., et al. Relationship between grain yield and carbon isotope discrimination in bread wheat under four water regimes [J]. European Journal of Agronomy, 2005, 22:231-242.
    [334]申海林,温景辉,邹利人,等.我国果树设施栽培研究进展[J].吉林农业科学,2007,32(2):50-54.
    [335] Dorit B., Christa M., Hoffmann, et al. Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes [J]. European Journal of Agronomy, 2006, 24:218-225.
    [336] Araus J.L., Villegas D., Aparicio N., et al. Environmental factors determining carbon isotope discrimination and yield in durum wheat under Mediterranean conditions [J]. Crop Science, 2003, 43:170-180.
    [337] Monneveux P., Reynolds M.P., Trethowan R., et al. Carbon isotope discrim-carbon isotopediscrimination and grain yield in spring wheat 433 ination, leaf ash content and grain yield in bread and durum wheat grown under full-irrigated conditions [J]. Journal of Agronomy & Crop Science, 2004, 190:389-394.
    [338] El-Hendawy S.E., Hu Y., Schmidhalter U.Growth, ion content, gas exchange, and water relations of wheat genotypes differing in salt tolerance[J]. Australian Journal of Agricultural Research, 2005, 56:123-134.
    [339] Xu X., Yuan H., Li S., et al. Relationship between carbon isotope discrimination and grain yield in spring wheat under different water regimes and under saline conditions in the ningxia province (North-west China) [J]. Journal of Agronomy & Crop Science, 2007, 193:422-434.
    [340] Grattan S.R., Berenguer M.J., Connell J.H., et al. Olive oil production as influenced by different quantities of applied water [J]. Agricultural Water Management, 2006, 85:133-140.
    [341] Murasea. Yuri M., Masahiko K. et al. Incorporation of 13C-labeled rice-straw-derived carbon into microbial communities in submerged rice field soil and percolating water [J]. Soil Biology & Biochemistry, 2006, 38:3483-3491.
    [342] Jaggi M., Saurer M., Fuhrer J., et al. The relationship between the stable carbon isotope composition of needle bulk material, starch, and tree rings in Picea abies [J]. Oecologia, 2002, 131:325-332.
    [343]李洁,郭小平,朱清科.果树蒸腾光合及水分利用率与土壤含水量关系研究[J].水土保持研究,2007,14(4):302-305.
    [344]杨再强,谢以萍,张旭东,等.水分亏缺对枇杷果实发育阶段的光合特性和果实品质的影响[J].灌溉排水学报,2007,26(6):89-93.
    [345] Riga P., Vartanian N. Sequential expression of adoptive mechanism is responsible for drought resistance in tobacco [J]. Australian Journal of Plant Physiology, 1999, 26:211-220.
    [346] Yehoshua S., Igal F., Andrew H.P., et al. Carbon isotope ratio in cotton varies with growth stage and plant organ [J]. Plant Science, 1999, 142:47-56.
    [347] Flanagan, L. B., Brooks J. R., Varney G.T., et al. Carbon isotope discrimination during photosynthesis and the isotope ratio of respired CO2 in boreal forest ecosystems [J]. Global Biogeochem. Cycles, 1996, 10(4), 629–640.
    [348] Aranjuelo I., Irigoyen J.J., Pérez P., et al. Response of nodulated alfalfa to water supply, temperature and elevated CO2: productivity and water relations [J]. Environmental and Experimental Botany, 2006, 55:130-141.
    [349] Turner N.C. Further progress in crop water relations [J].Advances in Agronomy, 1997, 58: 293-337.
    [350] Raven J.A. Stable isotope techniques in the study of biological processes and functioning of ecosystems [M]. Kluwer Academic: Annals of Botany Company, 2001.
    [351] West A.G. West J.J., Midgley W.J., et al.Bond The evaluation ofδ13C isotopes of trees to determine past regeneration environments [J]. Forest Ecology and Management, 2001, 147:139-149.
    [352] Ferrio J.P., Florit A., Vega A., et al.△13C and tree-ring width reflect different drought responses in Quercus ilex and Pinus halepensis [J]. Oecologia, 2003, 442: 512-518.
    [353] Amaresh C., Bhatt R.K. Carbon isotope discrimination function analysis and drought tolerance of stylo species grown under rain-fed environment [J]. Acta Physiol Plant, 2008, 30:63-69.
    [354] Zhao B.Z., Motohiko K., Morihiro M., et al. Water-use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes [J].Plant and Soil, 2004, 261:61-75.
    [355] Rytter R.M. Water use efficiency, carbon isotope discrimination and biomass production of two sugar beet varieties under well-watered and dry conditions [J]. Journal of Agronomy & Crop Science, 2005, 191:426-438.
    [356] Bloch D., Hoffmann C.M., Marlander B. Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes [J].European Journal of Agronomy, 2006, 24:218-225.
    [357] Mills T., Behboudian M.H., Tan P.Y., et al. Plant water status and fruit quality in‘Braeburn’Apples [J].Hortscience, 1994, 29 (11) :1274-1278 .
    [358] Marsal H. F., Rapoport T.M., Girona J. Pear fruit growth under regulated deficit irrigation in container-grown trees [J].Scientia Horticulturae, 2000, 85 (4) :243-259.
    [359] Bussakorn S., Mpelasoka M., Hossein B. Production of aroma volatiles in response to deficit irrigation and to crop load in relation to fruit maturity for‘Braeburn’apple [J]. Postharvest Biology and Technology, 2002, 24:1-11.
    [360] Rodriguez M. C., Cuevas J. , Hueso J. J. Flower Development in‘Algerie’Loquat under Scanning Electron Microscopy[J]. Acta Horticulturae, 2007, 75: 337-342.
    [361] Castel J.R., Buj A. Response of salustiana oranges to high frequency deficit irrigation[J]. Irrigation Science, 1990, 11:121-127.
    [362]柴成林,李绍华,徐迎春,等.水分胁迫期间及胁迫解除后桃树叶片中的碳水化合物代谢[J].园艺学报,2004,31(5):574-578.
    [363]王中英.果树抗旱生理[M].北京,中国农业出版社,2000.
    [364] Cuevas J.,Canete M.L.,Pinillos V.,et al.Optimal dates for regulated deficit irrigation in‘Algerie’loquat (Eriobotrya japonica Lindl.) cultivated in Southeast Spain[J].Agricultural Water Management , 2007, 89 (1): 131-136.
    [365] Rapoport H.F., Costagli J., Gucci R. The effect of water deficit during early fruit development on olive fruit morphogenesis. [J]. Journal of the American Society for Horticultural Science, 2004, 129:121-127.
    [366] Costagli G., Gucci R., Rapoport H.F. Growth and development of fruits of olive‘Frontoio’under irrigation and rainfed conditions[J].The Journal of Horticultural Science and Biotechnology,2003,78:119-124.
    [367]张会敏,李占斌,姚文艺,等.灌区续建配套与节水改造效果多层次多目标模糊评价[J].水利学报,2008,39(2) :212-217.
    [368]金荣.基于熵权多目标决策的保障性评价方法研究[J].空军工程大学学报(自然科学版),2007,8:56-59.
    [369]石华旺,高爱坤,牛俊萍.一种基于熵权的未确知测度评价方法及应用[J].统计与决策,2008,12:162-164.
    [370]周惠成,张改红,王国利.基于熵权的水库防洪调度多目标决策方法及应用[J].水利学报,2007,38(1):100-106.
    [371] Ebel R.C., Proebsting E.L., Evans R.G. Apple tree and fruit responses to early termination of irrigation in a semi-arid environment [J]. Horticultural Science, 2001, 36:1197-1201.
    [372]方建华,陈波水,黄伟九,等.磷氮化改性菜子油润滑添加剂的制备及其摩擦学性能[J].摩擦学学报,2001,21(5):348-352.
    [373]韩宇平,阮本清,汪党献.区域水资源短缺的多目标风险决策模型研究[J].水利学报, 2008,39(6):667-672.
    [374]李占军,刁承泰.西南丘陵地区县域农用地经济效益评价研究—以重庆江津区为例水土保持研究[J].水土保持研究,2008,15:105-109.
    [375] Walker R. Entropy and the evaluation of labour market interventions [J]. Evaluation,2007,13:193-219.
    [376] Lall A., Sekar V., Ogihara M., et al. Data streaming algorithms for estimating entropy of network traffic[J]. Performance Evaluation Review, 2006, 34 (1):145-156.
    [377]李慧伶,王修贵,崔远来,等.灌区运行状况综合评价的方法研究[J].水科学进展,2006,17(4):544-449.
    [378]邱菀华.管理决策与应用熵学[M].北京:机械工业出版社,2002.
    [379]张步翀,黄高宝.干旱环境下春小麦最优调亏灌溉制度确定[J].灌溉排水学报,2008,27(1): 69-72.
    [380]陈广泉.高枣树坐果率的综合技术措施[J].北方园艺,2002,5:34.
    [381]汤瑞凉,郭存芝,董晓娟.灌溉水资源优化调配的熵权系数模型研究[J].河海大学学报(自然科学版),2000,28(1):18-21.
    [382]马富裕,严以绥.棉花膜下滴灌技术理论与实践[M].乌鲁木齐:新疆大学出版社,2002.
    [383]李树彬,王洪军.干旱地区枣树栽植技术研究[J].中国水土保持,2003,5:30-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700