用户名: 密码: 验证码:
沙丘芦苇所含独特化合物对细胞膜流动性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质膜在细胞内外物质运输、维持细胞内外的离子平衡、信息传递、细胞间的识别及细胞运动等重要的生命过程中起着关键性的作用。
     本实验以绿豆(Vigna radiata L.)黄化下胚轴和水生芦苇(Phragmites communistrin.)为材料,用荧光染料8-苯胺基-1-萘磺酸盐(8-Anilino-1-naphthalene sulfonic,ANS)和1,6-二苯基-1,3,5-己三烯(1,6-Diphenyl-1,3,5-hexatriene,DPH)为荧光探针研究外源PAAC处理后线粒体膜的流动性的变化。荧光探剂ANS与膜结合后主要有两种因素可引起ANS荧光的变化,一是它所处环境的极性改变,二是与ANS合的膜脂流动性变化。如果前者不变,则与膜结合的ANS荧光强度即能反映膜脂的流动性,荧光强度越大,膜脂流动性越小。此荧光强度反映的是整个脂区运动状态的平均值。DPH是研究膜脂流动性比较敏感的一种常用探针。DPH掺入到膜脂的膜脂酸烃链区后,介质粘度变大,顺反异化受到抑制,成为全反型,即唯一能发荧光的型。由于DPH分子长轴接近于与膜脂酸链分子长轴平行,所以,荧光偏振度(P)能很好地反映膜脂区域的微粘度,定量地说明膜脂分子的运动情况。
     结果表明:PAAC处理对线粒体膜的流动性有降低的作用,并且和PAAC的浓度呈一定的量效关系。在实验范围内,高温胁迫下同样降低膜的流动性,最重要的是能够稳定膜的流动性,但对相变温度的改变似乎不起作用。因此推测,在夏季自然高温环境下,PAAC可以通过降低膜的流动性而对植物膜的功能起到稳定和保护作用。
Membrane is playing a cruical role in substance transportation between outside and inside of cell, maintain ion balance, information transmission, cell identification and cell movement and also other impotant life process.
     Using etiolated hypocotyledonary axis of mung bean and swamp reed as materials, 8-anilinonaphthalene-l-sulfonic and 1,6-diphenyl-1,3,5-hexatriene as probes, a fluorescence spectrophotometry method was performed to research the change of membrane fluidity of mitochondia treated by extraneous PAAC. Two factors will change the fluorescence of ANS when ANS combine with membrane. One is the polarity of ANS's environment changes, the other is the fluidity of membrane lipoid combined with ANS changes. If the first is invariable, that the intensity of ANS's fluorescence can reflect the fluidity of membrane lipoid. Fluorescence more intensity, slower of fluidity. And this fluorescence reflects the average value of all the lipoid region's movement. DPH is a sensitivity and commom probe when learn about the fluidity of membrane lipoid. When DPH mixes into the hydrocarbon chain region of membrane fat acid, medium will be more sticky and the transform of cis isomer will be suppressed, so that all are resver, that is can launch fluoresence. Owing to the long axis of DPH molecule is nearly paralleling with the long axis of membrane lipiod acid molecule. Therefore the degree of fluoresence polarization(P) can welly show the min-viscosity of membrane lipoid region, and quantificationally illuminate the movement of membrane lipoid molecule.
     The results of the study suggest that membrane fluidity of mitochondia have been reduced after treated by PAAC, furthermore, there is a dose-effect relationship. Confined within our experiment, PAAC reduces the membrane fluidity under the high temperature stress, more importantly, it can stabilize the fluidity of membrance, however, it has no effect on the change of the transition temperature. Therefore, it can be suppose that PAAC can stabilize and protect the function of the biomembrane in plants by reduceing the fludity under the high temprature in summer.
引文
[1]浦铜良,程佑发,张承烈.沙丘芦苇特有小分子化合物及其对叶绿体的逆境保护效应【J】.科学通报,2000,45(12):1308-1313.
    [2]杨福愉,蔡同茂,邢菁如,等.抗冷与不抗冷水稻线粒体膜流动性的比较【J】.科学通报,1983,26(3):370-372.
    [3]Chen KS,Zhou X,Liang HG,et al.Enidence for ABA effect on the character of biomembrane 【J】.Chin Sci.Bull 1994,39:1033-1036.
    [4]陈靠山,刘世明,夏凯,等.用ANS研究脱落酸提高植物线粒体膜的流动性【J】.生物物理学报,2000,16(2):237-242.
    [5]季宇彬,万梅绪,等.龙葵碱对荷瘤小鼠红细胞免疫功能的影响【J】.中草药,2007年3月第38卷第3期:412-414.
    [6]LIU SM,JI YL,CHEN KS,et al.Effect of choline chloride on membrane fluidity of mitocondria isolated from etiolated seedlings of wheat 【J】.Acat.Biophysica Sinica,2002,18(1):19-22.
    [7]Haslam SM.Variation of population types in Phragmites communis Trin.Ann Bot,1970.34:147-158.
    [8]王洪亮,张承烈,陈国仓.河西走廊芦苇不同生态型生境适应的渗透调节物质.生态学报,1994,14:56-60.
    [9]Zheng W J,Zheng XP,Zhang CL.A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites communis in northwest Chain:leaf anatomy,ultrastructure,and activities of ribulose 1,5-bisphosphate carboxylase,phosphoenolpyruvate carboxylase and glycollate oxidase.Physiol Plant 2000,110:201-208.
    [10]《中国沙漠植物志》编辑组.中国沙漠植物志(第一卷).北京:科学出版社,1985.34.
    [11]Xiong LM,Ishitani M,Zhu J K.Interaction of osmotic stress,temperature and abscisic acid in theregulation of gene expression in Arabidopsis.Plant Physiol 1999,119:205-211.
    [12]Vance N,Copes DO,Zaerr JB.Differences in proteins synthesized in needles of unshaded andshaded Pi nus ponderosa var.scopulorum seedlings during prolonged drought.Plant Physiol 1990,92:1244-1248.
    [13]王洪乔.植物逆境生理.植物生理学通讯,1981,(6):72-81.
    [14]Bohnert HJ,Jensen RG.Strategies for engineering water-stress tolerance in plants.Trends Biotechnol 1996,14:89-97.
    [15]Cheng YF,Pu TL,Zhang CL et al.PcTGD,a highly expressed gene in stem,is related to waters4tress in reed(Phragmites communis Trin.).Chin Sci Bull,2001,46(10):850-854.
    [16]Smirnoff N.Antioxidant systems and plant response to the environment.In:Smirnoff N(ed).Environment and Plant Metabolism.Oxiford:Bios Sci Pub,1995.217-243.
    [17]张承烈,周瑞莲,陈国仓.芦苇耐脱水能力的生理生态学分析.植物生态学及地植物学学报,1992,16(4):311-316.
    
    [18] Wang J G, Zhang CL. DNA damage and repair of two ecotypes of Phragmites communis subjectedto water stress. Acta Bot Sin., 2001, 43(5):490-494.
    
    [19] Bohnert H J, Nelson D E, Jensen R G. Adaptation to environmental stress. Plant Cell 1995,7:1099-1111.
    
    [20] Csonkal L. Physiological and genetic responses of bacteria to osmotic stress. Microbiol. Rev 1989,53:121-147.
    
    [21] Bartels D, Nelson D. Approaches to improve stress tolerance using molecular genetics. Plant Cell Environ 1994, 17:659-667.
    
    [22] Anderson JM. Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings. J. Plant Growth Regul 1988,7:203-11.
    
    [23] Creelman RA, Mul et JE. Biosynthesis and action of jasmonates in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997,48:355-381.
    
    [24] Shena B, Jensen RG, Bohnert HJ. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiology 1997, 113:1177-1183.
    
    [25] Shenb B, Jensen RG, Bohnert HJ. Mannitol protects against oxidation by hydroxyl radicals.Plant Physiol 1997, 115:527-532.
    
    [26] Smirnoff N, Cumbes Qj. Hydroxyl radical scavenging activity of compatible solutes.Phytochem, 1989,28:1057-1060.
    
    [27] Paleg LG, Steward GR, Bradbeer JW. Antioxidant systems and plant response to the environment. Plant Physiol 1984,75:974.
    
    [28] Yancy PH, Somero GN J In Environment and Plant Metabolism. Exp Zool 1980, 212:205.
    
    [29] Hare P D, Cress W A, Staden J V. Dissecting the role of osmolyte accumulation during stress.Plant Cell and Environ., 1998, 21:535-553.
    
    [30] Serrano R. Salt tolerance in plants and microorganisms: toxicity targets and defence responses. Internation Review of Cytology 1996,165:1-52.
    
    [31] Stoop JMH, Williamson JD, Pharr DM. Mannitol metabolism in plants: a method for coping with stress. Trends in Plant Science 1996, 1:139-144.
    
    [32] Hare PD, Cress WA. Metabolic implications of stress-induced proline accumulation inplants.Plant Growth Regulation 1997,21:79-102.
    
    [33] Smirnoff SA. Antioxidant systems and plant response to the environment. Edited by Smirnoff N. Oxford:Bios Scientific Publishers 1995,217-243.
    
    [34] Rhodes D and Hanson AD. Quaternary ammonium andtertiatsulfoniumcompoundsin higher plants. Annual Review of plant physiology and plant Molecular Biology 1993,44:357-384.
    [35] Rathinasabapathi B, Burnet M, Russell BL, Gage DA, Liao PC, Nye GJ, Scott P. Choline Monooxygenase, an unusual iron-sulfur enzyme catalysing the first step of glycinebetaine synthesis in plants:prosthetic grup characterization and cDNA cloning. ProcNatl Acad Sci USA 1997,94:3454-3458.
    
    [36] Biehler K, Fock H. Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiol 1996, 112:256-272.
    
    [37] Foyer CH, Descourvieres P, Kunert KJ:Protection against oxygen radicals:an important defence mechanism studied in transgenic plants. Plant Cell Environ 1994, 17:507-523.
    
    [38] Aspinall D, Paleg LG The Physiology and Biochemistry of Drought resistance in plants(Paleg LG and Aspinall D, eds), pp 1981,205-241.
    
    [39] Coughlan SJ Wyn Jones RG J Exp Botany 1980, 31:883.
    
    [40] Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N:Transformation of Arabidopsis thaliana with the codA gene for choline oxidase;accumulation of glycinebetaine andenhanced tolerance to salt and cold stress. Plant cell 1997, 12:133-142.
    
    [41] Lilius G., Holmberg N. and Bulow L. Enhanced NaCl stress tolerance in transgenic tobacco expressing bacterial choline dehydrogenase. Biotechnology 1996,14:177-180.
    
    [42] Holmberg N, Biilow L. Improving stress tolerance in plants by gene transfer. Trends in Plant Science, 1998,3:61-66.
    
    [43] Agboma~a PC, Jones MGK, Peltonen-Saino P, Rita H, Pehu H: exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two supplementary watering regimes. J Agron Crop Sci 1997, 178:29-37.
    
    [44] Agboma~b PC, Peltonen-Sainio P, Hinkkanen R, Pehu E. Effect of foliar application of glycinebetaine on yield components of drought-stressed tobacco plants. Expl Agric1997,33:345-352.
    
    [45] Agboma~c PC, Sinclair TR, Jokinen K, Peltonen-Sainio P, Pehu E. An evaluation of the effect of exogenous glycinebetaine on the growth and yield of soybean: timing of application,watering regimes and cultivars. Field Crops Res 1997,54:51-64.
    
    [46] Tarczynski MC, Jensen RG and Bohnert HJ. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 1993,259:508-510.
    
    [47] Chaturvedi V, Bartiss A, Wong B. expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol defective mutant from high-salt and oxidative stress. J Bacteriol 1997, 179:157-162.
    
    [48] Garcia A-B, de Almeida Engler J, Iyer S, Gerats T, Van Montagu M, Capla AB. Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol 1997115:159-169.
    
    [49] Babiychuk E, Kushnir S, Belles-Boix E, van Montagu M, and lnze D. Arabidopsis thaliana NADPH oxidoreductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug diamide. The journal of Biological Chemistry. 1995, 270:26224-26231.
    [50]Savoure A,Hua X-J,Bertauche N,van Motagu M and Vervruggen N.Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana.Molecular and General Genetics1997,254:104-109.
    [51]Kiyosue T,Yoshiba Y,Yamaguchi-SHlNOZAKI K and Shinozaki K.A nuclear gene encoding mitochondrial proline dehydrogenase,an enzyme involved in proline metabolism,is upregulated by proline but downregulated by dehydration in Arabidopsis.plant Cell 1996,8:1323-1335.
    [52]Sheveleva E,Chmara W,Bohnert HJ,Jensen RG:Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L.Plant Physiol 1997,115:1211-1219.
    [53]Nuccio ML,Rhodes D,McNeil SD and Hanson AD.Metabolic engineering of plants for osmotic stress resistance.Current Opinion in Plant Biology 1999,2:128-134.
    [54]Binzel ML,Hasegawa PM,Rhodes D,Handa S,Handa AK,Bressan RA.Solute accumulation in tobacco cells adapted to NaCI.Plant Physiol 1987,84:1408-1415.
    [55]Jain S,Nainawatee HS,Jain TK,Chowdhury JB,Proline status of genetically stable salt-tolerant Brassica juncea L.Somaclones and their parent cv.Prakash.Plant Cell Rep 1991,9:2411-2418.
    [56]Genard H,Le Saos J,Billard JP.Effect of salinity on lipid composition,glycine betaine content and photosynthetic activity in chloroplasts of Suaeda maritima.Plant Physiol Biochem 1991,29:521-427.
    [57]Holmstrom KO,Mantyla E,Welin B,Mandal A and Palva ET.Drought tolerance in tobacco.Nature 1996,379:683-684.
    [58]Colaco C,Sen S,Thangavelu M.Extraordinary stability of enzymes dried in trehalose:simplified molecular biology.Biotechnology 1992,10:1007-1011.
    [59]Papageorgiou G C.Stabilization of chloroplasts and subchloroplast particles.In:Pietro ASeds.Photosynthesis and Nitrogen Fixation.Methods in Enzymology,1980,69:613-625.
    [60]Deshnium P,Gombos Z,Nishiyama Y,et al.The action of glycine betaine in enhancement of tolerance of syechococcus sp.Strain PCC 7942 to low temperature.J Bacteriol.,1997,179:339-344.
    [61]王颖君,叶济宁.脓青素对光抑制条件下菠菜叶绿体的保护作用.植物生理学报,199622(2):123-129.
    [62]苏维埃,王文英.植物类脂及其脂肪酸的分析技术.植物生理学通讯.1980年第三期.
    [63]朱明宴,宋立群,初建设,等.小鼠心肌线粒体内,外膜磷脂动态结的研究【J】.生物物理学报,1993,9(2):220-225.
    [64]祁颂平,刘春梅,张家俊,等.用荧光探剂研究赤芍成分的衍生物对线粒体膜流动性的影响.生物化学与生物物理学报.1986,18(3):246-251.
    [65]屈卫东,张本忠,吴德生,等.乙醇和乙醛对培养大鼠胚胎卵黄囊细胞膜脂质流动性的影响【J】.中国药理学和毒理学杂志。2000,14:45-48.
    [66]Stillwell W,Drengle,B,BelcherD.et al..phytochem,1987,26(12):3145-3150.
    [67]Stillwell,W.,Hester,P.phytochem,1984,23(10):2187-2192.
    [68]Stillwell,W.,Brengle,B.,Cheng,Y.F,et al:phytochem,1991,30(11):3539-3544.
    [69]赵南明,周海梦.生物物理学.高等教育出版社,施普林格出版社.【M】2000年7月.
    [70]袁观宇.生物物理学.科学出版社.【M】2006.
    [71]祝大吕,朱世盛等.分子发光分析法.复旦大学出版社.【M】1985年2月.P43.
    [72]张志鸿,刘文龙.膜生物物理学.高等教育出版社【M】1987年10月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700