用户名: 密码: 验证码:
昆虫激肽硫代类似物:合成、光致异化以及构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫激肽(Insect kinins)是一类以Phe-Xaa-Yaa-Trp-Gly-NH_2为C末端的多肽,其中Xaa可以是Tyr、His、Ser或Asn。Yaa可以是Ala,但通常是Ser或Pro。生物活性研究表明,它具有促进昆虫马氏管扭动及其原尿分泌、调节血淋巴量以及水盐平衡、对马氏管跨膜电位去极化、促进后肠收缩等作用。此外,还发现昆虫激肽能抑制昆虫体内蛋白水解酶、脂肪酶等消化酶的释放、抑制幼虫增长等。从结上看,C端五肽Phe-Xaa-Yaa-Trp-Gly-NH_2是保持活性所需的最小片段,被称为核心五肽。象研究表明,C端五肽中存在两种象:1-4β-转角和2-5β-转角。然而,其不确切的构效关系,大大阻碍了以其结为模板的新型害虫防治试剂的开发。
     本文旨在通过引入可光致异化的硫代酰胺键ψ[CS-N],象可控的昆虫激肽类似物,用以阐明C端五肽H-Phe-Xaa-Yaa-Trp-Gly-NH_2的活性象。本文描述了昆虫激肽硫代类似物H-Phe~1-Tyr~2-ψ[CS-N]-Pro~3-Trp~4-Gly~5-NH_2(ψ[CS-N]~2-kinin)的合成;并用UV-vis、CD、HPLC等方法对其光致异化特性进行表征。结果表明:与天然肽键仅一个原子差异的硫代酰胺键有光控开关的作用:经254 nm紫外光照后,顺式ψ[CS-N]含量由15.7%增加到47.7%,通过热弛豫又下降至15.2%;热弛豫半衰期t_(1/2)=40 min。对其在不同象状态下的促蟑螂后肠收缩活性研究显示:ψ[CS-N]~2-kinin保留了母肽80%的最大活性,EC_(50)=(4.1±0.2)×10~(-7);在254 nm紫外光照而达到光稳定状态时,ψ[CS-N]~2-kinin的促后肠收缩活性比未光照状态显著增强,EC_(50)=(1.1±0.2)×10~(-7);经热弛豫后,其活性又恢复到未光照水平,EC_(50)=(3.9±0.3)×10~(-7)。以上实验证据表明,有利于形成1-4β-转角的顺式ψ[CS-N]~2-kinin是昆虫激肽类似物产生生理活性时的活性象。
The insect kinins share a highly conserved C-terminal pentapeptide sequence Phe-Xaa-Yaa-Trp-Gly-NH_2,where Xaa can be Tyr,His,Ser or Asn,and Yaa can be Ala but is generally Ser or Pro.They have been isolated from a number of insects, including species of Dictyoptera,Lepidoptera,and Orthoptera.Structurally,the insect kinins require an intact C-terminal pentapeptide sequence for full bioactivity, which was therefore designated as the active core sequence.Conformation studies indicated that there are two distinct conformation with aβ-turn over residue 1-4 and 2-5,respectively.In order to obtain a more direct evidence for the active one of these two distinct conformations,a kinin analog containing a thioxopeptide bondΨ[CS-N], a nearly isosteric modification of the native peptide bond,which can be used as a photoswitch,was synthesized.
     The reversible photoswitching property was characterized via spectroscopic methods and HPLC,which showed that the cis conformer increased from 15.7%to 47.7%after 254 nm UV irradiation.A slow thermal reisomerization(t_(1/2)=40 min) permitted us to determine the cockroach hindgut myotropic activity of the thioxopeptide in photostationary state.The results indicated that the activity increased significantly after UV irradiation and recovered to the ground level after thermal re-equilibration.In the present work,which utilizing the phototriggered isomerization in a specific position of peptide backbone,revealed that the cisΨ[CS-N]~2-kinin conformer is the active conformation when interact with kinin receptor on cockroach hindgut.
引文
[1] Coast GM, Orchard I, Phillips JE, Schooley DA. Insect diuretic and antidiuretic hormones. Adv Insect Physiol 2002; 29: 279-409.
    [2] Holman GM, Cook BJ, Nachman RJ. Isolation, primary structure and synthesis of two neuropeptides from Leucophaea maderae: Members of a new family of cephalomyotropins. Comp Biochem Physiol C 1986; 84: 205-11.
    [3] Holman GM, Cook BJ, Nachman RJ. Primary structure and synthesis of two additional neuropeptides from Leucophaea maderae: Members of a new family of cephalomyotropins. Comp Biochem Physiol C 1986; 84: 271-6.
    [4] Holman GM, CooK BJ, Nachman RJ. Isolation, primary structure, and synthesis of leucokinins V and VI: Myotropic peptides of Leucophaea maderae. Comp Biochem Physiol C 1987; 88: 27-30.
    [5] Holman GM, Cook BJ, Nachman RJ. Isolation, primary structure and synthesis of leucokinins VII and VIII: The final members of this new family of cephalomyotropic peptides isolated from head extracts of Leucophaea maderae. Comp Biochem Physiol C 1987; 88: 31-4.
    [6] Holman GM, Nachman RJ, Wright M. A strategy for the isolation and structural characterization of certain insect myotropic peptides that modify the spontaneous contractions of the isolated cockroach hindgut. In: McCaffery AR, Wilson, ID, editor. In Chromatography and Isolation of Insect Hormones and Pheromones. New York: Plenum, 1990: 195-204.
    [7] Schoofs L, Holman GM, Proost P, Van Damme J, Hayes TK, De Loof A. Locustakinin, a novel myotropic peptide from Locusta migratoria, isolation, primary structure and synthesis. Regul Pept 1992; 37: 49-57.
    [8] Clottens FL, Meola SM, Coast GM, Hayes TK, Wright MS, Nachman RJ, Holman GM. Characterization of an antiserum against an Achetakinin-I analog and its use for the localization of culekinin depolarizing peptide-II in the Mosquito, Culex salinarius. Regul Pept 1993; 49: 145-57.
    [9] Hayes TK, Holman GM, Pannabecker TL, Wright MS, Strey AA, Nachman RJ, Hoel DF, Olson JK, Beyenbach KW. Culekinin depolarizing peptide: a mosquito leucokinin-like peptide that influences insect Malpighian tubule ion transport. Regul Pept 1994; 52: 235-48.
    [10] Veenstra JA. Isolation and identification of three leucokinins from the mosquito Aedes aegypti. Biochem Biophys Res Commun 1994; 202: 715-9.
    
    [11] Blackburn MB, Wagner RM, Shabanowitz J, Kochansky JP, Hunt DF, Raina AK. The isolation and identification of 3 diuretic kinins from the abdominal ventral nerve cord of adult Helicoverpa zea. J Insect Physiol 1995; 41: 723-30.
    
    [12] Predel R, Kellner R, Rapus J, Penzlin H, Gade G. Isolation and structural elucidation of eight kinins from the retrocerebral complex of the American cockroach, Periplaneta americana. Regul Pept 1997; 71: 199-205.
    
    [13] Cox KJ, Tensen CP, Van der Schors RC, Li KW, van Heerikhuizen H, Vreugdenhil E, Geraerts WP, Burke JF. Cloning, characterization, and expression of a G-protein-coupled receptor from Lymnaea stagnalis and identification of a leucokinin-like peptide, PSFHSWSamide, as its endogenous ligand. J Neurosci 1997; 17: 1197-205.
    [14]Nieto J, Veelaert D, Derua R, Waelkens E, Cerstiaens A, Coast G, Devreese B, Van Beeumen J, Calderon J, De Loof A, Schoofs L. Identification of one tachykinin- and two kinin-related peptides in the brain of the white shrimp, Penaeus vannamei. Biochem Biophys Res Commun 1998; 248: 406-11.
    [15]Nieto J, Veelaert R, Derua E, Waelkens J, Calderon G, Baggerman D, Veelaert A. Isolation and identification of one tachykinin and three kinin-related peptides in the central nervous system of Penaeus vannamei. In Proceedings of the Fourth Enternational Crustacean Congress. Brill. Leiden, the Netherlands 1999; 951-960
    [16] Holman GM, Nachman RJ, Coast GM. Isolation, characterization and biological activity of a diuretic myokinin neuropeptide from the housefly, Musca domestica. Peptides 1999; 20: 1-10.
    [17]Terhzaz S, O'Connell FC, Pollock VP, Kean L, Davies SA, Veenstra JA, Dow JA. Isolation and characterization of a leucokinin-like peptide of Drosophila melanogaster. J Exp Biol 1999; 202: 3667-76.
    [18] Nachman RJ, Coast GM, Tichy SE, Russell DH, Miller JA, Predel R. Occurrence of insect kinins in the flesh fly, stable fly and horn fly-mass spectrometric identification from single nerves and diuretic activity. Peptides 2002; 23: 1885-94.
    [19] Radford JC, Terhzaz S, Cabrero P, Davies SA, Dow JA. Functional characterisation of the Anopheles leucokinins and their cognate G-protein coupled receptor. J Exp Biol 2004; 207: 4573-86.
    [20] Schmid A, Becherer C. Leucokinin-like immunoreactive neurones in the central nervous system of the spider Cupiennius salei. Cell Tissue Res 1996; 284: 143-52.
    [21]Elekes K, Hernadi L, Muren JE, Nassel DR. Peptidergic neurons in the snail Helix pomatia: distribution of neurons in the central and peripheral nervous systems that react with an antibody raised to the insect neuropeptide, leucokinin I. J Comp Neurol 1994; 341: 257-72.
    [22] Smart D, Johnston CF, Shaw C, Halton DW, Buchanan KD. Use of specific antisera for the localisation and quantitation of leucokinin immunoreactivity in the nematode, Ascaris suum. Comp Biochem Physiol C 1993; 106: 517-22.
    [23] Cook BJ, Holman GM, Wagner RM, Nachman RJ. Pharmacological actions of a new class of neuropeptides, the Leucokinins-I-IV, on the visceral muscles of Leucophaea Maderae. Comparative Biochemistry and Physiology C 1989; 93: 257-62.
    [24] Cook BJ, Holman GM, Wagner RM, Nachman RJ. Comparative pharmacological actions of Leucokinins-V-VIII on the visceral muscles of Leucophaea Maderae. Comparative Biochemistry and Physiology C 1990; 95: 19-24.
    [25] Hayes TK, Pannabecker TL, Hinckley DJ, Holman GM, Nachman RJ, Petzel DH, Beyenbach KW. Leucokinins, a new family of ion transport stimulators and inhibitors in insect Malpighian tubules. Life Sci 1989; 44: 1259-66.
    [26] Veenstra JA, Pattillo JM, Petzel DH. A single cDNA encodes all three Aedes leucokinins, which stimulate both fluid secretion by the malpighian tubules and hindgut contractions. J Biol Chem 1997; 272: 10402-7.
    [27] Coast GM. Synergism between diuretic peptides controlling ion and fluid transport in insect malpighian tubules. Regul Pept 1995; 57: 283-96.
    [28] Coast GM. The influence of neuropeptides on Malpighian tubule writhing and its significance for excretion. Peptides 1998; 19: 469-80.
    [29] Coast GM, Holman GM, Nachman RJ. The diuretic activity of a series of cephalomyotropic neuropeptides, the Achetakinins, on isolated Malpighian tubules of the house cricket, Acheta Domesticus. J Insect Physiol 1990; 36: 481-8.
    [30] Orchard I, Brugge VT. Contractions associated with the salivary glands of the blood-feeding bug, Rhodnius prolixus: evidence for both a neural and neurohormonal coordination. Peptides 2002; 23: 693-700.
    [31]Harshini S, Nachman RJ, Sreekumar S. Inhibition of digestive enzyme release by neuropeptides in larvae of Opisina arenosella (Lepidoptera: Cryptophasidae). CompBiochem Physiol B 2002; 132: 353-8.
    [32] Goldsworthy HJ, Coast, G.M., Wheeler, H., Cusinato, O. The structural and functional activity of neuropepitdes. In Royal Entomological Society Symposium on Insect Molecular Science. Academic Press. London 1992; 205-225.
    [33] Seinsche A, Dyker H, Losel P, Backhaus D, Scherkenbeck J. Effect of helicokinins and ACE inhibitors on water balance and development of Heliothis virescens larvae. J Insect Physiol 2000; 46: 1423-31.
    [34] Nachman RJ, Strey A, Isaac E, Pryor N, Lopez JD, Deng JG, Coast GM. Enhanced in vivo activity of peptidase-resistant analogs of the insect kinin neuropeptide family. Peptides 2002; 23: 735-45.
    [35] Saideman SR, Christie AE, Torfs P, Huybrechts J, Schoofs L, Nusbaum MP. Actions of kinin peptides in the stomatogastric ganglion of the crab Cancer borealis. J Exp Biol 2006; 209: 3664-76.
    [36] Nachman RJ, Fehrentz JA, Martinez J, Kaczmarek K, Zabrocki J, Coast GM. A C-terminal aldehyde analog of the insect kinins inhibits diuresis in the housefly. Peptides 2007; 28: 146-52.
    [37] Pannabecker TL, Hayes TK, Beyenbach KW. Regulation of epithelial shunt conductance by the peptide leucokinin. J Membr Biol 1993; 132: 63-76.
    [38] O'Donnell MJ, Dow JA, Huesmann GR, Tublitz NJ, Maddrell SH. Separate control of anion and cation transport in malpighian tubules of Drosophila Melanogaster. J Exp Biol 1996;199:1163-75.
    [39] O'Donnell MJ, Rheault MR, Davies SA, Rosay P, Harvey BJ, Maddretl SH, Kaiser K, Dow JA. Hormonally controlled chloride movement across Drosophila tubules is via ion channels in stellate cells. Am J Physiol 1998; 274: R1039-49.
    [40] O'Connor KR, Beyenbach KW. Chloride channels in apical membrane patches of stellate cells of Malpighian tubules of Aedes aegypti. J Exp Biol 2001; 204: 367-78.
    [41] Yu MJ, Beyenbach KW. Leucokinin and the modulation of the shunt pathway in Malpighian tubules. J Insect Physiol 2001; 47: 263-76.
    [42] Yu MJ, Beyenbach KW. Intracellular Ca~(2+) mediates the leucokinin-VIII induced increase in paracellular Cl~- conductance of Malpighian tubules. FASEB J 2001; 15: A139-A.
    [43] Yu MJ, Beyenbach KW. Leucokinin-VIII induces paracellular Cl" conductance in Malpighian tubules of the yellow fever mosquito, Aedes aegypti. FASEB J 2001; 15: A140-A.
    [44] Hazelton SR, Parker SW, Spring JH. Excretion in the house cricket (Acheta domesticus): Fine structure of the Malpighian tubules. Tissue Cell 1988; 20: 443-60.
    [45] Yu MJ, Beyenbach KW. Leucokinin-VIII increases epithelial Cl shunt conductance via a receptor-mediated pathway involving calcium. FASEB J 2000; 14: A579-A.
    [46]Beyenbach KW. Mechanism and regulation of electrolyte transport in Malpighian tubules. J Insect Physiol 1995; 41: 197-207.
    [47] Wang S, Rubenfeld A, Hayes T, Beyenbach K. Leucokinin increases paracellular permeability in insect Malpighian tubules. J Exp Biol 1996; 199: 2537-42.
    [48] Pietrantonio PV, Gibsona GE, Streya AA, Petzel D, Hayesa TK. Characterization of a leucokinin binding protein in Aedes aegypti (Diptera: Culicidae) Malpighian tubule. Insect Biochem Mol Biol 2000; 30: 1147-59.
    [49] Pietrantonio PV, Jagge C, Taneja-Bageshwar S, Nachman RJ, Barhoumi R. The mosquito Aedes aegypti (L.) leucokinin receptor is a multiligand receptor for the three Aedes kinins. Insect Mol Biol 2005; 14: 55-67.
    [50] Hewes RS, Taghert PH. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res 2001; 11: 1126-42.
    [51]Radford JC, Davies SA, Dow JA. Systematic G-protein-coupled receptor analysis in Drosophila melanogaster identifies a leucokinin receptor with novel roles. J Biol Chem 2002; 277: 38810-7.
    [52] Roberts VA, Nachman RJ, Coast GM, Hariharan M, Chung JS, Holman GM, Williams H, Tainer JA. Consensus chemistry and beta-turn conformation of the active core of the insect kinin neuropeptide family. Chem Biol 1997; 4: 105-17.
    [53] Torfs P, Nieto J, Veelaert D, Boon D, van de Water G, Waelkens E, Derua R, Calderon J, de Loof A, Schoofs L. The kinin peptide family in invertebrates. Ann N Y Acad Sci 1999; 897:361-73.
    [54] Nachman RJ, Coast GM, Holman GM, Beier RC. Diuretic activity of C-terminal group analogues ofthe insect kinins in Acheta domesticus. Peptides 1995; 16: 809-13.
    [55] Lamango NS, Nachman RJ, Hayes TK, Strey A, Issac RE. Hydrolysis of insect neuropeptides by an angiotensin-converting enzyme from the housefly, Musca domestica. Peptides 1997; 18: 47-52.
    [56] Nachman RJ, Issac RE, Coast GM, Holman GM. Aib-containing analogues of the insect kinin neuropeptide family demonstrate resistance to an insect angiotensin-converting enzyme and potent diuretic activity. Peptides 1997; 18: 53-7.
    [57] Zubrzak P, Williams H, Coast GM, Isaac RE, Reyes-Rangel G, Juaristi E, Zabrocki J, Nachman RJ. Beta-amino acid analogs of an insect neuropeptide feature potent bioactivity and resistance to peptidase hydrolysis. Biopolymers 2007; 88: 76-82.
    [58] Moyna G, Williams HJ, Nachman RJ, Scott AI. Conformation in solution and dynamics of a structurally constrained linear insect kinin pentapeptide analogue. Biopolymers 1999;49: 403-13.
    [59] Nachman RJ, Zabrocki J, Olczak J, Williams HJ, Moyna G, Ian Scott A, Coast GM. cis-peptide bond mimetic tetrazole analogs of the insect kinins identify the active conformation. Peptides 2002; 23: 709-16.
    [60] Nachman RJ, Kaczmarek K, Williams HJ, Coast GM, Zabrocki J. An active insect kinin analog with 4-aminopyroglutamate, a novel cis-peptide bond, type VI beta-turn motif. Biopolymers 2004; 75: 412-9.
    [61] Nachman RJ, Coast GM, Douat C, Fehrentz JA, Kaczmarek K, Zabrocki J, Pryor NW, Martinez J. A C-terminal aldehyde insect kinin analog enhances inhibition of weight gain and induces significant mortality in Helicoverpa zea larvae. Peptides 2003; 24: 1615-21.
    [62] Nachman RJ, Coast GM, Kaczmarek K, Williams HJ, Zabrocki J. Stereochemistry of insect kinin tetrazole analogues and their diuretic activity in crickets. Acta Biochim Pol 2004; 51: 121-7.
    [63]Kamoune L, De Borggraeve WM, Verbist BMP, Vanden Broeck J, Coast GM, Compernolle F, Hoornaert G. Structure based design of simplified analogues of insect kinins. Tetrahedron 2005; 61: 9555-62.
    [64] Lacour TFM. Stereochemistry of peptides containing a thioacyl group. Int J Pept Protein Res 1987; 30: 564-71.
    [65] Artis DR, Lipton MA. Conformations of thioamide-containing dipeptides: A computational study. J Am Chem Soc 1998; 120: 12200-6.
    [66] Seebach D, Ko SY, Kessler H, Kock M, Reggelin M, Schmieder P, Walkinshaw MD, Bolsterli JJ, Bevec D. Thiocyclosporins-preparation, solution and crystal-structure, and immunosuppressive activity. Helv Chim Acta 1991; 74: 1953-90.
    [67] Kessler H, Geyer A, Matter H, Kock M. Unusual thionation of a cyclic hexapeptide-conformational-changes and dynamics. Int J Pept Protein Res 1992; 40: 25-40.
    [68] Campbell P, Nashed NT. Carboxypeptidase - a ctalyzed-hydrolysis of thiopeptide and thionester analogs of specific substrates - an effect on K_(cat) for peptide, but not ester, substrates. J Am Chem Soc 1982; 104: 5221-6.
    [69] Maziak L, Lajoie G, Belleau B. Productive conformation in the bound-state and hydrolytic behavior of thiopeptide analogs of angiotensin-converting enzyme substrates. J Am Chem Soc 1986; 108: 182-3.
    [70]Beattie RE, Elmore DT, Williams CH, Guthrie DJS. The behavior of leucine aminopeptidase towards thionopeptides. Biochem J 1987; 245: 285-8.
    [71] Schutkowski M, Neubert K, Fischer G. Influence on proline-specific enzymes of a substrate containing the thioxoaminoacyl-prolyl peptide-bond. Eur J Biochem 1994; 221: 455-61.
    [72] Lajoie G, Lepine F, Lemaire S, Jolicoeur F, Aube C, Turcotte A, Belleau B. Synthesis and biological-activity of monothionated analogs of Leucine-Enkephalin. Int J Pept Protein Res 1984; 24: 316-27.
    [73] Majer Z, Zewdu M, Hollosi M, Seprodi J, Vadasz Z, Teplan I. Solid-phase synthesis of a GHRP analog containing C-terminal thioamide group. Biochem Biophy Res Commun 1988; 150: 1017-20.
    [74] Kruszynski M, Kupryszewski G, Ragnarsson U, Alexandrova M, Strbak V, Tonon MC, Vaudry H. Trh Analog with C-Terminal thioamide group - synthesis, receptor-binding, TSH-releasing activity and alpha-MSH-releasing activity. Experientia 1985; 41:1576-7.
    [75] Dudek EP. Proton magnetic resonance spectra of thiocarboxamides. J Org Chem 1967; 832-24.
    [76] Lee HJ, Choi YS, Lee KB, Park J, Yoon CJ. Hydrogen bonding abilities of thioamide. J PhysChemA2002; 106: 7010-7.
    [77] Hollosi M, Majer Z, Zewdu M, Ruff F, Kajtar M, Kover KE. Mixed intramolecular H-bonds of secondary thioamides. Tetrahedron 1988; 44: 195-202.
    [78] Pedersen BS, Scheibye S, Nilsson NH, Lawesson SO. Studies on organophosphorus compounds. 10. syntheses of thioketones. Bulletin Des Societes Chimiques Beiges 1978; 87: 223-8.
    [79] Cava MP, Levinson MI. Thionation reactions of Lawesson reagents. Tetrahedron 1985;41:5061-87.
    [80] Guthrie DJS, Williams CH, Elmore DT. Configuration of thionopeptide bond in solution. Int J Pept Protein Res 1986; 28: 208-11.
    [81] Thorsen M, Yde B, Pedersen U, Clausen K, Lawesson SO. Studies on amino-acids and peptides 5. Syntheses of endothionated Melanostatin analogs. Tetrahedron 1983; 39: 3429-35.
    [82] HoegJensen T, Holm A, Sorensen H. Peptide thioacylation with high stereochemical preservation. Synthesis 1996; 3: 383-7.
    [83] Zacharie B, Martel R, Sauve G, Belleau B. Chemoselective thioacylation of amino-acids - Preparation of the 4 monothiothymopentin analogs and their biological-activity. Bioorg Med Chem Lett 1993; 3: 619-24.
    [84] Zacharie B, Sauve G, Penney C. Thioacylating agents - Use of thiobenzimidazolone derivatives for the preparation of thiotuftsin analogs. Tetrahedron 1993; 49: 10489-500.
    [85] Shalaby MA, Grote CW, Rapoport H. Thiopeptide synthesis, alpha-amino thionoacid derivatives of nitrobenzotriazole as thioacylating agents. J Org Chem 1996; 61: 9045-8.
    [86] Brain CT, Hallett A, Ko SY. Thioamide synthesis: Thioacyl-N-phthalimides as thioacylating agents. J Org Chem 1997; 62: 3808-9.
    [87] Zacharie B, Lagraoui M, Dimarco M, Penney CL, Gagnon L. Thioamides: synthesis, stability, and immunological activities of thioanalogues of Imreg. Preparation of new thioacylating agents using fluorobenzimidazolone derivatives. J Med Chem 1999; 42: 2046-52.
    [88] Wildemann D, Drewello M, Fischer G, Schutkowski M. Extremely selective Mg(ClO_4)_2 mediated removal of Bpoc/Ddz moieties suitable for the solid phase peptide synthesis of thioxo peptides. Chem Commun 1999: 1809-10.
    [89] Frank R, Jakob M, Thunecke F, Fischer G, Schutkowski M. Thioxylation as one-atom-substitution generates a photoswitchable element within the peptide backbone. Angew Chem Int Ed Engl 2000; 39: 1120-23.
    [90] Holman GM, Nachman RJ, Schoofs L, Hayes TK, Wright MS, Deloof A. The Leucophaea Maderae hindgut preparation - a rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem 1991; 21: 107-12.
    [91] Nachman RJ, Roberts VA, Holman GM, Beier RC. Pseudodipeptide analogs of the Pyrokinin/PBAN (FXPRLa) Insect neuropeptide family containing carbocyclic Pro-mimetic conformational components. Regul Pept 1995; 57: 359-70.
    [92] Zhao JZ, Micheau JC, Vargas C, Schiene-Fischer C. cis/trans photoisomerization of secondary thiopeptide bonds. Chem Eur J 2004; 10: 6093-101.
    [93]Helbing J, Bregy H, Bredenbeck J, Pfister R, Hamm P, Huber R, Wachtveitl J, De Vico L, Olivucci M. A fast photoswitch for minimally perturbed peptides: Investigation of the trans→cis photoisomerization of N-methylthioacetamide. J Am Chem Soc 2004; 126: 8823-34.
    [94] Lin LN, Brandts JF. Kinetic Mechanism for conformational transitions between poly-L-Prolines-I and Poly-L-Prolines-II: A study utilizing the cis-trans specificity of a Proline-specific protease. Biochemistry 1980; 19: 3055-9.
    [95] Lin LN, Brandts JF. Evidence Suggesting That some proteolytic-enzymes may cleave only the trans form of the peptide-bond. Biochemistry 1979; 18: 43-7.
    [96] Brandsch M, Thunecke F, Kullertz G, Schutkowski M, Fischer G, Neubert K. Evidence for the absolute conformational specificity of the intestinal H~+/peptide symporter, PEPT1. J Biol Chem 1998; 273: 3861-4.
    [97] Yamazaki T, Ro S, Goodman M, Chung NN, Schiller PW. A topochemical approach to explain morphiceptin bioactivity. J Med Chem 1993; 36: 708-19.
    [98] Lin LN, Brandts JF. Role of cis-trans isomerism of the peptide-bond in protease specificity - kinetic studies on small Proline-containing peptides and on polyproline. Biochemistry 1979; 18: 5037-42.
    [99] Ottleben H, Haasemann M, Ramachandran R, Gorlach M, MullerEsterl W, Brown LR. An NMR study of the interaction of N~(15)-labelled bradykinin with an antibody mimic of the bradykinin B2 receptor. Eur J Biochem 1997; 244: 471-8.
    [100] Merker MP, Armitage IM, Audi SH, Kakalis LT, Linehan JH, Maehl JR, Roerig DL, Dawson CA. Impact of angiotensin-converting enzyme substrate conformation on fractional hydrolysis in lung. Am J Physiol Lung Cell Mol Physiol 1996; 14: 251-9.
    [101] Willner I. Photoswitchable biomaterials: En route to optobioelectronic systems. Acc Chem Res 1997; 30: 347-56.
    [102] Behrendt R, Renner C, Schenk M, Wang FQ, Wachtveitl J, Oesterhelt D, Moroder L. Photomodulation of the conformation of cyclic peptides with azobenzene moieties in the peptide backbone. Angew Chem Int Ed Engl 1999; 38: 2771-4.
    [103] Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches. Chem Rev 2000; 100: 1741-53.
    [104] Dong SL, Loweneck M, Schrader TE, Schreier WJ, Zinth W, Moroder L, Renner C. A photocontrolled beta-hairpin peptide. Chem Eur J 2006; 12: 1114-20.
    [105] Renner C, Moroder L. Azobenzene as conformational switch in model peptides. Chembiochem 2006; 7: 869-78.
    [106] Wang Y, Purrello R, Spiro TG. Uv Photoisomerization of N-methylacetamide and resonance raman enhancement of a new conformation-sensitive amide mode. J Am Chem Soc 1989; 111:8274-6.
    [107] Reimer U, Fischer G. Local structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Biophys Chem 2002; 96: 203-12.
    [108] Bondi A. Van Der Waals Volumes + Radii. J Phys Chem 1964; 68: 441-&.
    [109] Schutkowski M, Jakob M, Landgraf G, Born I, Neubert K, Fischer G. Probing substrate backbone function in prolyl oligopeptidase catalysis - Large positional effects of peptide bond monothioxylation.Eur J Biochem 1997;245:381-5.
    [110]Bardi R,Piazzesi AM,Toniolo C,Jensen OE,Omar RS,Senning A.molecular and crystal-structures of 3 monothiated analogs of the terminally blocked Ala-Aib-Ala sequence of peptaibol antibiotics.Biopolymers 1988;27:747-61.
    [111]Varughese KI,Przybylska M,Sestanj K,Bellini F,Humber LG.The crystal structure of N-[[6-methoxy-5-(trifluoromethyl)thio-1-naphthalenyl]thioxomethyl]-N-methyl-glycine,C_(16)H_(14)F_3NO_3S_2.Canad J Chem 1983;61:2137-40.
    [112]Sifferlen T,Rueping M,Gademann K,Jaun B,Seebach D.beta-Thiopeptides:Synthesis,NMR solution structure,CD spectra,and photochemistry.Helv Chim Acta 1999;82:2067-93.
    [113]Miwa JH,Patel AK,Vivatrat N,Popek SM,Meyer AM.Compatibility of the thioamide functional group with beta-sheet secondary structure:Incorporation of a thioamide linkage into a beta-hairpin peptide.Org Lett 2001;3:3373-5.
    [114]Miwa JH,Pallivathucal L,Gowda S,Lee KE.Conformational stability of helical peptides containing a thioamide linkage.Org Lett 2002;4:4655-7.
    [115]Tran TT,Zeng J,Treutlein H,Burgess AW.Effects of thioamide substitutions on the conformation and stability of alpha- and 3(10)-helices.J Am Chem Soc 2002;124:5222-30.
    [116]Yap J,Feher VA,Espejo BF,Reymond MT,Wright PE,Dyson HJ.Stabilization of a type-Ⅵ turn in a family of linear peptides in water solution.J Mol Biol 1994;243:736-53.
    [117]Yap J,Dyson HJ,Wright PE.3-Dimensional structure of a type-Ⅵ turn in a linear peptide in water solution - evidence for stacking of aromatic rings as a major stabilizing factor.J Mol Biol 1994;243:754-66.
    [118]Chou PY,Fasman GD.Beta-turns in proteins.J Mol Biol 1977;115:135-75.
    [119]Hutchinson EG,Thornton JM.A revised set of potentials for beta-turn formation in proteins.Protein Sci 1994;3:2207-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700